禽白血病劳斯肉瘤病毒衣壳蛋白p27基因的克隆、表达及免疫学诊断方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽白血病(Avian Leukosis,AL)是由禽白血病/肉瘤病毒群病毒(Avian Leukosis/sarcoma virus,AL/SV)引起的禽类多种肿瘤性疾病的总称。本病在世界各地均有发生,感染率高,发病率低,是危害养禽业的主要疾病之一。流行病学调查研究表明,本病在我国也广泛的发生和流行。由于目前尚没有有效的疫苗和药物用于防治本病,世界各国控制禽白血病的主要措施是通过病原检测,淘汰阳性鸡,从而净化种群达到消灭本病的目的,因此建立一种快速准确的诊断方法就显得尤为重要。
     迄今为止,国内外相继建立了多种禽白血病诊断方法,但其试剂制备利诊断过程均有不足之处。ALV衣壳蛋白p27是一种高度保守的非糖基化蛋白,在外源性ALV(A、B、C、D、J)各亚群间同源性高达90%,是ALV主要的群特异性抗原,且在病毒蛋白中含量最高,是禽白血病抗原检测的理想靶蛋白。本研究的目的是利用分子生物学技术克隆禽白血病衣壳蛋白p27基因,对p27基因进行原核和真核表达,为进一步研制快速准确、灵敏特异的抗原和抗体检测方法奠定基础。
     从人工感染禽白血病劳斯肉瘤病毒(SR-RSV-E)的SPF鸡胚成纤维细胞(CEF)培养物中提取RNA,利用p27基因的特异性引物,通过RT-PCR方法扩增出720 bp的gag p27基因片段:将该片断克隆至pMD18-T载体,酶切鉴定后进行序列测定和分析,表明该片段的核苷酸序列与国外RSV分离株(J02342)的同源性达97.3%:将p27基因亚克隆至原核表达载体pGEX-6P-1,转化受体菌BL-21,经IPTG诱导表达,获得大小为56kD的可溶性融合蛋白,薄层扫描分析重组蛋白占菌体总蛋白的23%;纯化获得的重组p27蛋白具有良好的抗原反应活性,可代替全病毒用于间接ELISA诊断方法的建立。相比于通过提纯病毒,去污剂裂解,电泳纯化p27蛋白的传统方法,利用原核表达系统制备重组p27蛋白成本低,纯度高,周期短。对原核表达的重组p27蛋白用亲和层析法纯化后,免疫实验兔制备了抗血清。进而建立了琼脂扩散诊断方法,该方法简便、特异,可以满足现地使用的需要。
     在原核表达的基础上,利用BAC-TO-BAC~(TM)杆状病毒表达系统对p27蛋白进行真核表达,所表达的产物能与全病毒制备的抗血清发生特异性反应。相比于原核表达系统,杆状病毒表达系统表达的蛋白具有与天然蛋白更相似的结构和功能,为下一步利用重组蛋白直接制备单克隆抗体创造了条件。单克隆抗体的研制为结合上述制备的p27蛋白多克隆抗体,建立一种简便快捷、适用于大面积推广的禽白血病/肉瘤病毒群抗原检测的双抗夹心ELISA创造了条件,必将为我国禽白血病的种群净化提供技术支持。
     此外,表达ALV p27基因重组杆状病毒的获得,进一步结合表达ALV囊膜基因重组杆状病毒的构建,共感染昆虫细胞有望形成ALV病毒样颗粒,为疫苗的研制开创新的思路。
Avian Leukosis is a malignant neoplasitc disease caused by avian leucosis/sarcoma virus. Infection with ALV is widespread in poultry flocks in the world with high morbidity. Although sporadic cases of neoplasitc disease occur in most flocks and the incidence of death is usually low, heavy losses from AL are uncommon. Based on Epidemiological data, AL is highly prevalent and occurs ubiquitously in China. Coupled with the fact that vaccines or medicines against avian leucosis virus have not been successful up to now, AL was controlled primarily by the successful application of ALV eradication program to chickens. The eradication of exogenous avian leukosis virus (ALV) from infected lines of chickens depends on the exclusion of congenitally infected chicks from groups of hatched chicks and the prevention of reinfection from extraneous sources. Therefore obviously desirable, the development of a rapid, and exact diagnostic technique for detecting exogenous virus has been necessary precondition to control ALV.
    At present, serologic diagnosis of ALV infection has been developed by variety methods. These test, however, have some disadvantages in practical application. The capsid protein p27, primary group specific antigen of ALV, is main component in virion. Amino acid sequence of p27 protein shares an about 90% identity between exogenous ALV subgroup A, B, C, D, J. Therefore, p27 is the ideal target protein for detecting ALV antigen. The purpose in this study was to clone and express ALV p27 gene in prokaryotic and eukaryotic cell, Further, to develop a rapid, exact, sensitive and specific diagnostic technique for detection of ALV antigen and antibody using recombinant p27 as antigen.
    RNA was extracted from CEF cell artificially infected with avian leucosis SR-RSV-E and the gag-p27 gene was amplified by RT-PCR with p27 specific primers. Then the gene was cloned into plasmid pMD18-T and sequenced. Nucleotide sequence analysis indicated that the identity between cloned p27 gene and that published in GenBank (J02342) was over 97.3%. The whole coding region of p27 gene was subcloned into prokaryotic expression vector pGEX-6p-l. Then the recombinant plasmid carrying p27 gene was transformed into BL-21 E.coli. Through induced with IPTG, a soluble recombinant protein with molecular weight of 56kD expressed in E.coli was identified by SDS-PAGE. The content of recombinant p27 protein was 23% of the total cellular proteins at optimal conditions. The recombinant p27 was purified with Glutathion Spharose 4B affinity chromatography. Western-blot verified the antigen reactivity of recombinant p27 protein and an indirect Enzyme-Linked Immunosorbent Assay (E1ISA) will be developed using recombinant p27 a
    s antigen for the detection of ALV infection in place of the whole ALV Compared with the former method for purification of p27, that is through extraction, disruption and Polyacrylamide gel electrophoresis (PAGE) of whole ALV, Antiserum was produced from rabbit immunized with purified recombinant p27 protein, then, An agar gel immune precipitation test (AG1P) using p27 antiserum as antibodies was developed to detect ALV antigen in the feather pulp of infected chickens, which was a simple and specific method suited for practical application.
    
    
    Further, in this study, p27 gene was expressed in Sf9 insect cells by BAC-TO-BAC?expression system. And the antigenic reactivity of recombinant p27 protein was identified by Western blot with antiserum against whole ALV. The recombinant p27 protein obtained from insect cells was more similar to nature p27 protein in structure and function than that from prokaryotic cells. With purified recombinant p27 protein as antigen, monoclonal antibodies against p27 will be produced afterward. Based on the monoclonal antibodies against p27 and available polyclonal antibodies against p27 above-mentioned, a DAS-EL1SA will be developed to detect group specific antigen p27 from chicken infected with ALV. This DAS-ELISA would be more specific, sensitive and applicable for the detection for ALV antigens in a large
引文
1.[美]B.W.卡尔尼克主编.高福等译.禽病学(第10版)[M],北京:中国农业大学出版社,1999,529.
    2.蔡雪晖.检测禽白血病/肉瘤病毒ELISA双抗体法的研究[J].中国畜禽传染病,1996,4:37-39.
    3.蔡雪晖.何兆忠,周文举.禽白血病/肉瘤群病毒群特异性抗原p27的分离和纯化.中国畜禽传染病,1995,1(80):48-51.
    4.成子强等.禽白血病病毒J亚群(ALV-J)的血清学调查及PCR诊断.中国病毒学,2002,(4):371-373.
    5.陈福勇等.禽成髓性白血病病毒p27和gag基因的克隆.中国兽医杂志,2001,(8):8-10.
    6.崔治中.我国养禽业面临的疫病新问题[J].中国家禽,2001,(3):69-73.
    7.崔治中等.我国肉用型鸡群中J亚群白血病流行现状的调查.中国预防兽医学报,2002,(4):291-294.
    8.杜岩.崔治中.J亚群禽白血病病毒中国分离毒SD9902株env-gp85基因的克隆及表达[J].中国兽医学报,2002,1(22):3-6.
    9.杜岩,崔治中,秦爱建等.从市场商品肉鸡中检山J亚洋禽白血病病毒[J].中国家禽学报,1999,(1):1-4.
    10.高永贵等.包涵体蛋白的变复性研究.科技通报,2003,1(19):10-15.
    11.关云涛等.应用PCR和琼脂扩散检测禽白血病病毒的比较.中国实验动物学杂志,2002,(5):306-308.
    12.谷振宇,苏志国.蛋白质的层析折叠复性[J].化工学报,2000,51(S):325-329.
    13.蒋启荣等.鸡骨型白血病的研究进展.动物医学进展,2000,3(21):10-13.
    14.景志忠,王佩雅,才学鹏.杆状病毒表达系统研究进展及在寄生虫基因工程疫苗中的应用前景[J].中国兽医科技,2001,31(3):43-45.
    15.李增光.一种新型传染性肿瘤疾病-J亚群禽白血病.山东畜禽,2000,4:25-27.
    16.李新华.禽白血病流行病学特点及防制措施[J].养禽与禽病防治,1997(4):11-12.
    17.李冰玲等.一种新的禽白血病—骨髓细胞瘤病.中国兽医杂志,2000,(2):45-47.
    18.刘思当.J亚群禽白血病的病理诊断.中国兽医杂志.2002.(3):26-27.
    19.刘祥.抗禽白血病结构蛋白p27群特异性抗体的制备.中国畜禽传染病,1993,(1):45-47.
    20.刘祥.抗禽白血病结构蛋白p27群特异性抗体的制备.中国畜禽传染病,1993,(1):45-47.
    21.刘公平等.PCR/RFLP鉴别禽白血病病毒.中国兽医学报.2001,(3):243-245.
    22.刘公平等.禽白血病病毒研究进展.中国兽医学报,2000.(6):621-623.
    23.刘公平.禽白血病病毒囊膜基因gp85片段的克隆与鉴定[J].2001,1(23):17-18.
    24.龙建银,王会信.外源基因在大肠杆菌中表达的研究进展[J].生物化学与生物物理进展,1997,24(2):126-131.
    25.马秀丽.鸡病毒性免疫抑制病的发展趋势与防制措施[J].山东畜牧兽医,2000,2:36-38.
    
    
    26.潘如芳等.禽白血病的流行病学特点.禽病防治,1997,2(13):12-13.
    27.裴鸣,张和平,袁春生等.肉用种鸡J型禽白血病的诊断[J].中国兽医科技,2001,(10):34-35.
    28.秦爱建等..禽白血病病毒J亚群env基因产物的抗原性分析.微生物学报,2002,(1):4—59.
    29.秦爱建等.J亚群禽白血病病毒的免疫荧光检测效果.中国预防兽医学报,2001,(3):214-216.
    30.秦爱建等.抗J亚群禽白血病病毒囊膜糖蛋白特异性单克隆抗体的研制及其特性.畜牧兽医学报, 2001,(6):178-181.
    31.秦爱建等.禽白血病病毒J亚群囊膜蛋白env基因的克隆和表达.病毒学报,2001,(1):68-73.
    32.孙肖红,孙亚洲.杆状病毒表达系统及其在H P V预防疫苗研究中的应用[J].国外医学肿瘤学分册,2001,28(2):98-100.
    33.Robert Owen,万建青等.禽白血病对肉仔鸡养殖业的威胁.国外畜牧科技,2001(4):50-52.
    34.王建新.J亚群禽白血病病毒与禽网状内皮增生症病毒共感染对肉鸡生长和免疫功能的抑制作用.中国兽医学报,2003,(3):211-213.
    35.王健伟等.同时表达蓝舌病毒四个主要结构蛋白可装配成病毒样颗粒.病毒学报,2000,2(16):136-140.
    36.韦平.几种引起家禽免疫抑制的病毒性疾病及其作用机理[J].中国预防兽医学报,2000,4(22):316-318.
    37.杨玉莹.J亚群禽白血病病毒研究进展.中国病毒学,2003,(1):93-97.
    38.殷震.刘景华主编.动物病毒学(第二版)[M],北京:科学出版社,1997,849-831.
    39.朱其太.J型禽白血病[J].中国兽医杂志,2000,6(26):56-57.
    40.张冰等.种鸡场鸡白血病净化的研究(Ⅲ).中国兽医杂志,2002,5(38):3-6.
    41.张爱玲等.应用PCR/RFLP技术对广西禽白血病病毒的检测与分型研究.中国预防兽医学报,2004(2):62-63.
    42.张志等.J亚群禽白血病的诊断和防制.中国兽医杂志,2004,(3).
    43.张志,崔治中,赵宏坤等.商品代肉鸡J亚群白血病的病理及病毒分离鉴定[J].中国兽医杂志,2002,38(6):6-8.
    44.张志等.J亚群禽白血病病毒gp37基因的克隆和序列分析.中国预防兽医学报,2003,(1):36-39.
    45.张志等.我国2000~2001年J亚群禽白血病病毒分离株gp85基因的序列比较.中国兽医学报,2003,(1):25-27.
    46.张志等.宁夏肉用种鸡J亚群禽白血病的实验室诊断.中国兽医科技,2002,(11):21-23.
    47.张志等.商品代肉鸡J亚群禽白血病的病理及病毒分离鉴定.中国兽医杂志,2002,(6):6-8.
    48.张品等.应用Dot-ELISA检测禽白血病病毒抗原的研究[J].中国畜禽传染病,1991,6:31-32.
    49.张立成等.应用 RTPCR技术检测禽白血病病毒及其在不同组织中检出结果的比较.中国实验动物学杂志,2002,(5):303-305.
    50. Adkins HB, Brojatsch J, Young JA. Identification and characterization of a shared TNFR-related receptor for subgroup B, D, and E avian leukosis viruses reveal cysteine residues required. J Virol, 2000, 74(8): 3572-78.
    51. Adkins HB, Blacklow SC, Young JA. Two functionally distinct forms of a retroviral receptor
    
    explain the nonreciprocal receptor interference among subgroups B, D, and E avian leukosis viruses. J Virol, 2001, 75(8): 3520-6.
    52. Arshad SS, Howes K, Barron GS, et al. Tissue tropism of the HPRS-103 strain of J subgroup avian leukosis virus and of a derivation acutely transforming virus [J]. Veterinary Pathology, 1997, 34: 127-137.
    53. Banders U T, Coussens P M. Interactions between Marek's disease virus encoded or induced factors and the Rous sarcoma virus long terminal repeat promoter [J]. Virology, 1994, 199: 1-10.
    54. BaiJ, PayneLN, SkinnerMA. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to hose of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses [J]. J Virol, 1995, 69:779~784.
    55. Barbour EK, Bouljihad M, Hamdar B, Sakr W, Eid A, Safieh-Garabedian B. Dynamics of protein 27 of avian leukosis virus and transforming growth factorbeta2 in lymphoid leukosis susceptible and resistant broiler chicken breeding stock. Vet Res Commun, 1999, 23(3): 191-200.
    56. Benson SJ, Ruis BL, Fadly AM, Conklin KF. The unique envelope gene of the subgroup J avian leukosis virus derives fromev/J proviruses, a novel family of avian endogenous viruses. J Virol, 1998, 72(12): 10157-64.
    57. Benkel BF, Grunder AA, Ramos PS, Ponce de Leon FA. A diagnostic assay for the endogenous ALV-type provirus ALVE-B2 of broiler chickens. Anim Genet, 1998, 29(3): 240.
    58. Benkel BF et al. Locus-specific diagnostic tests for endogenous avian leukosis-type viral loci in chickens. Poult Sci, 1998, 77(7): 1027-35
    59. Chesters PM, Howes K, Diaz-Griffero F, Hoschander SA, Brojatsch J. Bystander killing during avian leukosis virus subgroup B infection requiresTVB (S3) signaling. J Virol, 2003, 77(23): 12552-61
    60. Clark DP et al. Detection of avian oncovirus group-specific antigens by the enzyme-linked immunosorbent assay. J Gen Virol, 1980, 47(2): 283-91
    61. Clark DP, Dougherty RM. Detection of avian oncovirus group-specific antigens by the enzyme-linked immunosorbent assays. Vet Rec, 1991, 128(1): 8~11.
    62. Conklin KF, Coffin JM, Robinson HL, Groudine M, Eisenman R. Role of methylation in the induced and spontaneous expression of the avian endogenous virus ev-1: DNA structure and gene products. Mol Cell Biol, 1982, 2(6): 638-52.
    63. CrittendenLB, EJSmith, WOkazaki. Identification of brailer breeders' congentitally transmitting Avian Leukosis Virus by Enzyme-linked Immunosorbent Assav [J]. Poultry Science, 1984, 63: 492-496.
    64. Crittenden LB et al. A comparison of test materials for differentiating avian leukosis virus group-specific antigens of exogenous and endogenous origin. Avian Dis, 1984, 28(4): 1057-70.
    65. Cui Z, Du Y, Zhang Z, Silva RF. Comparison of Chinese field strains of avian leukosis subgroup J viruses with prototype strain HPRS-103 and United States strains. Avian Dis, 2003, 47(4): 1321-30.
    66. Davidson I, Borenshtain R. The feather tips of commercial chickens is a favorable source of DNA
    
    for the amplification of Marek's disease virus and avian leukosis virus, subgroup J. Avian Pathol, 2002, 31(3): 237-40.
    67. Delos SE, Burdick MJ, White JM. A single glycosylation site within the receptor-binding domain of the avian sarcoma/leukosis virus glycoprotein is critical for receptor binding. Virology, 2002, 15; 294(2): 354-63.
    68. Denesvre C, Soubieux D, Pin G, Hue D, Dambrine G. Interference between avian endogenous ev/J 4.1 and exogenous ALV-J retroviral envelopes. J Gen Virol, 2003, 84(Pt 12): 3233-8.
    69. Dimcheff DE, Krishnan M, Mindell DP. Evolution and characterization of tetraonine endogenous retrovirus: a new virus related to avian sarcoma and leukosis viruses. J Virol, 2001, 75(4): 2002-9.
    70. Dimcheff DE, Drovetski SV, Krishnan M, Mindell DP. Cospeciation and horizontal transmission of avian sarcoma and leukosis virus gag genes in galliform birds. J Virol, 2000, 74(9): 3984-95.
    71. Fadly AM, WOkazak. Relative efficiency of test procedures to detect lymphoid leukosis virus infection [J]. Poultry Science, 1981, 60: 2037-2044.
    72. Fadly A. M. et al. Role of contact and Genetic Transmission of Endogenous Virus-21 in the Susceptibility of Chickens to avian Leukosis Virus Infection and Tumors. Poultry Science, 1997, 76:968
    73. Fadly A M, Witter R L. Effects of age at infection with sero type2 Marek's disease virus on enhancement of avian lekosis virus-induced lymphomas [J]. Avian Pathol, 1993, 22: 56-576.
    74. Fadly AM, Smith EJ. Isolation and some characteristics of a subgroup J-like avian leukosis virus associated with myeloid leukosis in meat-type chickens in the United States. Avian Dis, 1999, 43(3): 391-400.
    75. Garcia M, EI-Attrache J, Riblet SM, Lunge VR, Fonseca AS, Villegas P, lkuta N. Development and application of reverse transcriptase nested polymerase chain reaction test for the detection of exogenous avian leukosis virus. Avian Dis, 2003, 47(1): 41-53.
    76. Gavoral, et al. LymPhoid Leukosis virus infection:effect on Production and motality and consequences in selection for egg. Production. Poult, 1980, 59: 2165-2178.
    77. Gharaibeh S, Brown T, Stedman N, Pantin M. Immunohistochemical localization of avian leukosis virus subgroup J in tissues from naturally infected chickens. Avian Dis, 2001, 45(4): 992-8.
    78. Gingerich E, Porter RE, Lupiani B, Fadly AM. Diagnosis of myeloid leukosis induced by a recombinant avian leukosis virus in commercial white leghorn egg laying flocks. Avian Dis, 2002, 46(3): 745-8.
    79. Goodenow MM, WSH ayward. 5'long terminal repeatsofmc-associated proviruses appear structurally intact but are functionally impaired in tumors induced by avian leukosi viruses [J]. JVirol, 1987, 61: 2489-2498.
    80. Hauptli D, Bruckner L, Ottiger HP. Use of reverse transcriptase polymerase chain reaction for detection of vaccinecontamination by avian leukosis virus. J Virol Methods, 1997, 66(1): 71-81.
    81. Hwang CS, Wang CH. Serologic profiles of chickens infected with subgroup J avian leukosis virus. Avian Dis, 2002, 46(3): 598-604.
    
    
    82. Hortling L et al, Localization of the major group-specific protein (p27) of avian tumor viruses by immunofluorescence in chicken cells and tissues. Intervirology. 1975, 5(5): 252-9.
    83. Hudson BP, Wilson JL, Zavala G, Sander JE. Fertility and sperm quality of broiler breeder males infected with subgroup J avian leukosis virus. Avian Dis, 2002, 46(4): 1033-7.
    84. Johnson ES. Poultry oncogenic retroviruses and humans. Cancer Detect Prev 1994; 18(1):9-30
    85. Johnson JA, Heneine W. Characterization of endogenous avian leukosis viruses in chicken embryonic fibroblast substrates used in production of measles and mumps vaccines. J Viro, 2001, 75(8): 3605-12.
    86. Kim Y, Brown TP. Development of quantitative competitive-reverse transcriptase-polymerase chain reaction for detection and quantitation of avian leukosis virus subgroup J. J Vet Diagn Invest, 2004, 16(3): 191-6.
    87. Kim Y et al. Comparison and verification of quantitative competitive reverse transcription polymerase chain reaction (QC-RT-PCR) and real time RT-PCR for avian leukosis virus subgroup J. J Virol Methods. 2002, 102(1-2): 1-8.
    88. Knauss DJ, Young JA. A fifteen-amino-acid TVB peptide serves as a minimal soluble receptor for subgroup B avian leukosis and sarcoma viruses. J Virol, 2002, 76(11): 5404-10
    89. Kreager KS et al. Chicken industry strategies for control of tumor virus infections. Poult Sci 1998, 77(8): 1213-6
    90. KreagerKS. Chicken industry strategies for control of tumor virus infections [J]. Poult Sci, 1998, 77: 1213~1216.
    91. Korec E et al. A rapid detection of avian oncovirus group-specific antigens in feather pulp by the enzyme-linked immunosorbent assay. Folia Biol (Praha) 1984, 30(1): 15-23.
    92. Landman WJ, Post J, Boonstra-Blom AG, Buyse J, Elbers AR, Koch G. Effect of an in ovo infection with a Dutch avian leukosis virus subgroup J isolate on the growth and immunological performance of SPF broiler chickens. Avian Pathol, 2002, 31 (1): 59-72.
    93. Lee LF et al. Characterization of monoclonal antibodies to avian leukosis viruses. Avian Dis 1986, 30(1): 132-8
    94. Lupiani B, Williams SM, Silva RF, Hunt HD, Fadly AM. Pathogenicity of two recombinant avian leukosis viruses. Avian Dis, 2003, 47(2): 425-32.
    95. Melder DC, Pankratz VS, Federspiel MJ. Evolutionary pressure of a receptor competitor selects different subgroup avian leukosis virus escape variants with altered receptor interactions. J Virol, 2003, 77(19): 10504-14.
    96. Mizuno Y, Itohara S. Enzyme-linked immunosorbent assay to detect subgroup-specific antibodies to avian leukosis viruses. Acta Virol, 1986, 30(2): 103~8.
    97. Neiman P. Retrovirus-induced B cell neoplasia in the bursa of Fabricius [J]. Adv Immunol, 1994, 56:467-484.
    98. Nicholas RA, Thornton DH. Detection of avian leucosis virus:comparison of five technique[J]. Res Vet Sci, 1984, 37(3): 371-3.
    
    
    99. PayneLN, HowesK. Eradication of exogenous avain leucosis virus from commercial layer breeder lines [J]. Vet Rec, 1991, 128(1): 8-11.
    100. Pani P. K. et al. Genetic control of susceptibility to a subgroup sarcoma virus in commercial chickens. Avian Pathol, 1973, 2:27-41.
    101. Payne LN. Developments in avain leucosis research [J]. Leukemia, 1992, 6(3): 150-152.
    102. Payne LN. The emergence of subgroup J avain leucosis virus [J]. Avian Pathology, 1998, 27:S36-S45.
    103. PayneLN. Retrovirus-induced disease in poultry [J]. Foult Sci, 1998, 77: 1204~1212.
    104. RasheedS. Retroviruses and Oncogenes[M]. New York: Plenum Press, 1995, 293~408.
    105. PayneLN, KHowes. Current status of diagnosis, epidemiology and control of ALV-J [J]. Avian Tumor Viruses Symposium[C]. PubReno, Nevada. 1997. 58-61.
    106. PayneLN, BrownSR, Bumstead, N, et al. A novel subgroup of exogenous avian leukosis virus in chickens [J]. Journal of general virology, 1991, 72: 801-807.
    107. Payne LN etal Neoplastic diseases: Marek's disease, avian leukosis and reticuloendotheliosis. Rev Sci Tech 2000, 19(2): 544-64
    108. Petherbridge L, Evans S, Payne LN, Venugopal K. The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively. J Gen Virol, 2002, 83(Pt 10): 2553-61.
    109. Pham TD, Spencer JL, Johnson ES. Detection of avian leukosis virus in albumen of chicken eggs using reverse transcription polymerase chain reaction. J Virol Methods, 1999, 78(1-2): 1-11.
    110. Qin A, Lee LF, Fadly A, Hunt H, Cui Z. Development and characterization of monoclonal antibodies to subgroup J avian leukosis virus. Avian Dis, 2001, 45(4): 938-45.
    111. Rasheed S. Retroviruses and Oncogenes [M]. New York: Plenum Press, 1995. 293-408.
    112. Rainey GJ, Natonson A, Maxfield LF, Coffin JM. Mechanisms of avian retroviral host range extension. J Virol, 2003, 77(12): 6709-19.
    113. Ruis BL, Benson SJ, Conklin KF. Genome structure and expression of the ev/J family of avian endogenous viruses. J Virol, 1999, 73(7): 5345-55.
    114. Sacco MA, Venugopal K. Segregation of EAV-HP ancient endogenous retroviruses within the chicken population. J Virol. 2001 Dec; 75(23): 11935-8.
    115. Sacco MA, Flannery DM, Howes K, Venugopal K. Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. J Virol. 2000 Feb; 74(3): 1296-306.
    116. Spencer JL, Gika F, Gavora JS, et al. Distribution of lymphoid leucosis virus and p27 group-specific antigen in tissue from laying hens [J]. Avian Dis, 1984, 28(2): 358-73.
    117. Smith EJ, Fadly A, Okazaki W. An enzyme-linked immunosorbent assay for detection of avian leucosis-sarcoma viruses [J]. Avian Dis, 1979, 23(3): 698-707.
    118. Smith EJ et al. Observations on an enzyme-linked immunosorbent assay for the detection of antibodies against avian leukosis-sarcoma viruses. Avian Dis 1986, 30(3): 488-93.
    
    
    119. Smith EJ, Crittenden LB, Ignjatovic J. Comparative study of three methods for detecting avian leukosis viruses. Infect Immun. 1977, 16(2): 500-4.
    120. Smith EJ, Williams SM, Fadly AM. Detection of avian leukosis virus subgroup J using the polymerase chain reaction. Avian Dis, 1998, 42(2): 375-80.
    121. Smith LM, SRBrown, KHowes, et al. Development and application of polymerase chain reaction (PCR) tests for the detection of subgroup J avian leucosis virus [J]. VirusRes, 1998, 54(1): 87-98.
    122. Smith LM, Toye AA, Howes K, Bumstead N, Payne LN, Venugopal K. Novel endogenous retroviral sequences in the chicken genome closely related to HPRS-103 (subgroup J) avian leukosis virus. J Gen Virol. 1999 Jan; 80 (Pt 1): 261-8.
    123. Smith EJ, Willianms SM, Fadly AM. Detection of avian leucosis virus subgroup J using the polymerase chain reaction [J]. Avian Disease, 1998, 42: 375-380.
    124. Spackman E, Pope CR, Cloud SS, Rosenberger JK. The effects of avian leukosis virus subgroup J on broiler chicken performance and response to vaccination. Avian Dis, 2003, 47(3): 618-26.
    125. SpencerJL. Progress toward sera dication of lymphoid leukosis viruses-are view [J]. Avianpatho, 1984, 13: 599-619.
    126. Stedman NL, Brown TP, Brown CC. Localization of avian leukosis virus subgroup J in naturally infected chickens by RNA in situ hybridization. Vet Pathol, 2001, 38(6): 649-56.
    127. Stedman NL, Brown TP. Cardiomyopathy in broiler chickens congenitally infected with avian leukosis virus subgroup J. Vet Pathol, 2002, 39(1): 161-4.
    128. Sung HW, Kim JH, Reddy S, Fadly A. Isolation of subgroup J avian leukosis virus in Korea. J Vet Sci, 2002, 3(2): 71-4.
    129. Sung HW et al.. High virus titer in feather pulp of chickens infected with subgroup J avian leukosis virus. Avian Dis. 2002, 46(2): 281-6.
    130. Thu WL, Wang CH. Phylogenetic analysis of subgroup J avian leucosis virus from broiler and native chickens in Taiwan during 2000-2002. J Vet Med Sci, 2003, 65(3): 325-8.
    131. Tsukamoto K et al. Sporadic congenital transmission of avian leukosis virus in hens discharging the virus into the oviducts. J Vet Med Sci, 1992, 54(1): 99-103
    132. Tsukamoto K et al. Identification and characterization of hens transmitting avian leukosis virus (ALV) to their embryos by ELISAs for detecting infectious ALV, ALV antigens and antibodies to ALV. J Vet Med Sci 1991, 53(5): 859-64.
    133. Tsukamoto K et al. Detection of avian leukosis virus antigens by the ELISA and its use for detecting infectious virus after cultivation of samples and partial characterization of specific pathogen-free chicken lines maintained in this laboratory. J Vet Med Sci, 1991, 53(3): 399-408.
    134. Venugopal K, et al. Recombinant env-gp85 of HPRS-103 (subgroupJ) avain leucosis virus: antigenic characteristics and usefulness as a diagnostic reagent[J]. Avain Diseases, 1997, 41: 283-288.
    135. Vrbani N et al. Incidence of endogenous viral genes in leghom strains of different origin, each with sublines of different genetype for resistance to avian leukosis virus infection. Joumal of Animal
    
    Breeding and Genetics, 1995, 112(5-6): 421-29.
    136. Venugopal K, Smith LM, Howes K, Payne LN. Antigenic variants of J subgroup avian leukosis virus: sequence analysis reveals multiple changes in the env gene. J Gen Virol, 1998, 79 (Pt 4): 757-66.
    137. Wang CH, Juan YW. Occurrence of subgroup J avian leukosis virus in Taiwan. Avian Pathol, 2002, 31(5): 435-9.
    138. Wang QY, Huang W, Dolmer K, Gettins PG, Rong LSolution structure of the viral receptor domain of Tva and its implications in viral entry. J Virol, 2002, 76(6): 2848-56.
    139. Witter RL, Bacon LD, Hunt HD, Silva RE, Fadly AM. Avian leukosis virus subgroup J infection profiles in broiler breeder chickens: association with virus transmission to progeny. Avian Dis, 2000, 44(4): 913-31.
    140. Williams SM, Reed WM, Bacon LD, Fadly AM. Response of white leghorn chickens of various genetic lines to infection with avian leukosis virus subgroup J. Avian Dis, 2004, 48(1): 61-7.
    141. Wunderwald CA, Albicker P, Grest P, Hoop RK. Avian leukosis subgroup J in broiler breeders in Switzerland. Schweiz Arch Tierheilkd, 2001, 143(8): 411-8.
    142. Xiang Y et al. Proper processing of avian sarcoma/leukosis virus capsid proteins is required for infectivity. J Virol. 2001, 75(13): 6016-21.
    143. Xu B, Dong W, Yu C, He Z, Lv Y, Sun Y, Feng X, Li N, Lee LF, Li M. Occurrence of avian leukosis virus subgroup J in commercial layer flocks in China. Avian Pathol, 2004, 33(1): 13-7.
    144. Zavala G et al. Polymerase chain reaction for detection of avian leukosis virus subgroup J in feather pulp. Avian Dis 2002, 46(4): 971-8.