钢管再生混凝土构件及其框架的抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管再生混凝土结构是钢管普通混凝土结构和再生混凝土结构相结合而产生的一种新型结构体系,它不仅继承了钢管普通混凝土结构的承载力高、抗震性能好等优点,而且有效地解决了建筑垃圾的资源化再利用问题。课题组已对钢管再生混凝土构件的基本受压性能进行了研究,在此基础上本文对钢管再生混凝土构件及其框架的抗震性能进行了深入、系统的研究。
     以再生粗骨料取代率、长细比、轴压比和含钢率为变化参数,进行了低周反复荷载作用下10个圆形和6个方形钢管再生混凝土柱试件的抗震试验。观察了试件受力的全过程和破坏形态,获取了滞回曲线、骨架曲线、延性、耗能、强度衰减和刚度退化等各项抗震性能指标。结果表明:试件的滞回曲线饱满;圆形试件的位移延性系数大于3,方形试件接近3;圆形试件破坏时位移转角介于1/28~1/17之间,方形试件介于1/21~1/17之间;破坏时圆形试件的等效粘滞阻尼系数介于0.305~0.460之间;方形试件介于0.323~0.360之间;基于抗震性能指标需求,再生混凝土用于钢管混凝土工程承重结构之中是可行的。
     以100%为再生粗骨料取代率,进行了低周反复荷载作用下一榀圆钢管再生混凝土柱-钢筋再生混凝土梁和一榀方钢管再生混凝土柱-钢筋再生混凝土梁框架试件的抗震试验。结果表明:框架在设计方法上满足了“强柱弱梁、强剪弱弯、强节点,弱构件”等抗震设计要求;框架滞回曲线对称,呈现出比较饱满的梭形;框架位移延性系数均大于3;圆形试件破坏位移转角为1/33,方形试件为1/24;破坏时圆形试件等效粘滞阻尼系数为0.243,方形试件为0.216。钢管再生混凝土柱-钢筋再生混凝土梁框架表现出了良好的抗震性能。
     根据等效塑性铰理论,计算得到的圆形钢管再生混凝土柱试件的塑性铰长度介于(0.45~0.95)h之间,方形试件介于(0.65~0.75)h之间;通过采用定点指向、位移幅值承载力突降、模型软化点等特殊处理方法,建立了低周反复荷载作用下钢管再生混凝土构件的三折线恢复力模型,较好地反映了构件荷载与位移的滞回关系;通过引入多种地震损伤评估模型,全方位的评价了钢管再生混凝土构件损伤发展过程和抗震能力。
     考虑了取代率影响因子,修正了现有的核心混凝土的受压本构关系,并采用有限元软件Abaqus对钢管再生混凝土构件进行抗震性能分析,计算得到的滞回曲线与实测结果吻合较好。在现有有限元模型的基础之上,进行了抗震性能拓展分析,得到了不同单参数变化试件的抗震性能指标,探讨了再生粗骨料取代率、含钢率、钢材牌号、轴压比、长细比以及截面高宽比对抗震性能指标的影响规律。
     根据实测滞回曲线、骨架曲线以及刚度退化规律,建立了低周反复荷载作用下钢管再生混凝土框架的三折线恢复力模型,较好地反映了框架荷载与位移的滞回关系;基于试验结果,探讨了单层单跨钢管再生混凝土框架的层间受剪承载力的设计计算方法;通过引入基于变形和累积耗能控制的双参数地震损伤模型,有效的评价了钢管再生混凝士框架损伤发展过程和抗震能力;基于性能设计,划分钢管再生混凝土结构的性能水准为正常使用、暂时使用、修复后使用、生命安全和防止倒塌五档,选用水平位移角和损伤变量作为量化指标,确定了基于一定保证率下的水平位移角和损伤指标限值,建立了在不同地震设防水准下不同性能水准所对应的性能目标。
Recycled aggregate concrete filled steel tube(RACFST) structure is a new system for the combination of concrete filled steel tube structure and recycled aggregate concrete(RAC) structure. It not only inherits the advantages of concrete filled steel tube structure, such as high bearing capacity, good seismic performance and so on, but also solves the resource recycling problem of construction waste effectively. Research group has carried out research about the basic compression behavior of RACFST component. Based on such research, in-depth and systematic study about seismic behavior of RACFST component and frame structure was carried out in this paper.
     Under the cyclic reversed loading, ten circular specimens and six square specimens were tested. Replacement rate, recycled coarse aggregate, slenderness rate, axial compression rate and steel rate were taken as design parameters. The entire loading process and failure mode were observed, the seismic behavior indexes including hysteretic curve, skeleton curve, ductility, dissipation capacity, strength attenuation and stiffness degeneration were obtained. It is shown that the hysteretic curves are plump; The displacement ductility factors of circular specimens are more than three, and ones of square specimens are closed to three; The displacement angle of circular specimens at failure point are between1/28 and1/17, ones of square circular specimens are between1/21and1/17; The equivalent viscous damping coefficients of circular specimens at failure point are between0.305and0.460, ones of square circular specimens are between0.323and0.360; Based on the seismic behavior indexes, RAC could be used to engineering capacity-bearing structure of concrete filled steel tube.
     With replacement rate of100%, RAC filled circular steel tube column versus reinforced RAC beam frame and RAC filled square steel tube column versus reinforced RAC beam frame were tested under the cyclic reversed loading. It is shown that the design methods of strong column and weak beam, strong shear capacity and weak bending capacity, strong node and the weak components are met; The hysteretic curve like a full fusiform is symmetrical; The displacement ductility factors are all more than three; The displacement angle of circular specimen at failure point is1/33, and one of square specimen is1/24; The equivalent viscous damping coefficient of circular specimen at failure point is0.243, and one of square specimen is0.216. The frame of RACFST column versus reinforced RAC beam shows excellent seismic behavior.
     Based on the theory of equivalent plastic hinge, the calculated plastic hinge length of circular specimens are between0.45h and0.95h, and ones of square specimens are between0.65h and0.75h; According to special method including fixed point, dropped bearing capacity of displacement amplitude and model softening point, restoring force model of a trilinear model was established for RACFST component under cyclic reversed loading, such model expressed well the hysteretic relation between load and displacement; Damage development process and seismic capacity of RACFST component was evaluated comprehensively by various earthquake damage models.
     The present relation between compressive stress and strain was revised by factor of replacement rate, the seismic behavior of RACFST component was analyzed by Abaqus, and the calculated hysteretic curve agreed well with the measured hysteretic curve. Based on existing finite element model, expanded analysis of seismic behavior was carried out, the seismic behavior indexes of one-parameter specimens were obtained, the influence rule replacement rate of recycled aggregate coarse, steel rate, steel type, axial compression rate and slenderness rate made on the seismic behavior indexes was discussed.
     According to measured hysteretic curve, skeleton curve and stiffness degradation rule, restoring force model of a trilinear model was established for RACFST frame structure under cyclic reversed loading; such model expressed well the hysteretic relation between load and displacement; Based on test result, the one-story, one-bay RACFST frame calculation method about the shear bearing capacity between the layers was discussed; Damage development process and seismic capacity of RACFST frame structure was evaluated effectively by double parameters including deformation and accumulated energy dissipation earthquake damage models. Based on performance design, performance level of RACFST structure was divided into normal use, temporary use, use after repair, life safety and collapse prevention, displacement angle and damage index were taken as quantitative index for performance level, and based on the considerable probability, the limit of the displacement angle and damage index were determined, performance goals were established under different performance levels and different seismic fortification levels.
引文
[1]孙跃东,周德源.我国再生混凝土的研究现状和需要解决的问题[J].混凝土,2006(4):25-28.
    [2]肖建庄,李佳彬,兰阳.再生混凝土技术最新研究进展与评述[J].混凝土,2003(10):17-20.
    [3]Kiyoshi Eguchi, Kohji Teranishi, Akira Nakagome. et al. Application of recycled coarse aggregate by mixture to concrete construction[J]. Construction and Building Materials,2007,21(7):1542-1551.
    [4]侯景鹏,史巍,宋玉普.再生混凝土技术的研究开发与应用推广[J].建筑技术,2002,33(1):15-17.
    [5]肖建庄.再生混凝土[M].北京:中国建筑工业出版社,2008.
    [6]BAIRAGI N K, RAVADNE K. Behavior of concrete with different proportions of natural and recycled aggregate [J]. Resource, Conservation and Recycling,2008,24(4): 109-126.
    [7]Nik. D. Oikonomou. Recycled concrete aggregates[J]. Cement and Concrete Composites,2005,27(2):315-318.
    [8]RUHL M, A TKINSON G. The influence of recycled aggregate concrete on the stress-strain relation of concrete[J]. Darmstadt Concrete-Annual Journal on Concrete and Concrete Structures,1999,14(1):163-172.
    [9]K.K.Sagoe-Crentsil, T.Brown,A.H.Taylor. Performance of concrete made with commercially produced coarse recycled concrete aggregate[J]. Cement and Concrete Research,2001,31(5):707-712.
    [10]Task Force of the Standing Committee of Concrete of Spain. Draft of Spanish Regulation for the Use of Recycled Aggregate in the Production of Structural Concrete[A]. Proceedings of the International RIL EM Conference on the Use of Recycled Materials in Building and Structures[C]. Bagneux:RIL EM Publications, 2004:511-525.
    [11]Vivian W.Y. Tam, X.F. Gao, C.M. Tam. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach[J]. Cement and Concrete Research,2005,35(6):1195-1203.
    [12]Roumiana Zaharieva, Francois Buyle-Bodin, Frederic Skoczylas. Assessment of the surface permeation properties of recycled aggregate concrete[J]. Cement and Concrete Composites,2003,25(2):223-232
    [13]Marta Sanchez de Juan, Pilar Alaejos Gutierrez. Study on the influence of attached mortar content on the properties of recycled concrete aggregate[J]. Construction and Building Materials,2009,23(2):872-877
    [14]Xuping Li. Recycling and reuse of waste concrete in China:Part Ⅰ. Material behavior of recycled aggregate concrete[J]. Resources, Conservation and Recycling,2008, 53(1-2):36-44
    [15]肖建庄,雷斌,袁飚.不同再生粗集料混凝土劈裂抗拉强度分布特征[J].建筑材料学报,2008,11(2):223-229.
    [16]徐亦冬,周士琼.再生混凝土骨料试验研究[J].建筑材料学报,2004,7(4):447-450.
    [17]刘数华,阎培渝.C50再生骨料混凝土的试验[J].工业建筑,2007,37(10):63-65.
    [18]郝彤,赵文兰.不同再生细骨料取代率混凝土的抗压及干燥收缩试验研究[J].新型建筑材料2011(2):29-31,45.
    [19]李秋义,田砾,朱亚光,等.再生骨料混凝土耐久性试验研究[J].中山大学学报(自然科学版),2007(S1):337-338.
    [20]Baoshan Huang, Xiang Shu, Guoqiang Li. Laboratory investigation of portland cement concrete containing recycled asphalt pavements[J]. Cement and Concrete Research, 2005,35(10):2008-2013.
    [21]李占印.再生骨料混凝土性能的试验研究[D].西安: 西安建筑科技大学,2003
    [22]刘数华,冷发光.再生混凝土技术[M].北京:中国建材工业出版社,2007.
    [23]张亚梅,秦鸿根,孙伟等.再生混凝土配合比设计初探[J].混凝土与水泥制品,2002,12(1):7-9.
    [24]蔡绍怀.现代钢管混凝土结构[M].(修订版).北京:人民交通出版社,2007.
    [25]钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003.
    [26]韩林海.钢管混凝土结构一理论与实践[M].(第2版).北京:科学出版社,2007.
    [27]Schneider SP. Axially loaded concrete filled steel tubes[J]. Structure Engineer ASCE 1998,124(10):1125-1138.
    [28]Varma AH, Ricles JM, Sause R, Lu LW. Seismic behavior and modeling of high-strength composite concrete-filled steel tube(CFT)beam-columns[J]. Journal of Constructional Steel Research 2002; 58(5-8):725-758.
    [29]Nishiyama I, Fujimoto T, Fukumoto T, et al. Inelastic force-deformation response of joint shear panels in beam-column moment connections to concrete-filled tubes [J]. Journal of Structural Engineering,2004,130(2):244-252.
    [30]纵超,高轩能,张惠华.再生骨料薄壁钢管混凝土结构的研究进展综述[J].福建建筑,2010,(6):44-45.
    [31]Khaldoun Rahal. Mechanical properties of concrete with recycled coarse aggregate[J]. Building and Environment,2007,42 (1):407-415.
    [32]沈建生,徐亦冬,周士琼,等.再生混凝土配合比试验研究[J].新型建筑材料,2007,36(8):18-20.
    [33]雷霆,孔德玉,郑建军.掺合料裹骨料工艺对再生骨料混凝土性能的影响[J].混凝土,2007(12):38-41.
    [34]M. Etxeberria, E. Vazquez, A. Mari, M. Barra. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete [J]. Cement and Concrete Research,2007,37(5):735-742.
    [35]Sasha Achtemichuk, Justin Hubbard. The utilization of recycled concrete aggregate to produce controlled low-strength materials without using Portland cement [J]. Cement and Concrete Composites,2009,31(8):564-569.
    [36]Amnon Katz. Properties of concrete made with recycled aggregate from partially hydrated old concrete [J]. Cement and Concrete Research,2003,33(5):703-711.
    [37]L. Evangelista, J. de Brito. Durability performance of concrete made with fine recycled concrete aggregates [J]. Cement and Concrete Composites,2009,84(4):141-146.
    [38]C. S. Poon, Z. H. Shui, L. Lam, H. Fok, S. C. Kou. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete [J]. Cement and Concrete Research,2004,34(1):31-36.
    [39]Sami W.Tabsh, Akmal S. Abdelfatah. Influence of recycled concrete aggregates on strength properties of concrete [J].Construction and Building Materials,2009, 23(2):1163-1167.
    [40]A.K. Padmini, K. Ramamurthy, M.S. Mathews. Influence of parent concrete on the properties of recycled aggregate concrete [J]. Construction and Building Materials, 2009,23(2):829-836.
    [41]Abdelgadir Abbas, Gholamreza Fathifazl. Durability of recycled aggregate concrete designed with equivalent mortar volume method [J]. Cement and Concrete Composites, 2009,31(8):555-563.
    [42]L. Evangelista, J. de Brito. Mechanical behavior of concrete made with fine recycled concrete aggregates [J]. Cement and Concrete Composites,2007,29(5):397-401.
    [43]Claudio Javier Zega, Angel Antonio Di Maio. Recycled concrete made with different natural coarse aggregates exposed to high temperature [J]. Construction and Building Materials,2009,23(5):2047-2052.
    [44]Belen Gonzalez-Fonteboa, Fernando Martinez-Abella. Shear strength of recycled concrete bcams[J]. Construction and Building Materials,2007,21(4):887-893.
    [45]Jianzhuang Xiao, Yuedong Sun, H. Falkner. Seismic performance of frame structures with recycled aggregate concrete[J]. Engineering Structures,2006,28(1):1-8.
    [46]O'Mahony, Margaret M. Analysis of the shear strength of recycled aggregates. Materials and Structures[J]. Materiauxet Constructions,1997,30(12):599-606.
    [47]Nishiura, Noriaki; Kasamatsu, Teruchika; Miyashita, Takeshi; Tanaka. Experimental study of recycled aggregate concrete half-precast beams with lap joints. Transactions of the Japan Concrete Institute,2001,23(10):295-302.
    [48]肖建庄,雷斌,袁飚.不同来源再生混凝土抗压强度分布特征研究[J].建筑结构学报,2008,29(5):94-100.
    [49]王新永,李云霞,李秋义.再生混凝土的用水量和强度试验研究[J].新型建筑材料,2006(12):13-15.
    [50]刘数华.高性能再生骨料混凝土试验研究[J].沈阳建筑大学学报(自然科学版),2009,25(2):262-266.
    [51]尹海鹏,曹万林,张亚齐,等.不同再生骨料取代率再生混凝土柱抗震试验研究[J].世界地震工程,2010,26(1):57-63.
    [52]李平先;宋新伟;夏成.钢筋再生混凝土简支梁的使用性能研究[J].建筑结构学报,2008(S1):27-31.
    [53]陈宗平,余兴国,柯晓军,等.再生混凝土抗折强度试验研究[J].混凝土,2010(6):58-60,120.
    [54]钟善桐.钢管混凝土统一理论:研究与应用[M].北京:清华大学出版社,2006.
    [55]韩林海,杨有福.现代钢管混凝土结构技术(第2版)[M].北京:中国建筑工业出版社,2007.
    [56]查晓雄.空心和实心钢管混凝土结构[M].北京:科学出版社,2011.
    [57]丁发兴,余志武.钢管混短柱力学性能研究—理论分析[J].工程力学,2005,22(1):175-181.
    [58]张正国.方钢管混凝土柱的机理和承载力的分析[J].工业建筑,1989(11):2-7.
    [59]康希良.钢管混凝土组合力学性能及粘结滑移性能研究[D].西安:西安建筑科技大学硕士博士学位论文,2007.
    [60]韩林海.钢管高强混凝土压弯构件力学性能研究[J].哈尔滨建筑大学学报,1997,30(5):24-30.
    [61]余志武,丁发兴.钢管混凝土偏压柱的力学性能[J].中国公路学报,2008,21(1):40-46.
    [62]Hajjar JeromeF, Gourley BrettC. Representation of concrete-filled steel the cross-section strength[J]. ASCE Journal 1996(122):1327-1336.
    [63]Sakino K,Nakahara H, Morino S,Nishiyama A. Behavior of centrally loaded concrete-filled steel-tube short columns[J]. Journal of Structural Engineering, 2004(130):180-188.
    [64]薛建阳.组合结构设计原理[M].北京:中国建筑工业出版社,2010.
    [65]蔡绍怀.我国钢管混凝土结构技术的最新进展[J].土木工程学报,1999,32(4):16-26.
    [66]CECS28:90钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1992.
    [67]DBJ13-51-2003钢管混凝土结构技术规程[S].北京:中国建筑工业出版社,2003.
    [68]DL/T5085-1999钢-混凝土组合结构设计规程[S].北京:中国电力出版社,1999.
    [69]CECS 159:2004矩形钢管混凝土结构技术规程[S].北京:中国计划出版社,2004.
    [70]GJB4142-2000.战时军港抢修早强型组合结构技术规程[S].北京:中国人民解放军总后勤部,2000.
    [71]JCJ01-89钢管混凝土结构设计与施工规程[S].上海:同济大学出版社,1989.
    [72]EC4-2004. Design of composite steel and concrete structures:Part 1:General Rules and Rules for Building [S].2004.
    [73]BS5400 Steel, concrete and composite bridges, Part5:Code of practice for design of composite bridges[S].2005.
    [74]AISC-LRFD Load and resistance factor design specification for structural steel buildings[S].2nd ed.1999.
    [75]ACI 318-05. Building code requirements for structural concrete and commentary[S]. 2005.
    [76]AIJ Recommendations for design and construction of concrete filled steel tubular structures[S].1997.
    [77]韩林海.钢管混凝土结构的特点及发展[J].工业建筑,1998,28(10):1-5,29.
    [78]王玉银,陈杰,纵斌,等.钢管再生混凝土与钢筋再生混凝土轴压短柱力学性能对比试验研究[J].建筑结构学报,2011,32(12):170-177.
    [79]李卫秋.空心普通和再生钢管混凝土柱抗震性能的试验与理论研究[D].深圳:哈尔滨工业大学深圳研究生院硕士学位论文.2011.
    [80]杨有福.钢管再生混凝土构件力学性能和设计方法若干问题的探讨[J].工业建筑,2006,36(11):1-5,10.
    [81]Yang Youfu, Han Linhai. Experimental behavior of recycled aggregate concrete filled steel tubular columns[J]. Journal of constructional steel research,2006,12(6 2):1310-1324.
    [82]杨有福.钢管再生混凝土构件受力机理研究[J].工业建筑,2007,37(12):7-12.
    [83]杨有福,韩林海.钢管再生混凝土结构工作机理的若干关键问题研究[A].首届全国再生混凝土研究与应用学术交流会论文集[C],2008:455-464.
    [84]吴凤英,杨有福.钢管再生混凝土轴压短柱力学性能初探[J].福州大学学报(自然科学版),2005,33(10):305-308,315.
    [85]杨有福.钢管再生混凝土构件荷载-变形关系的理论分析[J].工业建筑,2007,37(12):1-6,124.
    [86]杨有福,侯睿.高温后钢管再生混凝土短柱的理论分析与试验研究[J].防灾减灾工程学报,2012,32(1):71-76.
    [87]You-Fu Yang, Lin-Hai Han, Lin-Tao Zhu. Experimental Performance of recycled aggregate concrete-filled circular steel tubular columns subjected to cyclic flexural loadings[J]. Advances in Structural Engineering,2009,12 (2):183-194.
    [88]You-Fu Yang, Lin-Tao Zhu. Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading[J]. Steel and Composite Structures,2009,9 (1):19-38.
    [89]肖建庄,杨浩,黄一杰,等.钢管约束再生混凝土轴压试验研究[J].建筑结构学报,2011,32(6):92-98.
    [90]黄一杰,肖建庄.钢管再生混凝土柱抗震性能与损伤评价[J].同济大学学报(自然科学版),2013,41(3):330-335,354.
    [91]吴波,刘伟,刘琼祥,等.薄壁钢管再生混合短柱轴压性能试验研究[J].建筑结构学报,2010,31(8):22-28.
    [92]吴波,刘伟,刘琼祥,等.钢管再生混合短柱的轴压性能试验[J].土木工程学报,2010,43(2):32-38.
    [93]吴波,许喆,刘琼祥,等.薄壁钢管再生混合柱的抗剪性能试验[J].土木工程学报,2010,43(9):12-21.
    [94]吴波,赵新宇,张金锁.薄壁圆钢管再生混合中长柱的轴压与偏压试验研究[J].土木工程学报,2012,45(5):65-77.
    [95]张金锁.薄壁方钢管再生混合柱的轴压合抗震性能试验研究[D].广州:华南理工大学硕士学位论文.2011.
    [96]吴波,赵新宇,张金锁.薄壁圆钢管再生混合柱的抗震性能试验研究[J].土木工程学报,2012,45(11):1-11.
    [97]吴波,张金锁,赵新宇.薄壁方钢管再生混合柱抗震性能试验研究[J].建筑结构学报,2012,33(9):38-48.
    [98]吴波,赵新宇,杨勇,等.薄壁圆钢管再生混合柱-钢筋混凝土梁节点的抗震试验与数值模拟[J].土木工程学报,2013,46(3):59-69.
    [99]邱慈长,王清远,石宵爽,欧阳雯欣.薄壁钢管再生混凝土轴压实验研究[J].实验力学,2011,26(1):8-15.
    [100]董江峰,侯敏,王清远.碳纤维布加固薄壁钢管再生混凝土短柱的力学性能[J].四川大学学报(工程科学版),2012,44(S1):255-260.
    [101]邱昌龙.再生混凝土研究及钢管再生混凝土短柱力学性能分析[D].成都:西南交通大学硕士学位论文,2009.
    [102]刘锋,余银银,李丽娟.钢管再生骨料混凝土柱抗震性能研究[J].土木工程学报,2013,46(S2):178-184.
    [103]李佰寿,张平,金爱花,等.薄壁方形钢管再生块体混合短柱轴压试验研究[J].土木工程学报,2012,45(10):125-134.
    [104]陈娟,曾磊.钢管再生混凝土短柱轴压力学性能试验[J].兰州理工大学学报, 2013,39(3):112-116.
    [105]支正东,张大长,徐恩祥.钢管再生混凝土短柱轴压性能试验研究[J].工业建筑,2012,42(12):91-95.
    [106]张卫东,王振波,丁海军.小径厚比钢管再生混凝土短柱轴压性能研究[J].建筑结构,2012,42(12):86-89.
    [107]马静,王振波.圆钢管再生混凝土轴压短柱承载力试验研究[J].贵州大学学报(自然科学版),2012,29(3):104-107.
    [108]陈宗平,柯晓军,薛建阳.钢管约束再生混凝土的受力机理及强度计算[J].土木工程学报,2013,46(2):70-77.
    [109]陈宗平,张士前,王妮.钢管再生混凝土轴压短柱受力性能的试验与理论分析[J].工程力学,2013,30(4):107-114.
    [110]张向冈,陈宗平,薛建阳,等.钢管再生混凝土轴压长柱试验研究及力学性能分析[J].建筑结构学报,2012,33(9):12-20.
    [111]张向冈,陈宗平,薛建阳,等.钢管再生混凝土长柱偏压性能研究[J].工程力学,2013,30(3):331-340.
    [112]陈宗平,徐金俊,薛建阳,等.钢管再生混凝土黏结滑移推出试验及黏结强度计算[J].土木工程学报,2013,46(3):49-58.
    [113]徐金俊,陈宗平,薛建阳,等.圆钢管再生混凝土界面黏结失效的推出试验研究[J].建筑结构学报,2013,34(7):148-157.
    [114]Konno K, Sato Y, Kakuta Y, etal. Property of recycled concrete column encased by steel tube subjected to axial compression[J]. Transactions of the Japan Concrete Institute,1997,19 (2):231-238.
    [115]Konno K, Sato Y, Uedo T. Mechanical property of recycled concrete under lateral confinement [J]. Transactions of the Japan Concrete Institute,1998,20(3):287-292.
    [116]陈宗平.钢筋混凝土电杆试验研究报告[R].广西大学,2011.
    [117]JGJ 53-92普通混凝土用碎石或卵石质量标准及检验方法[S].北京:中国华龄出版社,1992.
    [118]GB/T228-2002金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002.
    [119]GB50152-92混凝土结构试验方法标准[S].北京:中国建筑工业出版社,1992.
    [120]GB/T50081-2002普通混凝土力学性能试验方法[S].北京:中国建筑工业出版社,2002.
    [121]GB/T50010-2010混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [122]JGJ101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.
    [123]GB5011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [124]李黎明,李宁,陈志华.方钢管混凝土柱的抗震性能试验研究[J].吉林大学学报(工学版),2008,38(4):817-822.
    [125]过镇海.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [126]朱伯龙.结构抗震试验[M].北京:地震出版社,1989.
    [127]罗福午,方鄂华,叶知满,等.混凝土结构及砌体结构[M].北京:中国建筑工业出版社,2003.
    [128]周云,尹庆利,林绍明,等.带防屈曲耗能腋撑钢筋混凝土框架结构抗震性能研究[J].土木工程学报,2012,45(11):29-38.
    [129]孙训方,方孝淑,关来泰,等.材料力学(Ⅰ)[M.]北京:高等教育出版社,2009.
    [130]Priestley M, Park R. Streng th and ductility of concrete bridge columns under seismic loading[J]. ACI Structural Journal,1987,84(1):61-76.
    [131]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[J].土木工程学报,1982,3(2):53-64.
    [132]沈聚敏,刘竹青,翁义军.钢筋混凝土空心柱抗震性能的试验研究[J].建筑结构学报,1982,3(5):21-31.
    [133]翁义军,沈聚敏,马宝民.复合箍对钢筋混凝土柱延性的改善[J].建筑结构学报,1985,6(1):41-47.
    [134]SHEIKH S A, KHOURY S S. Confined Concrete Columns with Stubs[J]. ACI Structural Jour nal,1993,90(4):414-431.
    [135]Sheikh S A, Shah D V, Khoury S S. Confinement of high-strength concrete columns [J]. ACI Structural Journal,1994,91(1):100-111.
    [136]BAYRAK O. Seismic Performance of Rectilinear Confined High Strength Concrete Columns [D]. Toronto:University of Toronto,1998.
    [137]Sakai K, Sheikh S A. What do we know about confinement in reinforced concrete columns[J]. ACI Structural Journal,1989,86(2):192-207.
    [138]Tsuno k, Park R. Experimental study of reinforced concrete bridge piers subjected to bidirectional quasistatic loading[J]. Structural Engineering/Ear thquake Engineering, 2004,21(1):11-26.
    [139]丁发兴,余志武.钢管混凝土短柱力学性能研究—实用计算方法[J].工程力学,2005,22(3):134-138.
    [140]丁发兴,余志武.钢管混凝土短柱力学性能研究—理论分析[J].工程力学,2005,22(1):175-138.
    [141]张新培.钢筋混凝寸抗震结构非线性分析[M].北京:科学出版社,2003:23-42.
    [142]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4)47-51.
    [143]朱伯龙,张琨联.矩形及环形截面压弯构件恢复力特性的研究[J].同济大学学报,1981,9(2):1-10.
    [144]杜修力.结构弹塑性地震反应现状评述.工程力学,1994,11(2):99-104.
    [145]李宏男,王强,李兵.钢筋混凝土框架柱多维恢复力特性的试验研究[J].东南大学学报(自然科学版),2002,32(5):728-732.
    [146]Roufaiel M, Meyer C. Analytical modeling of hysteretic behavior of RC frames J. Structure Engineering, ASCE,1987,113(3):429-444.
    [147]Jennings P C. Periodic response of a general yielding structure[J]. Journal of Engineering Mechanical Division, ASCE,1964,90(EM2):131-165.
    [148]刘义.型钢混凝土异形柱框架节点抗震性能及设计方法研究[D].西安:西安建筑科技大学,2009.
    [149]CECS254:2012实心与空心钢管混凝土结构技术规程[S].北京:中国计划出版社,2012.
    [150]张明,孟焕陵,沈蒲生.考虑轴压比影响时框架侧移计算的试验及理论研究[J].建筑结构学报,2007,28(6):190-197.
    [151]梁启智,梁平.框架柱的侧移刚度[J].华南理工大学学报(自然科学版),1995,23(1):91-99.
    [152]傅剑平,王敏,白绍良.对用于钢筋混凝土结构的Park-Ang双参数破坏准则的识别和修正[J].地震工程与工程振动,2005,25(5):73-79.
    [153]沈祖炎,董宝曹文街.结构损伤累积分析的研究现状和存在的问题[J].同济大学学报(自然科学版),1997,25(2):135-140.
    [154]丁健.钢筋混凝寸框架直接基于损伤性能的能力设计理论及方法的研究[D].西安:西安建筑科技大学,2004.
    [155]王振宇,刘晶波.建筑结构地震损伤评估的研究进展[J].世界地震工程,2001,17(3):43-48.
    [156]Cipollina A. A simplied damage mechanics approach to nonlinear analysis of frame[J]. Composite & Structure,1995,54(6):1113-1126.
    [157]Perdomo M E. Simulation of damage in RC frames with variable axial forces[J]. Earthquake Engineering & Structure Dynamics,1999,311-328.
    [158]谢里阳.疲劳损伤问题中有效应力的一种定义[J].应用力学学报,1992,9(1):32-36.
    [159]Park Y, Ang A. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering,1985,111(4):740-757.
    [160]Krawinkler H, Zohrei M. Cumulative damage in steel structures subjected to earthquake ground motions, computer & structures,1983,16:531-541.
    [161]付国,刘伯权,邢国华.基于有效耗能的改进Park-Ang双参数损伤模型及其计算研究[J].工程力学,2013,30(7):84-90.
    [162]陈林之,蒋欢军,吕西林.修正的钢筋混凝土结构Park-Ang损伤模型[J].同济大学学报(自然科学版),2010,38(8):1103-1107.
    [163]欧进萍,多层非线性抗震钢结构的模糊动力可靠性分析与设计[J].地展工程与工 程振动,1990,10(4):27-37.
    [164]牛获涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,16(4):44-54.
    [165]欧进萍,何政,吴斌.钢筋混凝土结构的地震损伤控制设计[J].建筑结构学报,2000,21(1):63-70,76.
    [166]Fajfar P. Equivalent ductility factors taking into account low-cycle fatigue[J]. Earthquake engineering and structural dynamics,1992,21:837-848.
    [167]邱法维,杨卫东,欧进萍.钢管混凝土柱滞回耗能和累积损伤的实验研究[J].哈尔滨建筑大学学报,1996,29(3):41-45.
    [168]郭蓉,王铁成,赵少伟.方钢管混凝土柱的地震损伤模型[J].河北农业大学学报,2007,30(3):109-112.
    [169]张国伟.钢管混凝土柱在地震作用下的累积损伤性能研究[D].长沙:湖南大学,2009.
    [170]刁波,李淑春,叶英华.反复荷载作用下混凝土异形柱结构累积损伤分析及试验研究[J].建筑结构学报,2008,29(1):57-63.
    [171]Miner. M.A. Cumulative damage in fatigue. Journal of applied mechanics,1945,12 (3):159-164.
    [172]何利,叶献国.Kratzig及Park-Ang损伤指数模型比较研究[J].土木工程学报,2010,43(12):1-6.
    [173]石亦平,周玉蓉Abaqus有限元分析实例详解[M].北京:机械工业出版社.
    [174]殷小溦,吕西林,蒋欢军.高含钢率型钢混凝土压弯构件受力性能影响因素分析[J].建筑结构学报,2013,34(5):105-113.
    [175]黄宏,陈梦成,万城勇.带肋方钢管混凝土柱偏心受压力学性能研究[J].土木工程学报学报,2011,44(10):26-34.
    [176]聂建国,王宇航.基于Abaqus的钢-混凝土组合结构纤维梁模型的开发及应用[J].工程力学,2012,29(1):70-80.
    [177]卢方伟,李四平,孙国钧.方钢管混凝土轴压短柱的非线性有限元分析[J].工程力学,2007,24(3):110-114:
    [178]李兆霞.损伤力学及其应用[M].北京:科学出版社,2010.
    [179]刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学,2005.
    [180]鲁军凯.酸雨和冻融环境对再生及钢管再生混凝土性能影响的研究[D].哈尔滨:哈尔滨工业大学,2011.
    [181]魏琏,李德虎.钢筋混凝寸框架层屈服抗剪强度的计算方法[J].建筑结构,1987,17(6):1-6.
    [182]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报(自然科学版),2002,30(12):1429-1434.
    [183]邢燕,牛荻涛.基于结构性能的抗震设计与抗震评估方法综述[J].西安建筑科技大学学报(自然科学版),2005,37(1):24-34.
    [184]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究[J].上木工程学报,2005,38(1):1-10.
    [185]FEMA 273. NEHRP Guidelines for the seismic rehabilitation of buildings[S]. Federal Emergency Management Agency, Washington D. C.,1997.
    [186]FEMA 274. NEHRP Commentary on the guidelines for the seismic rehabilitation of buildings[S]. Federal Emergency Management Agency, Washington D. C.,1997.
    [187]FEMA 440. NEHRP Improvement of nonlinear static seismic analysis procedures[S]. Federal Emergency Management Agency, Washington D. C.,2004.
    [188]FEMA 445. NEHRP Next- generation performance- based seismic design guidelines [S]. Federal Emergency Management Agency, Washington D. C.,2006.
    [189]FEMA 450. NEHRP recommended provisions for seismic regulations for new buildings and other structures[S]. Building Seismic Safety Council, National Institute Of Building Sciences, Washington, D. C.,2004.
    [190]ATC-40. Seismic evaluation and retrofit of concrete buildings[S]. Application Technology Council, Redwood City, C. A.,1996.
    [191]UBC. Uniform Building Code[S].1997.
    [192]International Code Council. International Building Code[S].2006.
    [193]龚胡广,沈蒲生.一种基于位移的改进静力弹塑性分析方法[J].地震工程与工程振动,2005,25(3):18-23.
    [194]周定松,吕西林,蒋欢军.钢筋混凝土框架结构基于性能的抗震设计方法[J].四川建筑科学研究,2005,31(6):122-127.
    [195]梁兴文,黄雅捷,杨其伟.钢筋混凝土框架结构基于位移的抗震设计方法研究[J].土木工程学报,2005,38(9):53-60.
    [196]钱稼茹,徐福江.钢筋混凝土剪力墙基于位移的变形能力设计方法[J].清华大学学报(自然科学版),2007,47(3):1-4.
    [197]门进杰,史庆轩,周琦.框架结构基于性能的抗震设防日标和性能指标的量化[J].上木工程学报,2008,41(9):76-82.
    [198]JGJ3-2010高层建筑混凝上结构技术规程[S].北京:中国建筑工业版社,2010.
    [199]CECS 160:2004建筑工程抗震性态设计通则[S].北京:中国计划出版社,2004.
    [200]聂建国,秦凯,肖岩.方钢管混凝土框架结构的pushover分析[J].工业建筑,2005,35(3):68-70.
    [201]刘晶波,郭冰,刘阳冰.组合梁-方钢管混凝土柱框架结构抗震性能的pushover分析[J].地震工程与工程振动,2008,28(5):87-93.
    [202]王文达,夏秀丽,史艳莉.钢管混凝上框架基于性能的抗震设计探讨[J].工程抗 震与加固改造,2010,32(2):96-101.
    [203]毛小勇,肖岩.基于性能的钢管混凝土柱抗震设计方法概述[J].苏州科技学院学报(工程技术版),2004,17(2):16-19.
    [204]薛强;郝际平;王迎春.基于性能的钢管混凝土空间筒体结构抗震设计[J].世界地震工程,2011,27(4):116-122.
    [205]刘晶波,刘阳冰,闫秋实,等.基于性能的方钢管混凝土框架结构地震易损性分析[J].土木工程学报,2010,43(2):39-47.
    [206]FEMA356. Pre-standard and commentary for the seismic rehabilitation of buildings [S].Report FEMA356. Federal Emergency Management Agency, Washington DC, 2000.
    [207]European Committee for Standardization. Eurocode8:Design of structures for earthquake resistance[S]. Part Ⅰ:General rules, seismic actions and rules for buildings, DRAFT No.6 Version for Translation (Stage 49), January 2003.
    [208]程斌,薛伟辰.基于性能的框架结构抗震设计研究[J].地震工程与工程振动,2003,23(4):50-55.
    [209]Vision 2000 Committee. Performance-based engineering of buildings[S]. Committee of the Structure Engineering Association of California. California,1995.
    [210]BSSC(2003 Edition NEHRP). Recommended Provisions for the Development of Seismic Regulations for New Buildings[S]. FEMA450,2003.
    [211]门进杰史庆轩周琦,等.竖向不规则钢筋混凝土框架结构基于性能的抗震设计方法[J].地震工程与工程振动,2008,41(9):67-75.
    [212]高晓旺.“大震”作用下钢筋混凝土框架变形能力的抗震可靠度分析[J].土木工程学报,1993,26(3):21-25.