单元反射型偏光分束棱镜的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反射型偏光分束棱镜是根据双折射晶体表面的双反射现象设计的一类新的偏光器件,这类棱镜的特点是集偏光分束与光传播的变向于一身,在偏光分束的同时,可以使光的传播方向改变一定的角度。目前的几种双反射偏光分束棱镜多采用二元结构,由于胶合层的存在,使得这几种棱镜的光强透射比普遍偏低。本文借鉴了它们的部分设计思想,研制了两种单元结构的反射型偏光棱镜,并对其光学性能进行了理论分析和性能测试,全文概括起来主要有以下几部分:
     第一章绪论部分,主要介绍了偏光器件的分类、性能和应用范围,并对本文的工作进行了说明。
     第二章首先给出了部分基础理论知识,然后详细介绍了起偏棱镜和偏光分束棱镜的种类、设计思想和性能参数,并对相位延迟器件、退偏器件和冰洲石晶体偏光棱镜设计概要进行了简单的介绍。
     论文的后三章是本文的核心内容,也是我的主要工作。这三章对单元结构双反射偏光棱镜的结构、性能参数作了详细的理论分析,并进行了实验测试:首先我们根据冰洲石晶体的双折射性质,提出了Ⅰ、Ⅱ两种类型五种不同结构的单元双反射偏光分束棱镜的设计构想。理论分析证实,这五种结构的单元双反射偏光分束棱镜都可以使两束出射光等分束角输出,并且找到了实现等角分束的最佳结构角。在结构固定后,我们对各棱镜的性能,如分束角不对称度随入射角和入射波长的变化关系,光强透射比随波长的变化关系等进行了理论分析。通过棱镜性能的比较,我们选择了其中两种性能最好的棱镜作为Ⅰ、Ⅱ两种类型的代表加工成样品,并对样品进行了实验测试。从分束光不对称度和光强透射比随入射角、入射波长变化的实验数据可以看出,虽然测试数据在一些点上与理论结果相比有所偏离,但两者总体趋势基本一致,特别是从分束角不对称度随入射角变化的实验值和理论值的对比中,可以更清楚地看到这一点。通过对棱镜进行消光比测试发现,两出射光束中,o光的消光比性能要优于e光的消光比性能,但两束光的消光比性能都不低于10~(-5),具有实际应用价值。
     理论分析和实验测试结果均表明:Ⅰ、Ⅱ两种类型的单元双反射偏光分束棱镜都具有较好的性能,较高的实用价值。
     本文的主要创新之处在于:提出了新的单元双反射偏光分束棱镜的设计方案,从理论上进行了详细的推导,并结合实验对器件设计性能进行了验证分析。
Refractive prisms which are designed basing on birefringent character on surface of calcite crystal are new patterns of prisms. Not only can they split o and e light which are both linearly polarized light, but also can change the propagating directions of o and e light. At present, there are several patterns of refractive prisms, most of which are composed of two parts. For the existence of cementing layer, the transmission of light is not very high. In order to improve the transmission of light, two new patterns which have only one part are designed in my paper. Some of the design ideology is drawn lessons from the old patterns. Basing on theory analysis and experimental measurement, we analyse the two patterns' optical performances. The full text includes the following contest briefly.
     In the first chapter, some basic knowledge, such as species and performances of polarizing prism, fields of application and so on, are explained and then is the introduction of the main content of this paper.
     Some basic theories of polarizing devices are recommended at the beginning of the second chapter. After that detailed explanation of polarizing prisms and beam splitting prisms, including species, design ideologies and performance parameters, is done. Finally, we illustrate some other knowledge related to prism, such as phase delay devices, depolarizing devices and main points of prism designation which is especially important for prism made of calcite crystal.
     The last three chapters are the focal points in my paper and also my work. Some important parameters of the prisms we designed are analysed in full, such as structures, optical performances and so on. Of cause, detailed experimental measurements are very necessary. First of all, two new prisms including five different structures, which are all modular construction and can split light by double reflective property of calcite crystal, are tendered. Theory analysis turns out that, each prism can make sure that the two light's emergence angles are equal. After prisms' structures are fixed, some important parameters of each prism are analysed, such as how splitting angle's asymmetry and transmission of light varied when incidence angle and incidence wave length are changed. Comparing the performances of these prisms, two prisms which have better performances and can represent the two patterns considered above are processed. Though comparison of experimental results and theory results, we can conclude that, although deviation is exist, the basic tendency is still coincident, especially from the comparison of experimental data and theory data which can render the variation of splitting angle's asymmetry when incidence angles are changed. From testing of extinction ratio we can find that, the extinction ratio of o light is prior than the extinction ratio of e light, but both of them are higher than 10~(-5).
     Both of the results of theory analysis and experimental testing are all illustrated that, the performances of these two prisms basing on double reflection are quite well and they can be used in several field.
     The main innovations of this article are that: we put forward a new design idea of prism. This new prism is basing on double refraction and has only one part. After theory analysis in full, the performances of the prism are certified by experiment.
引文
[1] 李国华,李继仲.冰洲石偏光棱镜在分光光度测量中地应用[J].应用光学,1992,13(1):58-62.
    [2] 郑龙江,候培国.一种基于不同光谱透射比的光纤温度传感器[J].传感器术.2000,19(1):31-32.
    [3] 李国华,吴福全.平行分束偏光镜的设计与研制[J].应用激光联刊,1989,7(4):215-217.
    [4] 张冬青.偏振干涉成像光谱仪中偏振干涉仪地性能分析及器件优化设计[R].山东:曲阜师范大学激光研究所,2002:1-45.
    [5] 汪志明,徐至展,陈时胜.利用多分幅光学探针诊断系统研究激光等离子体[J].物理学报,1988,37(10):1658-1663.
    [6] Decker D L, Starford J L, Bernett H E. Use of air-spaced Glan type polarizing prisms[J]. J opt. Soc AM, 1970, 60: 1557.
    [7] 郑光昭.剪切电子散斑干涉术[J].广东工业大学学报,2003,20(1):23-27.
    [8] L. Alex vitkin. Polarization Studies in Multiply Scattering Chiral media[J]. Opt. Eng., 39(2): 353-262.
    [9] 蔡昕,徐毓娴,张志利.微分干涉相衬显微镜中偏光棱镜设计[J].光学技术,2001,27(3):229-234。
    [10] 李国华.偏光棱镜研究[J].山东激光,1979,1(1):20-26.
    [11] 李国华.棱镜偏光技术与器件[J].应用激光联刊,1982,12(1):60-64.
    [12] 李国华,肖胜安,李继仲.Wollaston 棱镜用于会聚光束中的位相延迟研究[J].中国激光,1992,19(7):512-516.
    [13] Schledermann, M. and Skibowski, M., Appl. Opt. ,10, 321(1971).
    [14] 孔伟金,吴福全王吉明.薄膜偏振分光镜的研究[J].应用光学,2003,24(4):17-19.
    [15] Auton, J. P., Appl. Opt., 6: 1023(1967).
    [16] Gorachand Ghosh. Temperature dispersion in KTP for nonlinear devices[J]. IEEE Pho Tech Letters, 1995, 7(1): 68-70.
    [17] L. Alex vitkn. Polarization Studies in Multiply Scattering Chiral media[J]. Opt. Eng, 39(2): 353-262.
    [18] 毛彩虹,舒晓武等.光钎陀螺仪的光学器件偏振特性测试方法研究[J].激光与红外,2002,(8):279-281.
    [19] 李红霞,吴福全,范吉阳.空气隙间隔格兰型棱镜偏光器透射光强扰动的温度效应[J].物理学报,2003,52(8):2081-2086
    [20] 李红霞,吴福全,范吉阳.格兰·泰勒棱镜透射光强曲线优化处理的研究[J].激光技术,2003,27(6):597-599.
    [21] 吴福全,郑春红,薛冬.洛匈棱镜反向应用特性研究[J].光电子·激光,2002,13(10):1010-1012.
    [22] 胡树基.洛匈棱镜透光率的研究[J].杭州师范学院学报(自然科学版),2005,4(5):376-379.
    [23] 李国华,赵明山.复式双反射偏光分束棱镜[J].激光杂志,1992,13(1):39-42.
    [24] 李国华,吴福全.超高透射比激光偏振器的测试与研究[J].中国激光,16(5):313-315.
    [25] 吴福全,李国华,于德洪,宋连科.冰洲石紫外偏光棱镜研究[J].曲阜师范大学学报(自然科学版),1994,20(2):54-57.
    [26] 徐娴,蔡昕,张志利.改进型Wollaston棱镜设计[J].光学精密工程,2001,9(2):131-134
    [27] 李景镇.光学手册[M].西安:陕西科学技术出版社,1986:550-578.
    [28] M.波恩,E.沃而夫.光学原理(上册)[M].北京:科学出版社,1978:58-60.
    [29] 金国藩,李景镇.激光测量学[M].北京:机械工业出版社,1998:211-212,223.
    [30] 蒋民华.晶体物理[M].山东:山东科学技术出版社,1980:136.
    [31] 马丽丽,宋连科,吴福全.Wollaston式平行分束与对称分束偏光棱镜设计[J].光学技术,2003,29(5):602-603.
    [32] 苏富芳,吴福全,王伟.渥拉斯顿棱镜在不同方式组合下的光路特性分析[J].光学技术,2003,29(6):680-684.
    [33] 吴福全,许晓平,李国华.光学薄膜在格兰·汤普逊棱镜上的应用研究[J].曲阜师范大学学报,1995,21(1):48—51.
    [34] Matthew H. Smith. Optimization of a dual-rotating-retarder Mueller Matrix polarimeter[J]. Appl. Opt., 2002, 41(13): 2488-2494
    [35] 陈西园,单明.双Wollaston棱镜分光特性的研究[J].应用激光,2003,23(3):161-163.
    [36] 王从曾.材料性能学[M].北京:北京工业大学出版社,2001:146,213-215.
    [37] 小川智哉著,崔承甲译.应用晶体物理学[M].北京:科学出版社,1985:213-221.
    [38] 吴福全,李国华,于德洪.单元大分束角双反射偏光分束棱镜研制[J].激光技术,1991,15(5):317-319.
    [39] 李国华,吴福全.双反射平行分束偏光镜研制[J].光电子·激光,1990,1(1):43-47.
    [40] 查立豫,郑武城,顾秀明,薛翠秀.光学材料与辅料[M].北京:兵器工业出版社.1995:1-80.
    [41] Veselka J J, Bogert G A. Low-loss IM-pass polarizer fabricated by proton exchange for Z-cut Ti: LiNbO_3 Waveguides[J]. Election. Lett., 1987, 23(1): 29-31.