小阻抗直角坐标牛顿潮流算法发散机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潮流计算在电力系统分析中有着基础和核心的地位,属于稳态分析的范畴,在电力系统的规划、运行、调度、安全可靠分析以及预案优化调整中均广泛应用。但伴随着现代电力系统发展的日益复杂化,病态系统显著增多,其往往表现出潮流计算无解,或应用常规的潮流算法时发散。为此,积极努力地研究病态潮流的收敛性问题就显得重要且很有实际意义。
     潮流计算在数学上实质是求解一组多元非线性方程组的问题,其解法与迭代的过程密不可分,所以能否收敛成为衡量潮流算法性能的重要指标。在研究人员提出的大量算法中,牛顿法解非线性方程组是非常有效的,被广泛应用于电力系统潮流计算中。
     小阻抗支路是现代电力网络中比较常见的病态条件之一,在进行牛顿法潮流计算时常常会表现出发散。在研究小阻抗支路牛顿潮流算法是否发散时,从分析牛顿算法的潮流计算机理出发,对小阻抗支路潮流算法发散原因进行研究。牛顿法潮流方程线性化的基础是泰勒展开式,因小阻抗支路所具有的特性,非线性的潮流计算方程在线性化过程中,泰勒展开式的高次项很大,不满足舍去条件,所得到牛顿法潮流计算的收敛性自然就无法得到保证,因而成为牛顿法潮流计算发散的主要原因。本文的主题就是改进牛顿法潮流计算来解决病态潮流发散的问题。
     在对牛顿潮流算法的理论进行分析后,立足于牛顿法潮流方程,对直角坐标形式的牛顿潮流算法进行改进,得到的一种新算法可使小阻抗病态支路在进行潮流计算时得到收敛。方法就是通过变换,使潮流方程的泰勒展开式余项部分变小至忽略,剩余部分与原方程的求解部分构成新的潮流计算方程,求解并验证其收敛性。其实质就是从雅可比矩阵自身结构的缺陷出发,修正雅可比矩阵的元素,来达到改善直角坐标牛顿潮流算法收敛性能的目的。通过对含有小阻抗支路的病态系统进行理论分析,并结合算例结果,得出结论:改进的算法可以避免小阻抗支路潮流算法发散。
The Power flow is the core and foundation of the power system's analysis,It belongs to the steady-state analysis, and widely used in power system's operation, scheduling, planning, analysis of security and reliability, and plan for optimal adjustment. However, with the increasing complexity of the power system development in modern society, there are more and more ill-conditions in the power system, which often cause the power flow unsolved, or make the power flow divergent with the conventional methods. To this end, the positive study on the convergence of power flow is particularly important and very meaningful.
     Flow in mathematics is actually solving the problem on a set of multivariate nonlinear equations to, its solution can not be separated from the iterative process, convergence is an important indicator to measure the trend of performance of the algorithm. Of this algorithms Researchers proposed, the Newton power flow for solving nonlinear equations is very effective and widely used in power flow.
     Power systems with small impedance branches are a common ill-condition, which may lead to the divergence of the power flow. When analysising the convergence of Newton power flow with small impedance branch, standing at the point of mechanization of convergence is useful. Newton flow for linearization of power flow equations is based on the Taylor expansion. With the small impedance branch, in the process of non-linear flow equation to linear, Partial derivatives of Taylor expansions are great, resulting in more than able to ignore conditions, if still calculated in accordance with the traditional Newton, then the flow calculation convergence naturally can not be guaranteed, and thus become the trend of the Newton method to calculate the divergence of the main reasons. The theme of this paper is to improve the Newton power flow of the Newton method to solve the problem of ill condition which trend of divergence.
     Based on the deeply analysis on Newton process and combined with the characteristics of the small impedance branch, an improved Newton power flow in rectangular form for systems is presented. Its purpose is by changing the remainder part to smaller, end to satisfy the ignorance, the remaining part and the original equation can be obtained, then get the solution and verify the convergence. Its essence is to proceed from the structural defects of Jacobian, fix the elements of the Jacobian to get the purpose of improving convergence performance. Small impedance branch system theoretical analysis and numerical results show that the improved flow can make a small impedance branch's flow convergence.
引文
[1]刘天琪,邱晓燕,李华强.现代电力系统分析理论和方法.北京:中国电力出版社,2007.
    [2]宋文南,李树鸿,张尧.电力系统潮流计算.天津:天津大学出版社,1990.
    [3]张伯明,陈寿孙,严正.高等电力网络分析(第2版)北京:清华大学出版社,2007.
    [4]王祖佑.电力系统稳态运行计算机分析.北京:水利电力出版社,1987.
    [5]刘天琪,邱晓燕.电力系统分析理论(第二版).北京:科学出版社,2011.
    [6]姚玉斌,鲁宝春,陈学允.小阻抗支路对牛顿法潮流的影响和处理方法.电网技术,1999,23(9):27-31.
    [7]王永刚,彭世康,靳现林.牛顿法最优潮流的改进.继电器,2003,31(3):1-5.
    [8]胡泽春,严正.带最优乘子牛顿法在交直流系统潮流计算中的应用.电力系统自动化,2009,33(9):26-31.
    [9]R. Van Amerongen. A General-purpose Version of the Fast Decoupled Load Flow. IEEE Trans. on Power Systems,1989,4(2):760-770.
    [10]A. Monticeli,0. R. Savendra. Fast Decoupled Load Flow: Hypothesis, Derivations, and Testing. IEEE Trans. on Power Systems,1990,5(4):1425-1431.
    [11]L.Wang, X. Rong Li. Robust Fast Decoupled Power Flow. IEEE Trans. on Power Systems, 2000,15(1):208-215.
    [12]A. Semlyen, F. de Leon. Quasi-Newton Power Flow Using Partial Jacobian Updates. IEEE Trans. on Power Systems,2001,16(3):332-339.
    [13]姚玉斌,蔡兴国,陈学允,等.PQ分解法潮流求解含有小阻抗支路系统的收敛性分析.继电器,2000,28(4):6-8.
    [14]Yubin Yao, Juqing Shan, Dan Wang. A Improved Newton Power Flow in Rectangular Form for Systems with Small Impedance Branches. Proceedings of the PEITS2009, Shenzhen, 2009: 10-14.
    [15]Joseph Tate, Thomas J. Overbye. A Comparison of the Optimal Multiplier in Polar and Rectangular Coordinates. IEEE Trans. on Power Systems,2005,20(4):1667-1673..
    [16]张峰.含有小阻抗系统潮流计算的收敛性分析:(硕士研究生论文).大连:大连海事大学,2009.
    [17]武晓朦,张飞廷.电力系统的P-Q分解法潮流计算.现代电力技术,2002,142(1):105-106.
    [18]岩本伸一,田村康男.保留非线性的快速潮流计算法.岩本伸一,田村康男来华讲学论文汇编. 武汉:武汉水电学院,1982.
    [19]Iwamoto S, Tamura Y. A Fast Load Flow Method Retaining Nonlinearity. IEEE trans. Power Apparatus and Systems, 1978,97(5):1586-1599.
    [20]黄进安,吴惟静.保留潮流方程非线性的电力系统概率潮流计算.电力系统自动化,1986,10(6):3-12.
    [21]陈士芳,张圣集,保留非线性的电力系统概率潮流计算.电力情报,2000,16(3):22-26.
    [22]寇秋红,李宝国,鲁宝春.一种改进的电力系统保留非线性潮流算法.辽宁工业大学学报,2008,28(1):10-12.
    [23]刘浩,戴居丰.基于系统分割的保留非线性快速P-Q分解状态估计法.电网技术,2005,29(12):72-76.
    [24]Sasson A M, Trevino C, Aboytes F. Improved Newton's Load Flow through a Minimization Technique. IEEE Trans. Power Apparatus and Systems,1977, 96(5):1974-1981.
    [25]Albert M. Sasson. Combined Use of the Parallel and Fletcher-powell Non-linear Programming Methods for Optimal Load Flows. IEEE Trans. Power Apparatus and Systems, 1969, 88(10):1530-1537.
    [26]Albert M Sasson. Decomposition Technique Applied to the Non-linear Programming Load Flow Method. IEEE Trans. Power Apparatus and Systems, 1970,89(1):78-82.
    [27]Irisarri G D, Wang X, Tong J. Maximum Loadability of Power Systems UsingInterior Point Nonlinear Optimization Method. IEEE Trans. on Power Systems,1997,12(1):162-172.
    [28]N. M. Peterson, W F Tinney, D W Bree. Iterative linear ac power flow solution for fast approximate outage studies. IEEE Trans. Power Apparatus and Systems,1972,91(5): 2048-2056.
    [29]Borkowska, B. Probabilistic Load Flow. IEEE Trans. Power Apparatus and Systems,1974, 93(3):752-759.
    [30]Zhang X P, Chen H. Asymmetrical Three-Phase Load Flow Study Based on Symmetrical Component Theory. IEE Proc. Genr. Transm. Distrib,1994,141 (3):248-252.
    [31]吴际舜.电力系统静态安全分析.上海:上海交通大学出版社,1998.
    [32]王星华,余欣梅.谐波潮流建模及求解算法研究综述.电气应用,2008,27(2):4-9.
    [33]Wang Xianrong, Chen Xiaohu, Liu Zhuo. Dynamic Load Flow Used for Electric Power System State and Tendency Analysis. Journal of Harbin Institute of Technology,1990,6(3): 105-111.
    [34]Goswami S K. Basu S K. Direct solution of radial distribution networks. IEE Proc, Part C,1991,138(1):78-88.
    [35]D. A. Braunagel, L.A. Kraft, J. L. Whysong. Inclusion of DC Converter and Transmission Equation Directly in a Newton Power Flow. IEEE Trans. PAS,1976,95(1):76-88.
    [36]H. Fudeh, C.M. Ong. A Simple and Efficient AC-DC Load Flow Method for Miltiterminal DC Systems, IEEE Trans. PAS,1981,100(11):4389-4396.
    [37]K. L. L0, Y. J. Lin, W. H. Siew. Fuzzy-Logic Method for Adjustment of Variable Parameters in Load Flow Calculation. IEE Proc. Genr. Transm. Distrib.1999, Vol.146:276-282.
    [38]K. P. Wong, A. Li, T. M. Y. Law. Advanced Constrained Genetic Algorithm Load Flow Method. IEE Proc. Genr. Transm. Distrib.,1999, Vol.146:609-616.
    [39]W. L. Chan, A. T. P. So, L.L. Lai. Initial Applications of Complex Artificial Neural Network to Load-Flow Analysis. IEE Proc. Genr. Transm. Distrib.,2000, Vol.147:361-366.
    [40]李敏.电力系统潮流无解问题分析和调整方法研究:(硕士研究生论文).武汉:华中科技大学,2006.
    [41]李敏,陈金富,段献忠,等.潮流计算收敛性问题研究综述.继电器2006,34(4):74-79.
    [42]S. C. Tripathy, G. D. Prasad,0. P. Malik, et al. Load-flow Solutions for Ill-conditioned Power Systems by a Newton-like Method. IEEE Trans, on PAS.1982,101(10):3648-3657.
    [43]D. J. Tylavsky, P. E. Crouch, L. F. Jarriel, et al. The Effects of Precision and Small Impedance Branches on Power Flow Robustness. IEEE Trans on PWRS,1994,9(1):6-14.
    [44]王守相,刘玉田.电力系统潮流计算研究现状.山东电力技术,1996,91(5):8-12.
    [45]姚玉斌.实际大型电力系统静态电压稳定分析:(博士研究生论文).哈尔滨:哈尔滨工业大学,2000.
    [46]Iwamoto S, Tamura Y. A Load Flow Calculation Method for Ill-conditioned Power System[J]. IEEE Trans on PAS,1981,100(4):1736-1743.
    [47]王宪荣,包丽明,柳焯.极坐标最优乘子病态潮流解法研究,中国电机工程学报,1994,14(1):40-45.
    [48]刘广一,胡锡龙,于尔铿,等.电力系统病态潮流计算新算法.中国电机工程学报,1991,11(增刊):27-36.
    [49]于继来,王江,柳焯.电力系统潮流算法的几点改进.中国电机工程学报,2001,21(9):88-93.
    [50]姚玉斌,刘东梅,陈学允.求解含有小阻抗支路系统潮流的一种新方法.哈尔滨工业大学学报, 2001,33(4):525-529.
    [51][德JJ.Stoer, R. Bulirsch,孙文瑜等译.数值分析引论.南京:南京大学出版社,1995
    [52]蔡大用,白峰杉.高等数值分析.北京:清华大学出版社,1997
    [53]B. Stott. Effective Starting Process for Newton-Raphson Load Flows. Proc. IEE,1971, 118(8):983-987
    [54]韩平,刘文颖,吴琼,王智冬,等.小阻抗支路对潮流计算收敛性的影响和处理.电力系统保护与控制,2009,37(18):17-19,31.
    [55]姚玉斌,李婷婷,魏继承.小阻抗潮流计算发散机理初探.中国高等学校电力系统及其自动化专业第二十七届学术年会,2011.
    [56]Sachdev M S, Medicherla T K P. A Second Order Load Flow Technique. IEEE Trans. on PAS,1977,96(1):189-197.
    [57]汪芳宗,叶婧,何一帆.一种新的保留二阶项的配电网快速潮流算法.电力系统保护与控制,2008,36(17):5-7.
    [58]孙志媛,孙艳,宁文辉.具有三阶收敛速度的潮流算法.电力系统保护与控制,2009,37(4):5-8,28
    [59]Yao Yubin, Liu Li, Wang Ying, et al. An Improved Voltage Start for Newton Power Flow in Rectangular Form, Proceedings of the PEITS2009,2009.12, vo13: 190-193.