下调c-FLIP在恶性黑素瘤细胞系中的表达诱导JNK信号途径活化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分c-FLIP在黑素瘤组织中的表达及其与临床病理特征的关系
     目的检测c-FLIP在黑素瘤组织及细胞系中的表达,探究其与临床病理特征之间的关系。
     方法免疫组化方法检测c-FLIP在77例黑素瘤组织及23例色素痣组织中的表达;并检测其在34例CA和16例正常包皮组织中的表达,同时用western blotting和RT-PCR检测了其分别在CA和正常包皮组织中的蛋白表达和mRNA水平。western blotting和流式细胞术检测c-FLIP在A375, A875, SK-Mel-1和SK-Mel-28黑素瘤细胞系中的表达。
     结果c-FLIP在恶性黑素瘤组织中的表达明显高于在色素痣中的表达,其高表达与组织病理学分型相关并与黑素瘤的Clark's分级相关。与Ki-67标记指数(KI)高度相关。四株黑素瘤细胞中,A875细胞的c-FLIP的表达最高。c-FLIP在CA中的蛋白和mRNA水平均较正常包皮组织中的明显增高。
     结论c-FLIP除了具有抗凋亡功能外,它还具有促增殖作用,在恶性黑素瘤的侵袭性生物学特性中可能具有重要的作用,对恶性黑素瘤的预后具有重要意义。c-FLIP在CA中的高表达可能与角质形成细胞的过度增殖有关。
     第二部分c-FLIPshRNA载体的构建及鉴定
     目的构建针对c-FLIP不同亚型的shRNA真核表达载体c-FLIPT/L/S shRNA,鉴定其正确性,并转染恶性黑素瘤A875细胞系,证实其在体外培养的恶性黑素瘤细胞中对c-FLIP具有干扰作用。
     方法①人工合成互补并编码相应短发夹状c-FLIPT/L/S shRNAs的寡核苷酸链,将其插入到Pgenesil-1载体中,经酶切和测序鉴定所构建的重组体是否正确;②采用逆转录聚合酶链反应(RT-PCR)、Western blot和流式细胞术分别检测转染的A875细胞中c-FLIP mRNA和蛋白的表达变化。③在人恶性黑素瘤细胞系A875中,用G418筛选沉默效果最佳的c-FLIPshRNAs,用流式细胞术(FCM)检测GFP的表达,鉴定稳定转染的单克隆细胞系。
     结果①经酶切和测序证明c-FLIPT/L/S shRNAs序列正确;②A875细胞系中转染c-FLIPT/L/S shRNAs载体后,c-FLIPT1shRNA和c-FLIPT1shRNA沉默效果最佳。③荧光显微镜下观察到了G418筛选稳定表达c-FLIPT1shRNA的A875细胞,FCM检测GFP表达均在96%以上。
     结论测序结果表明发卡样的c-FLIPT/L/S shRNAs真核表达载体构建成功,转染A875细胞后获得稳定表达,并可特异性封闭c-FLIPT/L/S的表达,筛选和鉴定出稳定转染单克隆细胞系A875,为后续实验及进一步研究c-FLIPT/L/S shRNAs载体在恶性黑素瘤治疗中的作用提供了理论基础。
     第三部分c-FLIP的下调诱导恶性黑素瘤A875细胞系JNK信号途径的活化
     目的观察c-FLIP不同亚型shRNA对恶性黑素瘤A875细胞系JNK信号途径的影响。
     方法western blot检测c-FLIPT/L/S shRNAs真核表达载体稳转的A875细胞系中p-JNK表达水平。
     结果与未转染质粒的A875细胞和稳定转染c-FLIPC shRNA真核表达载体的A875细胞相比,c-FLIPT/LshRNAs真核表达载体稳定转染的A875细胞系中p-JNK表达水平明显升高,而c-FLIPS-shRNA真核表达载体稳转的A875细胞系中p-JNK表达水平无明显变化。
     结论在黑素瘤细胞系中下调c-FLIP (c-FLIPL)的表达可以诱导JNK信号途径的活化。
     第四部分c-FLIP不同亚型shRNA对恶性黑素瘤细胞生物学特性的影响
     目的观察c-FLIP各亚型shRNA对A875细胞的生长、增殖及凋亡的影响。
     方法在c-FLIPT/L/S/C shRNA稳定转染A875细胞中,运用绝对细胞计数对c-FLIP各亚型shRNA稳定转染细胞绘制生长曲线,比较其与对照组的差异;用MTT法检测各稳定转染细胞增殖能力的差异;用Annexin v/PI双染细胞,检测各组细胞凋亡率的差异。
     结果稳定转染c-FLIPT/L/sshRNAA875细胞生长速度较未转染质粒的A875细胞和稳定转染c-FLIPC shRNA A875细胞的生长速度慢,进入对数生长期的时间延长且平台降低。与未转染质粒的A875细胞和稳定转染c-FLIPC shRNA真核表达载体的A875细胞相比,稳定转染c-FLIPT/L/S shRNA真核表达载体的A875细胞光密度值明显降低。运用Annexin v/PI双染,流式细胞术检测细胞凋亡显示与未转染质粒的A875细胞和稳定转染c-FLIPc shRNA真核表达载体的A875细胞相比,稳定转染c-FLIPT/L/S shRNA真核表达载体的A875细胞凋亡率明显增加。
     结论靶向c-FLIP基因不同亚型的shRNA不仅对黑素瘤细胞的生长和增殖具有抑制作用,而且能够促进黑素瘤的凋亡。
PartⅠExpression of c-FLIP in malignant melanoma and itsrelation to the clinicopathologic features
     Objective:The aim of this work was to examine the expression patterns of c-FLIP in MM in vivo and explore the relationship of its expression with the clinicopathologic features
     Methods:Immunohistochemical staining with anti-c-FLIP antibody was performed in 77 tissue samples obtained from MM and 23 tissue samples from naevi. Immunoperoxidase staining method was applied to analyze the location of c-FLIP expressions in 34 CA and 16 normal foreskin tissues. Real time quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) and western blotting were performed to further identify the expression of c-FLIP in CA. c-FLIP expression in A375, A875, SK-Mel-land SK-Mel-28 cell lines were examined by WB and FCM.
     Results:The expression of c-FLIP was increased in MM tissue compared with the detectable levels in the matched pigmented naevi lesions. It was significantly associated with the histological type and Clark's level of malignant melanoma. In four MM cell lines, c-FLIP expression was the highest in A875 cell lines. c-FLIP expression at either its mRNA or protein level was significantly higher in CA than that in normal foreskin.
     Conclusion:Exprect the role of anti-apoptosis, c-FLIP could promote the proliferation of cells. It might play an important role in the obtaining of aggressive biologic behaviors and be useful in predicting prognosis of patients with MM. Overexpression of c-FLIP might be involved in the hyperproliferation of keratinocytes in CA.
     PartⅡConstruction and Identification of c-FLIP shRNAs
     Objectives:Short interfering RNA (siRNA) eukaryotic expression vector for c-FLIPT/L/S shRNA was constructed and transfected into MM A875 cell lines. To verify its effection of interference for c-FLIP in MM cell lines in vitro.
     Methods:①c-FLIPT/L/S shRNA targeting human c-FLIP isoforms common sequence was synthesized and it was inserted into Bam HI-HindⅢlinearized Pgenesile-1 vector. The sequence of c-FLIPT/L/S shRNA plasmid was analyzed by DNA sequencer and restrict endonuclease cutting.②To screen the best silencing effect c-FLIPT/L/S shRNA, the alteration of c-FLIP mRNA and protein was checked by Rt-PCR, western blot and FCM after c-FLIPT/L/S shRNAs were transfected in MM cell lines.③The monoclone A875 cells with stable expression of best effect c-FLIPshRNAs were obtained by G418 selection and were identified with checking GFP expression by FCM.
     Results:①It was verified that the sequence of constructed recombinant plasmids were correct by DNA sequencing and restrict endonuclease cutting.②Among the c-FLIPT/L/S shRNAs we tested, c-FLIPT1shRNA和c-FLIPL1shRNA possessed the strongest inhibitory effect against c-FLIP.③We screened and obtained A875 cell lines with stable expressions of c-FLIPT/L/S shRNAs as A875 stable clone could observed under Fluorescence microscope and 96% A875 stable clone expressed GFP detected by FCM.
     Conclusions:It indicated that hairpin siRNA eukaryotic expression vector for c-FLIP isoforms would be successfully establishedand. It played a specific inhibitory role in A875 cell lines. This study laid theoretical foundation for further research of the therapy of c-FLIPT/L/S shRNAs vector in MM.
     PartⅢDownregulation of c-FLIP induce JNK activion in malignant melanoma cell lines
     Objective:To observe the influence of difference isoforms of c-FLIP shRNA on JNK pathway in MM A875 cell lines.
     Methods:To detecte the expression of p-JNK protein in stable clone A875 transfected with c-FLIPT/L/S shRNAs by western blot.
     Results:Comparing with untranstected and stable transtected with c-FLIPC shRNA A875 cell lines, p-JNK protein was increased significantly in A875 cell lines which were transtected with c-FLIPT/LshRNA. And in transtected with c-FLIPS shRNA A875 cell lines, p-JNK protein was unchanged.
     Couclusions:Downregulation of c-FLIP can induce the activion of JNK pathway in MM A875 cell lines.
     PartⅣThe influence of difference isoforms of c-FLIP shRNA on bionomics of MM cell lines
     Objective:To observe the influence of difference isoforms of c-FLIP shRNA on bionomics of MM A875 cell lines such as growth, proliferation and apoptosis.
     Methods:To count cells of A875cell lines which were transtected with c-FLIPT/L/S/C shRNA and obtain the cells'growth curve, and then to compare the difference among those type of cells. To detecet the proliferational activity of those cells by MTT; Using annexin V and propidium iodide(PI) double staining, we observe the rate of apoptosis by Flow cytometry(FCM).
     Results:Comparing with untranstected and stable transtected with c-FLIPc shRNA A875 cell lines, the growth were slower in A875 cell lines which were transtected with c-FLIPT/LshRNA. And the time they enter the log phase prolonged and platform were cut down. And optical density decreased significantly. Using annexin V and propidium iodide(PI) double staining, we observed that the rate of apoptosis of A875 cell lines which were transtected with c-FLIPT/LshRNA comparing with untranstected and stable transtected with c-FLIPc shRNA A875 cell lines by FCM
     Conclusions:Difference isoforms of c-FLIP shRNA can not only suppress the growth and proliferation of MM A875 cell lines but also promote their apoptosis.
引文
1. Bataille V. Genetic and epidemiological aspects of melanoma. Ann Dermatol Venereol 2006; 133:56-62.
    2. Dunbar R, Findlay M, Stevens G. Melanoma control:few answers, many questions. N Z Med J 2006;119:U2172.
    3. Miller AJ, Mihm Jr MC. Melanoma. N Engl J Med 2006;355:51-65.
    4. Takeda K, Stagg J. Yagita H, et al. Targeting death-inducing receptors in cancer therapy. Oncogene 2007;26:3745-3757.
    5. Karin M, Lin A. NF-kB at the crossroads of life and death. Nat Immunol 2002;3:221-227.
    6. De Smaele E, Zazzeroni F, Papa S, et al. Induction of gadd45b by NF-kB downregulates pro-apoptotic JNK signalling. Nature 2001;414:308-313.
    7. Tang G, Minemoto Y, Dibling B, et al. Inhibition of JNK activation through NF-kB target genes.Nature 2001;414:313-317.
    8. Sakon S, Xue X, Takekawa M, et al. NF-kB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 2003;22:3898-3909.
    9. Pham CG, Bubici C, Zazzeroni F, et al. Ferritin heavy chain upregulation by NF-kB inhibits TNFa-induced apoptosis by suppressing reactive oxygen species. Cell 2004;119:529-542.
    10. Ventura JJ, Cogswell P, Flavell RA,et al. JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 2004;18:2905-2915.
    11. Kamata H. Honda S, Maeda S, et al. Reactive oxygen species promote TNFa-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005:120:649-661.
    12. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81: 807-869.
    13. Davis. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103: 239-252.
    14. Weston CR, Davis RJ.The JNK signal transduction pathway. Curr Opin Genet Dev 2002;12:14-21.
    15.Budd RC, Yeh WC, Tschopp J. c-FLIP regulation of lymphocyte activation and development. Nat Rev Immuno 2006;16:196-204.
    16. Golks A, Brenner D. Fritsch C, et al. c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 2005; 280:14507-14513.
    17. Scaffidi C, Medema JP, Krammer PH, et al. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 1997; 272:26953-26958.
    18. Micheau O, Thome M, Schneider P, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002; 277: 45162-45171.
    19. Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002;21:3704-3714.
    20. Krueger A, Schmitz I, Baumann S, et al. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 2001;276:20633-20640.
    21.Nakajima A, Kojima Y, Nakayama M, et al. Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells. Oncogene 2008;27:76-84.
    22. Nakajima A, Komazawa-Sakon S, Takekawa M, et al. An antiapoptotic protein,c-FLIPL, directly binds to MKK7 and inhibits the JNKpathway. EMBO J 2006;25:5549-5559.
    23. Irmler M, Thome M. Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997;388:190-195.
    24. Bullani RR, Huard B, Viard-Leveugle I, et al. Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 2001;117:360-364.
    25. Jorgensen K, Davidson B, Florenes VA. Activation of c-jun N-terminal kinase is associated with cell proliferation and shorter relapse-free period in superficial spreading malignant melanoma. Mod Pathol 2006; 19:1446-1455.
    26. Lopez-Berqami P, Huang C, Goydos JS, et al. Re-wired ERK-JNK signaling pathways in melanoma. Cancer Cell 2007;11:447-460.
    1. Golks A, Brenner D, Fritsch C, et al. c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 2005; 280:14507-14513.
    2. Scaffidi C, Medema JP, Krammer PH, et al. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 1997; 272:26953-26958.
    3. Micheau O, Thome M, Schneider P, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002; 277: 45162-45171.
    4. Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002:21:3704-3714.
    5. Krueger A, Schmitz I, Baumann S, et al. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 2001; 276:20633-20640.
    6. Tomas D. Apoptosis, UV-radiation, precancerosis and skin tumors. Acta Med Croatica.2009; 2:53-58.
    7. Kiechle FL, Zhang X. Apoptosis:biochemical aspects and clinical implications. Clin Chim Acta 2002; 326:27-45.
    8. Thome M, Tschopp J. Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 2001;1:50-58.
    9. Roth W, Reed JC. FLIP protein and TRAIL-induced apoptosis. Vitamm Horm 2004; 67:189-206.
    10. Kataoka T. The caspase-8 modulator c-FLIP. Crit Rev Immunol 2005; 25:31-58.
    11. Zhou XD, Yu JP, Luo HS, et al. Overexpression of cellular FLICE-inhibitory protein(FLIP) in gastric adenocarcinoma. Clin Sci 2004;106:397-405.
    12. Chen HX, Liu YJ, Zhou XD, et al. Expression of cellular FLICE/caspase-8 inhibitory protein is associated with malignant potential in endometrial carcinoma. Int J Gynecol Cancer 2005;15:663-670.
    13. Zhou XD, Yu JP, Chen HX; et al. Expression of cellular FLICE-inhibitory protein and its association with p53 mutation in colon cancer. World J Gastroenterol 2005; 11:2482-2485.
    14. Bullani RR, Huard B, Viard-Leveugle L, et al. Selective Expression of FLIP in Malignant Melanocytic Skin Lesions.J Invest Dermatol 2001;117:360-364.
    15. Polakowska RR, Piacentini M, Bartlett R, et al. Apoptosis in human skin development: morphogenesis, periderm, and stem cells. Dev Dyn 1994; 199:176-188.
    16.Berhane T, Halliday GM, Cooke B, et al. Inflammation is associated with progression of actinic keratoses to squamous cell carcinomas in humans. Br J Dermatol 2002;146: 810-815.
    17. Hussein MR, Al-Badaiwy ZH, Guirguis MN. Analysis of p53 and bcl-2 protein expression in the non-tumorigenic, pretumorigenic,and tumorigenic keratinocytic hyperproliferative lesions. J Cutan Pathol 2004;31:643-651.
    18. Zong H, Yin B, Chen J, et al. Over-expression of c-FLIP confers the resistance to TRAIL-induced apoptosis on Gallbladder carcinoma. Tohoku J Exp Med 2009; 217:203-208.
    19. Marconi A, Atzei P, Panza C, et al. FLICE/caspase-8 activation triggers anoikis induced by β1-integrin blockade in human keratinocytes. J Cell Sci 2004;117:5815-5823.
    20. Tao J, Dong J, Li Y, et al. Up-regulation of cellular FLICE-inhibitory protein in peripheral blood B lymphocytes in patients with systemic lupus erythematosus is associated with clinical characteristics. J Eur Acad Dermatol Venereol 2009; 23: 433-437.
    21. Tao J, Dong J, Li Y, et al. Study on the Role of Apoptosis inhibitory Protein-cellular FLIP in Cellular Immunity in Patients with Herpes Zoster. Chin J Derm Venereol 2008;22:207-210.
    22. Wang W, Wang S, Song X, et al. The relationship between c-FLIP expression and human papillomavirus E2 gene disruption in cervical carcinogenesis. Gynecol Oncol 2007;105:571-577.
    23. Zhang H, Rosenberg S, Coffey FJ, et al. A role for cFLIP in B cell proliferation and stress MAPK regulation. J Immunol 2009;182:207-215.
    24. Horvath CM. STAT proteins and transcriptional responses to extracellular signals. TIBS 2000; 25:496-502
    25. Ma XT,Wang X.Ye YJ, et al. Relationship of Stat3 and its target gene products with malignancy in human colorectal carcinoma. Ai Zheng 2003;22:1135-1139.
    26. Mchenry PM, Hole DJ,Mackie RM. Melanoma in people aged 65 and over in Scotland, 1979-89. BMJ 1992;304:746-749
    27. Qing Xu, Jon B, Sungman P, et al.Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling path ways. Onco gene 2005;24:5552-5560.
    28. Garcia R, Bowman TL, Niu G, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 2001; 20:2499-2513.
    29. Fernandes A, Hamburger AW, Gerwin BI. ErbB-2 kinase is required for constitutive Stat3 activation in malignant human lung epithelial cells. Int J Cancer 1999;83: 564-570.
    30. Ni Z, Lou W, Leman ES, et al. Inhibition of constitutively activated Stat3 signaling pathway suppresses growth of prostate cancer cells. Cancer Res 2000;60:1225-1228.
    31. Burke WM, Jin X, Lin HJ, et al. Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells. Oncogene 2001; 20:7925-7934.
    32. Kortylewski M, Jove R,Yu H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev 2005;24:315-327.
    33. Franke TF, Kaplan DR, Cantley LC. PI3K:Downstream AKTion blocks apoptosis. Cell 1997;88:435-437.
    34. Haga S, Terui K, Zhang HQ, et al.Stat3 protects against Fas-induced liver, injury by redox-dependent and-independent mechanisms. J Clin Invest 2003; 112:989-998.
    35. Ohashi H, Takagi H, Oh H, et al. Phosphatidylinositol 3-kinase/Akt regulates angiotensin Ⅱ-induced inhibition of apoptosis in microvascular endothelial cells by governing survivin expression and suppression of caspase-3 activity. Circ Res 2004; 94:785-793.
    36. Madge LA, Li JH, Choi J, et al. Inhibition of phosphatidylinositol 3-kinase sensitizes vascular endothelial cells to cytokine-initiated cathepsin-dependent apoptosis. J Biol Chem 2003;278:21295-21306.
    1. Caplen NJ. Downregulating gene expression:the impact of RNA interference. Gene Ther 2004;11:1241-1248.
    2. Grimm D, Kay MA. Therapeutic application of RNAi:is mRNA targeting finally ready for prime time? J Clin Invest 2007; 117:3633-3641.
    3. Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 2007; 117:3623-3632.
    4. Corey DR. Chemical modification:the key to clinical application of RNA interference? J Clin Invest 2007; 117:3615-3622.
    5. de Fougerolles A, Vornlocher HP, Maraganore J,et al. Interfering with disease:a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007;6:443-453.
    6. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007;8:173-184.
    7. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997;388:190-195.
    8. Bullani RR, Huard B, Viard-Leveugle I, et al. Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 2001;117:360-364.
    9. Mori T, Doi R, Toyoda E, et al. Regulation of the resistance to TRAIL-induced
    apoptosis as a new strategy for pancreatic cancer. Surgery 2005;138:71-77.
    10. zzanzanica D, Balladore E, Turatti F, et al. CD95-mediated apoptosis is impaired at receptor level by cellular FLICEinhibitory protein (long form) in wild-type p53 human ovarian carcinoma. Clin Cancer Res 2004;10:5202-5214.
    11. Mashima T, Tsuruo T. Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat.2005; 8:339-343.
    12. Safa AR, Day TW, Wu CH. Cellular FLICE-like inhibitory protein (C-FLIP):a novel target for cancer therapy. Curr. Cancer Drug Targets 2008;8:37-46.
    13. Krueger A, Baumann S, Krammer PH,et al. FLICE inhibitory proteins:regulators of death receptor-mediated apoptosis. Mol Cell Biol 2001;21:8247-8254.
    14. Malhi H, Gores GJ. TRAIL resistance results in cancer progression:a TRAIL to perdition? Oncogene.2006;25:7333-7335.
    15. Mezzanzanica D, Balladore E, Turatti F,et al. CD95-mediated apoptosis is impaired at receptor level by cellular FLICE-inhibitory protein (long form) in wild-type p53 human ovarian carcinoma. Clin Cancer Res 2004; 10:5202-5214.
    16. Shin EC, Seong YR, Kim CH, et al. Human hepatocellular carcinoma cells resist to TRAIL-induced apoptosis, and the resistance is abolished by cisplatin. Exp Mol Med 2002;34:114-122.
    17. Steele LP, Georgopoulos NT, Southgate J,et al. Differential susceptibility to TRAIL of normal versus malignant human urothelial cells. Cell Death Differ 2006; 13: 1564-1576.
    18. Day TW, Najafi F, Wu CH, et al. Cellular FLICE-like inhibitory protein (c-FLIP):A novel target for Taxol-induced apoptosis. Biochem Pharmacol 2006; 71:155115-155161.
    19. Holen T,Amarzguioui M,Wiiger MT,et al. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res 2002;30:1757-1766.
    1. Davis RJ.Signal transduction by the JNK group of MAP kinases. Cell 2000; 103:239-252.
    2. Weston CR, Davis RJ.The JNK signal transduction pathway. Curr Opin Genet Dev 2002;12:14-21.
    3. Lin A. A five-year itch in TNF-a cytotoxicity:the time factor determines JNK action. Dev Cell 2006; 10:277-278.
    4. Chang L, Kamata H, Solinas G, et al.The E3 ubiquitin ligase itch couples JNK activation to TNFa-induced cell death by inducing c-FLIP(L) turnover. Cell 2006;124:601-613.
    5. Ventura JJ, Hubner A, Zhang C, et al.Chemical genetic analysis of the time course of signal transduction by JNK. Mol Cell 2006; 21:701-710.
    6. Nakajima A, Komazawa-Sakon S, Takekawa M, et al. An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J 2006; 25:5549-5559.
    7. Nakajima A, Kojima Y, Nakayama M,et al. Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells.Oncogene 2008; 27:76-84.
    8. Kurbanov BM, Fecker LF, Geilen CC, et al. Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-kappaB but is related to downregulation of initiator caspases and DR4. Oncogene 2007; 26:3364-3377.
    9. Xiao C, Yang BF, Song JH, et al. Inhibition of CaMKII-mediated c-FLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp Cell Res 2005; 304:244-255.
    10. Geserick P,Drewniok C,Hupel M,et al.Suppression of cFLIP is sufficient to sensitize human melanoma cells to TRAIL-and CD95L-mediated apoptosis Oncogene 2008;27:3211-3220.
    11. Lin A, Dibling B. The true face of JNK activation in apoptosis. Aging Cell 2002; 1: 112-116.
    12. Liu J, Lin A. Role of JNK activation in apoptosis:a doubleedged sword. Cell Res 2005; 15:36-42.
    13. Jφrgensen K, Davidson B, Flφrenes VA. Activation of c-jun N-terminal kinase is associated with cell proliferation and shorter relapse-free period in superficial spreading malignant melanoma. Modern Pathology 2006:19:1446-1455
    14. Day TW, Huang S, Safa AR. c-FLIP knockdown induces ligand-independent DR5-, FADD-, caspase-8-, and caspase-9- dependent apoptosis in breast cancer cells. Biochem. Pharmacol 2008; 76:1694-1704.
    15. Sharp DA, Lawrence DA, Ashkenazi A. Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J Biol Chem 2005;280:19401-19409.
    16. Wilson TR, McLaughlin KM, McEwan M. c-FLIP:a key regulator of colorectal cancer cell death. Cancer Res 2007;67:5754-5762.
    17. Wilson C,Wilson T, Johnston PG. Interleukin-8 signaling attenuates TRAIL-and chemotherapyinduced apoptosis through transcriptional regulation of c-FLIP in prostate cancer cells. Mol Cancer Ther 2008; 7:2649-2661.
    18. Park D,Shim E, Kim Y. C-FLIP promotes the motility of cancer cells by activating FAK and ERK, and increasing MMP-9 expression. Mol Cells 2008; 25:184-195.
    19. Naito M, Katayama R,Ishioka T. Cellular FLIP inhibits beta-catenin ubiquitylation and enhances Wnt signaling. Mol Cell Biol 2004;24:8418-8427.
    20. Shimada K,Nakamura M, Ishida E. The molecular mechanism of sensitization to Fas mediated apoptosis by 2-methoxyestradiol in PC3 prostate cancer cells. Mol Carcinog 2004;39:1-9.
    21. Wang W,Wang S,Song X. The relationship between c-FLIP expression and human papillomavirus E2 gene disruption in cervical carcinogenesis. Gynecol Oncol 2007; 105:571-577.
    22. Chen HX, Liu YJ, Zhou X D, et al. Expression of cellular FLICE/caspase-8 inhibitory protein is associated with malignant potential in endometrial carcinoma. Int J Gynecol Cancer 2005; 15:663-670.
    23. Yeh WC, Itie A, Elia AJ, et al. Requirement for Casper (c-FLIP) in regulation of death receptorinduced apoptosis and embryonic development. Immunity 2000; 12:633-642.
    24. Thome M, Tschopp J. Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 2001;1:50-58.
    1. Malhi H, Gores GJ. TRAIL resistance results in cancer progression:a TRAIL to perdition? Oncogene 2006;25:7333-7335.
    2. Mezzanzanica D, Balladore E,Turatti F,et al. CD95-mediated apoptosis is impaired at receptor level by cellular FLICE-inhibitory protein (long form) in wild-type p53 human ovarian carcinoma. Clin Cancer Res 2004;10:5202-5214.
    3. Shin EC, Seong YR, Kim CH,et al. Human hepatocellular carcinoma cells resist to TRAIL-induced apoptosis, and the resistance is abolished by cisplatin. Exp Mol Med 2002;34:114-122.
    4. Steele LP,Georgopoulos NT,Southgate J,et al. Differential susceptibility to TRAIL of normal versus malignant human urothelial cells. Cell Death Differ 2006;13:1564-1576.
    5. Day TW, Safa AR. RNA Interference in Cancer:Targeting the Anti-Apoptotic Protein c-FLIP for Drug Discovery. Mini Rev Med Chem 2009;9:741-748.
    6. Golks A,Brenner D,Fritsch C, et al. c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 2005; 280:14507-14513.
    7. Krueger A, Schmitz I,Baumann S,et al. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 2001;276:20633-20640.
    8. Xiao C,Yang BF, Song JH, et al.Inhibition of CaMKII-mediated c-FLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. ExpCell Res 2005;304:244-255.
    9. Micheau O,Thome M,Schneider P,et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002; 277: 45162-45171.
    10. Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apol, and DR3 and is lethal prenatally. Immunity 1998; 9:267-276.
    11. Yeh WC, Pompa JL, McCurrach ME,et al. FADD:essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998;279:1954-1958.
    12. Day TW, Najafi F,Wu CH,et al. Cellular FLICE-like inhibitory protein (c-FLIP):A novel target for Taxol-induced apoptosis. Biochem Pharmacol 2006;71:1551-1561.
    13. Kang J, Bu J,Hao Y,et al. Subtoxic concentration of doxorubicin enhances TRAIL-induced apoptosis in human prostate cancer cell line LNCaP. Prostate Cancer Prostatic Dis 2005; 8::274-279.
    14. Yang BF,Xiao C,Li H.et al. Resistance to Fas-mediated apoptosis in malignant tumours is rescued by KN-93 and cisplatin via downregulation of c-FLIP expression and phosphorylation.Clin Exp Pharmacol Physiol 2007;34:1245-1251.
    15. Day TW,Huang S, Safa AR. c-FLIP knockdown induces ligand-independent DR5-, FADD-, caspase-8-, and caspase-9-dependent apoptosis in breast cancer cells. Biochem Pharmacol 2008,76,1694-1704.
    1. Elmore S'. Apoptosis:a review of programmed cell death. Toxicol Pathol 2007;35:495-516.
    2. Mashima T,Tsuruo T. Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat 2005;8:339-343.
    3. Vermeulen K,Van Bockstaele DR, Berneman ZN. Apoptosis:mechanisms and relevance in cancer. Ann Hematol 2005; 84:627-639.
    4. Valnet-Rabier MB,Challier B,Thiebault S, et al. c-Flip protein expression in Burkitt's lymphomas is associated with a poor clinical outcome. Br J Haematol 2005; 128: 767-773.
    5. Gao S, Wang H, Lee P, et al. Androgen receptor and prostate apoptosis response factor-4 target the c-FLIP gene to determine survival and apoptosis in the prostate gland. J Mol Endocrinol 2006;36:463-483.
    6. Zhang X. Jin TG, Yang H, et al. Persistent c-FLIP(L) expression is necessary and sufficient to maintain resistance to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in prostate cancer. Cancer Res 2004;64:7086-7091.
    7. Galligan L, Longley DB, McEwan M, et al. Chemotherapy and TRAIL mediated colon cancer cell death:the roles of p53, TRAIL receptors, and c-FLIP. Mol Cancer Ther 2005; 4:2026-2036.
    8. Xiao C, Yang BF, Song JH, et al. Inhibition of CaMKII-mediated c-FLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp Cell Res 2005:304:244-255.
    9. Sharp DA, Lawrence DA, Ashkenazi A, et al. Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J Biol Chem 2005; 280:19401-19409.
    10. Green D, Kroemer G. The central executioners of apoptosis:caspases or mitochondria? Trends Cell Biol 1998;8:267-271.
    11. Debatin KM, Krammer PH. Death receptors in chemotherapy and cancer. Oncogene 2004; 23:2950-2966.
    12. Thorburn A. Death receptor-induced cell killing. Cell Signal 2004;16:139-144.
    13. Ashkenazi A, Dixit VM. Death receptors:signaling and modulation. Science 1998; 281:1305-1308.
    14. Sprick MR, Weigand MA, Rieser E, et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 2000;12:599-609.
    75. Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491-501.
    16. Gogvadze V. Orrenius S. Mitochondrial regulation of apoptotic cell death. Chem Biol Interact 2006; 163:4-14.
    17. Jiang X,Wang X. Cytochrome C-mediated apoptosis. Annu Rev Biochem 2004; 73:87-106.
    18. Hengartner MO.The biochemistry of apoptosis.Nature 2000;407:770-776.
    19. Wolf BB, Green DR. Suicidal tendencies:apoptotic cell death by caspase family proteinases. J Biol Chem 1999; 274:20049-20052.
    20. Cory S, Huang DC, Adams JM. The Bcl-2 family:roles in cell survival and oncogensis. Oncogene 2003;22:8590-8607.
    21. Kuwana T, Newmeyer DD. Bcl-2 family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 2003; 15:691-699.
    22. Salvesen GS, Duckett CS. IAP proteins:blocking the road to death's door.Nat Rev Mol Cell Biol 2002:3:401-410.
    23. Nachmias B, Ashhab Y, Ben-Yehuda D. The inhibitor of apoptosis protein family(IAPs):an emerging therapeutic target in cancer. Semin Cancer Biol 2004; 14:231-243.
    24. Krueger A, Baumann S, Krammer PH, et al. FLICE-inhibitory proteins:regulators of death receptor-mediated apoptosis. Mol Cell Biol 2001:21:8247-8254.
    25. Thome M, Tschopp J. Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 2001;1:50-58.
    26. Lakhani S, Flavell RA. Caspases and T lymphocytes:a flip of the coin? Immunol Rev 2003;193:22-30.
    27. Micheau O. Cellular FLICE-inhibitory protein:an attractive therapeutic target? Expert Opin Ther Targets 2003;7:559-573.
    28. Roth W, Reed JC. FLIP protein and TRAIL-induced apoptosis. Vitam Horm 2004; 67:189-206.
    29. Thome M, Schneider P, Hofmann K, et al. Viral FLICE-inhibitory proteins(FLIPs) prevent apoptosis induced by death receptors.Nature 1997:386:517-521.
    30. Hu S, Vincez C, Buller M. et al. A novel family of viral death effector domain-containing molecules that inhibit both CD95 and tumour necrosis factor receptor-1-induced apoptosis. J Biol Chem 1997;272:9621-9624.
    31. Bertin J, Armstrong RC, Ottilie S, et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fasand TNFR1-induced apoptosis. Proc Natl Acad Sci USA 1997; 94:1172-1176.
    32. Hofmann K. The modular nature of apoptotic signalling proteins. Cell Mol Life Sci 1999; 55:1113-1128.
    33. Searles RP, Bergquam EP, Axthelm, MK, et al. Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpes virus 8. J Virol 1999;73:3040-3053.
    34. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388:190-195.
    35. Shu HB, Halpin DR, Goeddel DV. Casper is a FADD-and caspase-related inducer of apoptosis.Immunity 1997; 6:751-763.
    36. Srinivasula SM, Ahmad M, Ottilie S,et al. FLAME-1, a novel FADD-like
    anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 1997:272:18542-18545.
    37. Inohara N, Koseki T, Hu Y,et al. CLARP, a death effector domain-containing proteininteracts with caspase-8 and regulates apoptosis. Proc Natl Acad Sci USA 1997; 94:10717-10722.
    38. Goltsev YV, Kovalenko AV, Arnold E, et al. CASH, a novel caspase homologue with death effector domains. J Biol Chem 1997; 272:19641-19644.
    39. Han DK,Chaudhary PM,Wright ME, et al. MRIT, a novel death-effector domaincontaining protein, interacts with caspases and BclXL and initiates cell death. Proc Natl Acad Sci USA 1997;94:11333-11338.
    40. Hu S, Vincenz C, Ni J, et al. I-FLICE, a novel inhibitor of tumour necrosis factor receptor-1 and CD95-induced apoptosis.J Biol Chem 1997;372:17255-17257.
    41. Rasper DM, Vaillancourt JP,Hadano S, et al. Cell death attenuation by'Usurpin', a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex.Cell Death Differ 1998; 5:271-288.
    42. Tschopp J, Irmler M, Thome M. Inhibition of Fas death signals by FLIPs. Curr Opin Immunol 1998; 10:552-558.
    43. Golks A, Brenner D, Fritsch C, et al. c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 2005;280:14507-14513.
    44. Poukkula M, Kaunisto A, Hietakangas V,et al. Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J Biol Chem 2005;280:27345-27355.
    45. Banneerman DD, Tupper JC, Ricketts WA, et al. A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis. J Biol Chem 2001; 276:14924-14932.
    46. Imanishi T, McBride J, HoQ'Brine KD, et al. Expression of cellular FLICE-inhibitory protein in human coronary arteries and in a rat vascular injury model. Am J Pathol 2000; 156:125-137.
    47. Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells:a role for c-FLIP and implication for anoikis. J Cell Biol 2001; 152:633-643.
    48. Leverkus M, Neumann M, Mengling T, et al. Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes. Cancer Res 2000; 60:553-559.
    49. Raoul C, Henderson CE, Pettmann B.Programmed cell death of embryonic motoneurons triggered through the Fas death receptor.J Cell Biol 1999; 147: 1049-1061.
    50. Imanishi T, Hano T. Nishio I,et al.Transition of apoptotic resistant vascular smooth muscle cells to troptotic sensitive state is correlated with doworegulation of c-FLIP. J Vasc Res 2000; 37:523-531.
    51. Imanishi T,Murry CE, Reinecke H, et al.Cellular FLIP is expressed in cardiomyccytes and down-regulated in TUNEL-positive grafted cardiac tissues. Cardiovasc Res 2000;48:101-110.
    52. Nagaraju K, Casciola-Rosen L, Rosen A, et al.The inhibition of apoptosis in myositis and in normal muscle cells. J Immunol 2000; 164:5459-5465.
    53. Maedler K, Fontana A, Ris F, et al. FLIP switches Fas-mediated glucose signaling in human pancreatic β cells from apoptosis to cell replication. Pro Natl Acad Sci USA 2002; 99:8236-8241.
    54. Willems F, Amraoui Z, Vanderheyde N, et al. Expression of c-FLIPL and resistance to CD95-mediated apoptosis of monocyote-derived dendritic cells. Inhibition by bisindolylmaleimide. Blood 2000; 95:3478-3482.
    55. Leverkus M, Walczak H, McLellan A, et al. Maturation of dendritic cells leads to up-regulantion of celleular FLICE-inhibitory protein and concomitant down-regulation of death ligand-mediated apoptosis. Blood 2000; 96:2628-2631.
    56. Rescigno M, Piguet V, Valzasina B, et al. Fas engagement induces the maturation of dendretic cells (DCs), the release of interleukin (IL)-1β, and the production of interferon y in the absence of IL-12 during DC-T cell cognate interaction:a new role for Fas ligand in inflammatory responses. J Exp Med 2000; 192:1661-1668.
    57. Nicolo C, Tomassini B, Rippo MR, et al. UVB-induced apoptosis of human dendritic cells:contribution by caspase-dependent and caspase-independent pathways. Blood 2001; 97:1803-1808.
    58. Perlman H, Pagliari LJ, Georganas C, et al. FLICE-inhibitory protein expression during macrophage differentiation confers resistance to Fas-mediated apoptosis. J Exp Med 1999; 190:1679-1688.
    59. Kim H, Whartenby KA, Georgantas RW3rd, et al. Human CD34+hematopoietic stem/progenitor cells express high levels of FLIP and are resistant to Fas-mediated apoptosis. Stem Cells 2002;20:174-182.
    60. Giampietri C, Petrungaro S, Coluccia P, et al. FLIP is expressed in mouse testis and protects germ cells from apoptosis. Cell Death Differ 2003:10:175-184.
    61. Perlman H, Pagliari LJ, Liu H, et al. Rheumatid arthritis synovial macrophages espress the Fas-associated death domain-like interleulin-1β-converting enzyme-inhibitory protein and are refractory to Fas-mediated apoptosis. Arthitis Rheum 2001;44:21-30.
    62. Catrina AI, Ulfgren AK, Lindblad S, et al. Low levels of apoptosis and high FLIP expression in early rheumatoid arthritis synovium. Ann Rheum Dis 2002; 61:934-936.
    63. Schedel J,Gay RE, Kuenzler P, et al. FLICE-inhibitory protein expression in synovial fibroblasts and at sites of cartilage and bone erosion in rheumatoid arthritis. Arthritis Rheum 2002; 46:1512-1518.
    64. Semra YK, Seidi OA,Sharief MK.Overexpression of the apoptpsis inhibitor FLIP in T cells correlates with disease activity in multiple sclerosis. J Neuroimmunol 2001; 113:268-274.
    65. Wei Y, Chen K,Sharp GC, et al. FLIP and FasL expression by inflammatory cells vs throcytes can be predictive of chronic inflammation or resolution of autoimmune thyroiditis. Clin Immunol 2003; 108:221-233.
    66. Xu L, Zhang L, Yi Y, et al. Human lupus T cells resist inactivation and escapes death by upregulating COX-2. Nat Med 2004; 10:411-415.
    67. Arreaza G, Salojin K, Yang W, et al. Deficient activation and resistance to activation-induced apoptosis of CD8+T cells is associated with defective peripheral tolerance in nonobese diabetic mice. Clin Immunol 2003;107:103-115.
    68. Zhao M, Cribbs DH, Anderson AJ, et al. The induction of the TNF death domain signaling pathway in Alzheimer's disease brain. Neurochem Res 2003;28:307-318.
    69. Hermandez A, Wang QD, Schwartz SA, et al. Sensitization of human colon cancer cells to TRAIL-mediated apoptosis. J Gastrointest Surg 2001; 5:56-65.
    70. Fukazawa T, Fujiwara T, Uno F, et al. Accelerated degradation of cellular FLIP protein through the ubiquitin-proteasome pathway in p53-mediated apoptosis of human cancer cells.Oncogene 2001; 20:5225-5231.
    71. Ryu BK, Lee MG, Chi SG, et al. Increased expression of cFLIPL in colonic adenocarcinoma. J Pathol 2001; 194:15-19.
    72. Dutton A, O'Neil JD, Milner AE, et al. Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin's lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci U S A 2004; 101:6611-6616.
    73. Mathas S, Lietz A, Anagnostopoulos I, et al. c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med 2004; 199:1041-1052.
    74. Thomas RK, Kallenborn A, Wickenhauser C, et al. Constitutive expression of c-FLIP in Hodgkin and Reed-Sternberg cells. Am J Pathol 2002; 160:1521-1528.
    75. Maggio EM, van den Berg A, de Jong D, et al. Low frequency of FAS mutations in Reed-Sternberg cells of Hodgkin's lymphoma. Am J Pathol 2003;162:29-35.
    76. Song JH, Song DK, Herlyn M, et al. Cisplatin down-regulation of cellular Fas-associated death domain-like interleulin-1β-converting enzyme-inhibitory protein to restore tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human melanoma cells. Clin Cancer Res 2003; 9:4255-4266.
    77. Bullani RR, Huard B,Viard-Leveugle I, et al. Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 2001; 117:360-364.
    78. Abedini MR, Qiu Q, Yan X, et al. Possible role of FLICE-like inhibitory protein(FLIP)in chemoresistant ovarian cancer cells in vitro. Oncogene 2004; 23:6997-7004.
    79. Mezzanzanica D, Balladore E, Turatti F, et al. CD95-mediated apoptosis is impaired at receptor level by cellular FLICE-inhibitory protein(long form) in wild-type p53 human ovarian carcinoma. Clin Cancer Res 2004; 10:5202-5214.
    80. Qiao L, Han SI, Fang Y et al. Bile acid regulation of C/EBPbeta, CREB, and c-Jun function, via the extracellular signal-regulated kinase and c-Jun NH2-terminal kinase pathways, modulates the apoptotic response of hepatocytes. Mol Cell Biol 2003; 23: 3052-3066.
    81. Yeh JH, Hsu SC, Han SH, et al. Mitogen activated protein kinase kinase antagonized Fas-associated death domain protein-mediated apoptosis by induced FLICE-inhibitory protein expression. J Exp Med 1998; 188:1795-1802.
    82. Schlapbach R, Spanaus KS, Malipiero U, et al. TGF-beta induces the expression of the FLICE-inhibitory protein and inhibits Fas-mediated apoptosis of microglia. Eur J Immunol 2000; 30:3680-3688.
    83. Qiao L, Studer E, Leach K, et al. Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor(EGFR) and FAS receptor in primary hepatocytes:inhibition of EGFR/mitogen-activated protein kinase signaling module enhances DCA-induced apoptosis. Mol Biol Cell 2001; 12:2629-2645.
    84. Wang W, Prince CZ, Mou Y, et al. Notch3 signaling in vascular smooth muscle cells induces c-FLIP expression via ERK/MAPK activation. Resistance to Fas ligand-induced apoptosis. J Biol Chem 2002; 277:21723-21729.
    85. Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells:a role for c-Filp and implication for anoikis. J Cell Biol 2001; 152:633-643.
    86. Ohashi H, Takagi H, Oh H, et al. Phosphatidylinositol 3-kinase/Akt regulates angiotensin Ⅱ-induced inhibition of apoptosis in microvascular endothelial cells by governing survivin expression and suppression of caspase-3 activity. Circ Res 2004; 94:785-793.
    87. Madge LA, Li JH, Choi J, et al. Inhibition of phosphatidylinositol 3-kinase sensitizes vascular endothelial cells to cytokine-initiated cathepsin-dependent apoptosis. J Biol Chem 2003;278:21295-21306.
    88. Nam SY, Jung GA, Hur GC,et al.Upregulation of FLIPS by Akt, a possible inhibition mechanism of TRAIL-induced apoptosis in human gastric cancers. Cancer Sci 2003;94:1066-1073.
    89. Kreuz S, Siegmund D, Scheurich P, et al. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 2001; 21: 3964-3973.
    90. Takada Y, Khuri FR, Aggarwal BB. Protein farnesyltransferase inhibitor (SCH 66336) abolishes NF-κB activation induced by various carcinogens and inflammatory stimuli leading to suppression of NF-κB-regulated gene expression and up-regulation of apoptosis. J Biol Chem 2004; 279:26287-26299.
    91. Micheau O, Lens S, Gaide O, et al. NF-κB signals induce the expression of c-FLIP. Mol Cell Biol 2001; 21:5299-5305.
    92. Mora AL, Corn RA, Stanic AK, et al. Antiapoptotic function of NF-kappaB in T lymphocytes is influenced by their differentiation status:roles of Fas, c-FLIP, and Bcl-xL. Cell Death Differ 2003; 10:1032-1044.
    93. Xiao CW, Yan X, Li Y, et al. Resistance of human ovarian cancer cells to tumor necrosis factor a is consequence of nuclear factor KB-mediated induction of Fas-associated death domain like interleukin-1β-converting enzyme-like inhibitory protein. Endocrinology 2003; 144:623-630.
    94. Horsley V, Pavlath GK. NFAT:ubiquitous regulator of cell differentiation and adaptation. J Cell Biol 2002; 156:771-774.
    95. Chen YH, Wu HL, Chen CK, et al. Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun 2003;310:804-810.
    96. Zaichuk TA, Shroff EH, Emmanuel R, et al. Nuclear factor of activated T cells balances angiogenesis activation and inhibition. J Exp Med 2004; 199:1513-1522.
    97. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinese signal transduction pathways activated by stress and inflammation. Physiol Rev 2002; 18:807-869。
    98. Chang L, Kamata H, Solinas G, et al. The E3 ubiquitin ligase itch couples JNK activation to TNFa-induced cell death by inducing c-FLIP(L) turnover. Cell 2006; 124:601-613.
    99. Yidan L,Xiangguo Liu, Ping Y, et al.Involvement of c-FLIP and survivin down-regulation in flexible heteroarotinoid-induced apoptosis and enhancement of TRAIL-initiated apoptosis in lung cancer cells.Mol Cancer Ther 2008; 7:3556-3565.
    100. Bartke T, Siegmund D, Peters N, et al. p53 upregulates cFLIP, inhibits transcription of NF-kappaB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Oncogene 2001; 20:571-580.
    101. Daoud SS, Munson PJ, Reinhold W et al. Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells:a pharmacogenomic study. Cancer Res 2003; 63:2782-2793.
    102. Fukazawa T, Fujiwara T, Uno F et al. Accelerated degradation of cellular FLIP protein through the ubiquitin-proteasome pathway in p53-mediated apoptosis of human cancer cells. Oncogene 2001; 20:5225-5231.
    103. Wanzel M, Herold S, Eelers M. Transcriptional repression by Myc. Trends Cell Biol 2003:13:146-150.
    104. Ricci MS, Jin Z, Dews M, et al. Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol 2004; 24:8541-8555.
    105. Roth W,Reed JC. FLIP protein and TRAIL-induced apoptosis. Vitam Horm 2004; 67:189-206.
    106. Rawlings JS, Rosler KW, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004:117:1281-1283.
    107. Eslick J, Scatizzi JC, Albee L, et al.IL-4 and IL-10 inhibition of spontaneous monocyte apoptosis is associated with Flip expression. Inflammation 2004; 28:139-145.
    108. Lee SW, Park Y, Yoo JK, et al. Inhibition of TCR-induced CD8 T cell death by IL-12: regulation of Fas ligand and cellular FLIP expression and caspase activation by IL-12.J Immunol 2003; 170:2456-2460.
    109. Grassi F, Piacentini A, Cristino S, et al. Inhibition of CD95 apoptotic signaling by interferon-yin human osteoarthritic chondrocytes is associated with increased expression of FLICE inhibitory protein. Arthritis Rheum 2004; 50:498-506.
    110. Zhang J, Bardos T, Shao Q, et al. IL-4 potentiates activated T cell apoptosis via an IL-2-dependent mechanism. J Immunol 2003; 170:3495-3503.
    111. Rafaeli Y, Van Parijs L, London CA, et al. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 1998; 8:615-623.
    112. Raftery MJ, Wieland D, Gronewald S, et al. Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus encoded IL-10. J Immunol 2004; 173:3383-3391.
    113. Kovalovich K, Li W, DeAngelis R, et al. Interleukin-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP,Bcl-2,and Bcl-xL. J Biol Chem 2001;276:26605-26613.
    114. Haga S, Terui K, Zhang HQ, et al.Stat3 protects against Fas-induced liver injury by redox-dependent and-independent mechanisms. J Clin Invest 2003; 112:989-998.
    115. Krueger A, Baumann S, Krammer PH, et al. FLICE inhibitory proteins:regulators of death receptor-mediated apoptosis. Mol Cell Biol 2001;21:8247-8254.
    116. Krueger A, Schmitz I, Baumann S, et al. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 2001; 276:20633-20640.
    117. Sharp DA, Lawrence DA, Ashkenazi A. Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J Biol Chem 2005;280:19401-19409.
    118. Micheau O,Thome M, Schneider P,et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002; 277: 45162-45171.
    119. Varfolomeev EE, Schuchmann M, Luria V. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apol, and DR3 and is lethal prenatally. Immunity 1998;9:267-276.
    120. Yeh WC, Pompa JL, McCurrach ME. FADD:essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998; 279:1954-1958.
    121. Day TW, Najafi F,Wu CH, et al. Cellular FLICE-like inhibitory protein (c-FLIP):A novel target for Taxol-induced apoptosis. Biochem Pharmacol 2006; 71:1551-1561.
    122. Kang J, Bu J, Hao Y, et al. Subtoxic concentration of doxorubicin enhances TRAIL-induced apoptosis in human prostate cancer cell line LNCaP. Prostate Cancer Prostatic Dis 2005; 8:274-279.
    123. Yang BF, Xiao C, Li H. Resistance to Fas-mediated apoptosis in malignant tumours is rescued by KN-93 and cisplatin via downregulation of c-FLIP expression and phosphorylation. Clin Exp Pharmacol Physiol 2007;34:1245-1251.
    124. Day TW, Huang S, Safa AR. c-FLIP knockdown induces ligand-independent DR5-, FADD-, caspase-8-, and caspase-9-dependent apoptosis in breast cancer cells. Biochem. Pharmacol 2008;76:1694-1704.
    125. Sharp DA, Lawrence DA, Ashkenazi A. Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J Biol Chem 2005;280:19401-19409.
    126. Wilson TR, McLaughlin KM, McEwan M. c-FLIP:a key regulator of colorectal cancer cell death. Cancer Res 2007;67:5754-5762.
    127. Wilson C,Wilson T,Johnston PG. Interleukin-8 signaling attenuates TRAIL-and chemotherapyinduced apoptosis through transcriptional regulation of c-FLIP in prostate cancer cells. Mol Cancer Ther 2008; 7:2649-2661.
    128. Park D,Shim E.Kim Y. C-FLIP promotes the motility of cancer cells by activating FAK and ERK; and increasing MMP-9 expression. Mol Cells 2008;25:184-195.
    129. Naito M, Katayama R, Ishioka T. Cellular FLIP inhibits beta-catenin ubiquitylation and enhances Wnt signaling. Mol Cell Biol 2004; 24:8418-8427.
    130. Shimada K, Nakamura M, Ishida E. The molecular mechanism of sensitization to Fas mediated apoptosis by 2-methoxyestradiol in PC3 prostate cancer cells. Mol Carcinog 2004; 39:1-9.
    131. Wang W, Wang S, Song X. The relationship between c-FLIP expression and human papillomavirus E2 gene disruption in cervical carcinogenesis. Gynecol Oncol 2007:105:571-577.
    132. Chen HX, Liu YJ, Zhou XD, et al. Expression of cellular FLICE/caspase-8 inhibitory protein is associated with malignant potential in endometrial carcinoma. Int J Gynecol Cancer 2005;15:663-670.
    133.Kataoka T, Budd RC, Holler N, et al. The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol 2000; 10:640-648.
    134. Kataoka T, Tschopp J. N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. Mol Cell Biol 2004; 24:2627-2636.
    135. Park SJ, Kim YY, Ju JW, et al. Alternative splicing variants of c-FLIP transduce the differential signal through the Raf or TRAF2 in TNF-induced cell proliferation. Biochem Biophys Res Commun 2001; 289:1205-1210.
    136. Chaudhary PM, Eby MT, Jasmin A, et al. Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene 2000; 19:4451-4460.
    137. Yeh WC, Itie A, Elia AJ, et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 2000; 12:633-642.
    138. Kreuz S, Siegmund D, Rumpf JJ. et al. NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 2004;166: 369-380.
    139. Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14:1837-1851.
    140. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434: 843-850.
    141.Naito M. Katayama R, Ishioka T, et al. Cellular FLIP inhibits beta-catenin ubiquitylation and enhances Wnt signaling. Mol Cell Biol 2004; 24:8418-8427.
    142. Nakajima A, Komazawa-Sakon S, Takekawa M, et al. An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J 2006; 25:5549-5559.
    143. Nakajima A, Kojima Y, Nakayama M.et al. Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells.Oncogene 2008;27:76-84.