外源银在土壤中形态变化及银在水稻体中分布规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一般情况下,土壤中银含量水平极低,全球平均值仅为0.05mg·kg~(-1)。从已有的资料,中国土壤中银的平均水平远高于全球平均值,达0.35mg·kg~(-1);而中国南方紫色土壤含银水平在0.134~0.193mg·kg~(-1)。
     多数研究者认为银并不是动植物生长必须元素。反之,高水平的银对鱼类、水生植物、野生植物和动物体具有极强的毒性和潜在影响。但研究认为,适量银不但对植物生长有益,也有益于人体健康(特别是胶态银)。人们大量使用银首饰以及用银器作为餐具也证明了这一点。
     在现代工农业条件下,由于银及含银化合物的广泛使用,大量的银进入环境和土壤,银在土壤中富集明显。国外报道,由于工业和农业行为,土壤中银含量超过背景值3~50倍。但目前,无论是银在土壤及环境中的形态、迁移、沉淀、转化,以及银在动植物体内的生物学行为均研究不多,这也导致对银的行为认识不足,因此,加强银的环境和生物学行为的研究,将具有重要的意义。
     银的常规测定方法以重量法、容量法、分光光度法等为主,这些方法的灵敏度均达不到土壤和植物中痕量银的测定要求。随着原子光谱分析方法的出现,其极高的灵敏度和检出限使痕量银的测定成为可能,目前,无论是原子吸收光谱或原子发射光谱(如ICP),虽然灵敏度均能达到土壤或植物样品含量水平,但由于土壤和植物样品复杂程度极高,不同前处理条件下,各种干扰物质的存在导致测定可靠程度受到影响,因此,选择恰当的前处理方法,配合高灵敏度的原子光谱分析,对土壤、环境和植物中银的研究极其必要。
     本文在对几种前处理方法对比的基础上,比较了火焰原子吸收和无火焰原子吸收法对土壤和植株样品中银测定的条件和可靠性;并以硝酸银为外源银,通过淹水培养实验及盆栽实验,研究银在土壤中的存在形态和含量分布;同时探讨了外源银在水稻体中分布规律及水稻对银的富集能力,分析了淹水培养时间和种植水稻行为对银形态转化的影响,以及银存在对水稻吸收氮、磷、钾、钠、钙、镁、铜、锌、铁、锰、铬的影响,旨在能为土壤和植物体中痕量银的研究提供可行测定方法,为了解银在土壤中分散和富集过程与机制,了解土壤中银元素对植物的有效性,为银在环境中的归宿的预测以及寻求控制银污染的决策等提供科学依据。主要实验结果如下:
Commonly, the content of silver in soil is extremely low, and the mean content of the whole world is only 0.05 mg·kg~(-1). As far as information goes now, the mean content of silver in soil in China reaches 0.35 mg·kg~(-1), much higher than that of the whole world,and is 0.134-0.193 mg·kg~(-1) in purple soil of southern areas.
    Most researchers consider that silver is not necessary element for plants and animals. Conversely, silver has exceeding toxicity and potential affections on fish, aquatic plants, wild plants and animals if the content of silver is high. However, many studies find that right amount silver is helpful to plant growth and human's health (especially colloidal silver). The wide use of jewelry and that silverware used as dishware have proved this.
    Under modern industrial and agricultural condition, due to the wide use of silver and its compounds, plenty of silver entered environment and soil and enriched obviously in soil. It is reported that silver in soil has exceeded as 3~50 times as background value owing to industrial and agricultural activities~[10,11]. But now, there are few studies on neither the speciation, transference, deposition nor transformation of silver in soil nor the biological behavior of silver in animal's and plant's body, and this cause lack of understanding of silver behavior. So it is essential to enhance the study on environmental and biological behaviors.
    The traditional mensuration of silver mainly are gravimetric method, titrimetry and spectrophotometry. But the sensitivity of these methods can't match demand of the determination of silver in soil and plant. Along with the occurrence of atomic spectrometery , its high sensitivity and detect limit make the determination for trace silver feasible. Now, different pretreatments and the existence of many interferences have affect on determination because of high complexity of soil and plant samples, though the sensitivity of atomic absorption spectrum or atomic emission spectrum can reach the demand for determination of silver in soil and plant. So it is extremely necessary to choose right pretreatment combined with atomic spectrum analysis with high sensitivity for study silver in soil, environment and plant.
    On the basis of comparison on several pretreatments, this paper compared the condition and feasibility of the flame atomic absorption spectrometry and flameless atomic absorption spectrometry on determination of silver in soil and plant, and used AgNO_3 as exogenetic silver by adopting inundation incubation experiment and pot culture experiment. The speciation and distribution of exogenetic silver in soil were studied, and the distribution of exogenetic silver in rice as well as the enrichment capability of rice on silver were discussed at the same time. Inundation incubation time and the effects of rice planting on transformation of silver speciation and the influences of silver existence on absorption of N, P, K, Ca, Mg, Zn, Fe, Mn and Cr by rice were all
引文
[1] Bowen H J M. Environmental chemistry of the elemental. Academic Press. New York.1979
    [2] 中国矿冶学院分析化学教研室.化学分析手册第一版[M].北京.科学出版社,1982:105,590~591,246,614~664
    [3] 赵怀志.银的主要应用领域和发展现状[J].云南冶金,2002.6,3(31):118~127
    [4] 牟保磊.元素地球化学第一版[M].北京.北京大学出版社,1999,75~79,
    [5] 李英俊,曹励明、李兆麟等.元素地球化学第一版[M].北京.科学出版社,1984,20~326
    [6] Mitchell WA. A review of the mineralogy of some Scottish soil clays. J .Soil Sei, 1955,6(1):94~98.
    [7] Vanselow AP. Silver. In: Chapman HD, editor. Diagnostic criteria for plants and soils. Riverside, CA; University of California, Division of Agricultural Sciences, 1966.p.405~408
    [8] Boyle RW. The Geochemistry of Silver and its Deposits with Noteson Geochemical Prospecting for the Element. Ottawa:Geological Survey of Canada,1968. p.1~264.
    [9] Bradford GR, Chang AC, Page AL, Baktar D, Frampton JA. Background concentrations of trace and major elements inCalifornia soils. Kearney Foundation Special Report, 1996
    [10] Sterckeman T, Douay F, Proix N, Fourrier H, Perdix E. Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air Soil Pollut,2002,135(1-4):173~194.
    [11] Murray KS, Rogers DT, Kaufman MM. Heavy metals in an urban watershed in southeastem Michigan. J Environ Qual,2004,33(1): 163~172
    [12] 刑光熹,朱建国.土壤微量元素和稀土元素化学第一版[M].北京:科学出版社,2003,5~11,19~20,40~42,106~118
    [13] 罗辉,张建和,莫丽儿.不同产地高良姜无机元素含量的比较[J].广东微量元素科学,1997.4(2)
    [14] Mats Johansson.底物诱导呼吸及反硝化作用的动态在改良土壤银污染中的应用[J].1998
    [15] Thomas Pümpel,Franz Schinner.Silver tolerance and silver accumulation of microorganisms from soil materials of a silver mine.J. Applied Microbiology and Biotechnology,1986.3(24):244~247
    [16] Jian Li, Andrew W. Rate and Robert J. Gilkes. Silver ion desorption kinetics from iron oxides and soil organic matter: effect of adsorption period. Australian Joumal of Soil Researeh.J.2002,42(1):59~67
    [17] Astrid R. Jaeobson,, Murray B. McBride, Philippe Baveye, et al.Environmental factors determining the trace-level sorption of silverand thallium to soils.J. Science of the Total Environment,2005,345:191~205[18] Chen Y, Senesi N, Schnitzer M. Chemical and physical characteristics of humic and fulvic acids extracted from soils of the Mediterranean region.Geoderma,1978,20:87~104
    [19] Jones KC, Peterson PJ, Davies BE. Extraction of silver from soils and its determination by atomic absorption spectrometry.Geoderma, 1984,33:157~168.
    [20] Durrant PJ, Durrant B. Introduction to advanced inorganic chemistry. London7 Longman, 1970
    [21] Lee AG.The chemistry of thallium. New York, NY7 Elsevier, 1971
    [22] Manolopoulos H. Silver mobility in the presence of iron sulfides under oxidizing conditions. The 5th Intemational Conference Proceedings: Transport, Fate and Effects of Silver in the Environment, September 28-October 1,1997.p. 133~135
    [23] Benoit G, Rozan TF. The potential role of reduced sulfur in the dissolved speciation of Ag in fully oxygenated waters. The 5th International Conference Proceedings: Transport, Fate and Effects of Silver in the Environment, September 28 Octoberl, 1997.p.29~33
    [24] Adams NWH, Kramer JR. Reactivity ofAg~+ ion with thiol ligands in the presence of iron sulfide. Environ Toxicol Chem, 1998,17(4):625~629
    [25] Bell RA, Kramer JR. Structural chemistry and geochemistry of silver-sulfur compounds: critical review. Environ Toxicol Chem, 1999,18(1):9~22
    [26] Dyck W. Adsorption and coprecipitation of silver on hydrous ferric oxide. Can J Chem,1968;46:1441~1441
    [27] Anderson BJ, Jenne EA, Chao IT. The sorption of silver by poorly crystallized manganese oxides. Geochim Cosmochim Acta, 1973;37:611~622
    [28] Smith IC, Carson BL. Silver. Ann Arbor, MI7 Ann Arbor Science Publishers, 1977a
    [29] Jones KC, Davies BE, Peterson PJ. Silver in Welsh soils: physical and chemical distribution studies. Geoderma, 1986;37:157~174.
    [30] Sarath G and HJ Mohan Ram. Comparative effect of silver ion and gibberellic acid on the induction of male flowers of fewale cannabis plants.Experimentia,1979,35:333~334
    [31] 陈因.植物生理学报,1987,13:242
    [32] Bothe H et al. Arch Microbiol.1977.114~43
    [33] 陈因,方大惟.植物生理学报,1983,9:413
    [34] 应振士.园艺学报,1987,14:42
    [35] Den Nijis AMP et a1.Euphytica,1980,29:273
    [36] 应振士.浙江农业大学学报,1989,15:247
    [37] Kende H et al.In Wareing PF(ed)Plant Growth Substances 1982.Academic Press,London??1982,p.269
    [38] Sanders ID et al.Plant Physiol,1986,66:723
    [39] Yang SF et al.In Roberts JA et al. (eds)Eteylene and Plant DEvelopment. Butterworths,London, 1984,p.9
    [40] Beyer EM Jr.Plant Physiol, 1979,63 :179
    [41] Veen H et al. Acta Hortic,1986,181~129
    [42] Songstad D D,Duncan D R, Widholm J M. Effect of laninocyclopropane carboxylic acid, silver nitrate and morbomaiene on plant regeneration.Plant Cell Rep.1988,7:262~269
    [43] Williams J.Pink DAC.Biddingion NL.Effect of silver nitrate on long-team culture ang regeneration of callus Brassiea oleracea vat genvnifera.Plant Cell tissue Org Cult, 1990,66:247
    [44] Chi GL.Pua EC.Ethylene inhibitors enhances de novo sbcor regeneration from coryledons of Brassica campestris ssp.chinensis in vitro Plant Sci,1989.64:243
    [45] Sharma KK.Bbojwani SS.Thorpe TA.Factors affecting high frequency diffetentiantion of shoots and roots from cotyledon explants ofBrassica Juncea .chern.Plant Sci,199,66:247
    [46] 陈永文,李坤培,高峰等.AgNO3对根癌农杆菌介导的甘薯遗传转化的影响.西南师范大学学报(自然科学版),2002.4,27(2)
    [47] 李杉,戴芳兰,秦芝等.枸杞体细胞胚发生过程中Ag+对痕量金属离子吸收的影响.实验生物学报,2001,6.34(2)
    [48] 戴全裕,戴文宁,高翔等.水生高等植物对废水中银的净化与富集特性研究.生态学报,1990,12.10(4)
    [49] 郭耀基,张一波.风眼莲根系生态系统在含银废水净化中的功能.无锡轻工大学学报,2002.9,21(5)
    [50] 钱位成,罗炼,尹平.儿童头发中微量元素锌和银含量.环境与开发,1994,9(2)
    [51] Kehoe, R.A., J. Cholar and R.V. Story. A Spectrochemical Study of the Normal Ranges of Concentration of Certain Trace Metals in Biological Materials. J. Nut, 1940,19: 579~592.
    [52] Hamilton, E.I, Minski, MJ, "Abundance of the Chemical Elements in Man's Diet and Possible Relations with Environmental Factors," Sci Total Environ, 1972/1972; 1:375~394.
    [53] Jan Faergemarm.Uses of error: Medical history. The Lancet.2002.8.London
    [54] Folsom T R,Yong D R.Silver—110m and Cobalt—60 in Oceanic and Coastel Organisms.Nature, 1965.(4986):803
    [55] 谢运棉,唐文乔,孟建毅.~(110m)Ag在海洋环境中行为的研究.辐射防护,2000.5,20(3):142
    [56] Bertram and Playle. Effects of feeding on waterbome silver uptake and depuration in rainbow trout. Canadian Journal of Fisheries and Aquatic Sciences,2002.2.Ottawa
    [57] 刘水勋,王瑞香,徐和德等.离子交换与吸附,1995[57] 张文钲,张羽天.载银抗菌材料的研究与开发.化工新型材料,1997.7:20
    [58] Anonymous. The safety of colloidal silver. Appropriate Technology Hemel Hempstead,2001.7
    [59] Eric Rentz. Viral pathogens and severe acute respiratory syndrome:Oligodynamic Ag+ for direct immune intervention .Journal of Nutritional and Environmental Medicine,2003.6
    [60] 陈琪,朱海亮,戚穗坚等.六氮杂大环希夫碱与银系列配合物的抗肿瘤活性研究.中山大学学报,2001.3,40(2)
    [61] 薛光.银的分析化学.北京.科学出版社,1998
    [62] 白厚义,肖俊璋.实验研究及统计分析第二版.西安.兴界图书出版社,1998:40
    [63] 李建.钴和硝酸镁作为通用基体改进剂的研究.理化检验,1997,33(4):161~163
    [64] 冯子勇,李镒生,谢凤贞.石墨炉AAS法直接测定化探样品中痕量银.分析测试学报,1993,12(3):57~59
    [65] 汤凤庆.石墨炉测定环境和生物样品时基体改进剂的应用.职业医学,1996,23(6):46~47
    [66] 何一帆.石墨炉原子吸收法测定化探样品中痕量银时基体改进剂的研究.地质实验室,1993.2,9(1):32~33
    [67] 郑丽红,陈旭东.石墨炉原子吸收分光光度法钯基体改进剂测定水中银.光谱仪器与分析,2001,3:25~27
    [68] 李海峰,王庆仁,朱永官.土壤重金属测定两种前处理方法的比较.环境化学,2006.1,26(1):108~109
    [69] 侯嘉丽.地质样品中金、银、铊等元素的连续原子吸收光谱法测定.分析实验室,1994,13(1):82~85
    [70] 钱进,王子健,单孝全,等.土壤中微量金属元素的植物可给性研究进展[J].环境科学,1995,16(6):73~75
    [71] 彭克明.农业化学[M].北京:农业出版社,1980
    [72] Tessier A. Sequential extraction procedure for the speciation of particulate, tracemetals[J]. Anal. Chem,1979,51(7): 844~851.
    [73] Shuman.Fractionation method for soil microelements, soil sci, 1985,140:11~22
    [74] 邵孝侯,邢光熹.连续提取法区分土壤重金属元素形态的研究及应用[J].土壤学进展,1994,22(3):1~2.
    [75] Chao T T.Selective dissolution of managanese oxides from soils and sediments with acidified hydroxylamine hydrochloride.Soil Sci.Soc.Am.Proc, 1972,36:764~768
    [76] Mclaren R G and D V Crawford.Studies on soil copper.Ⅰ.The fractionation of Cu in soiI.J.Soil Sic, 1973,24:172~181
    [77] Iyengar S S,Martens D C and Miller W P.Distribution and plant availability of soil zinc fractions.Soil Sci.Soc.Am.J, 1981,45:735~739[78] Miller W P,D C Martens,L W Zelazny and E T Kornegay.Forms of solidphase copper in copper-enriched swine manure.J.Environ.Qual,1986b,15:69~72
    [79] Rappaport B D,D C Martens,T W Simpson and R B Reneau.Prediction of available zinc in sewage sludge-amended soils.Can.J.Soil Sci, 1986,66:445~454
    [80] Shuman L M. Zn, Mn and Cu in soil fractions.Soil Sci,1979,127:10~17
    [81] Stover R C,L E Sommers and D J Silviera. Evaluation of metals in Waste-water sludge.J.Water Poll.Control Fed, 1976.45:2165~2175
    [82] Miller W P and W W Mcfee.Distribution of Cd、Zn、Cu and Pb in soil of industrial north wester Indiana.J.Environ.Qual,1983, 12:19~33
    [83] 王敬国.植物营养的土壤化学第1版[M].北京.北京农业大学出版社,1995:150
    [84] Jones KC, Peterson PJ, Davies BE. Extraction of silver from soils and its determination by atomic absorption spectrometry.Geoderma, 1984,33:157~168
    [85] 莫争,王春霞,陈琴,等.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化[J].农业环境保护,2002,21(1):9~12.
    [86] 丁疆华,温琰茂,舒强等.土壤环境中镉、锌形态转化的探讨[J].城市环境与城市生态,2001,14(2):1~10
    [87] 刘霞,刘树庆,王胜爱,等.河北主要土壤中重金属镉,形态与土壤酶活性的关系[J].河北农业大学学报,2002,25(1):5~6
    [88] 李宗利.污灌土壤中Pb、Cd形态的研究[J].农业环境保护,1994,2(4):152~157.
    [89] 李学恒.土壤化学第一版[M].北京.高等教育出版社,2001:354
    [90] 袁玲,祝莉莉,何光存.Cu~(2+)、Ag~+在水稻种子萌发及幼苗生长中的作用[J].湖北农业科学,2002.2:24~25
    [91] 周焱,罗安程.三种前处理法测定植株中铜锌铁锰钙镁的比较[J].土壤肥料,1997,(4):41~42
    [92] 王忠.植物生理学第1版[M].北京.中国农业出版社,1999:292