光谱液滴分析系统的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对液体的分析检测在环保、医药、食品、安检等行业都有重要的意义。随着人民生活水平的不断提高,人们对保护其生存环境的意识也日益增强,对污染的控制,对饮食、医药和工业用液的质量检测都提出了更多、更高的要求。运用先进的科学技术,研究建立实用、有效的分析方法和仪器已是势在必行。光谱液滴分析系统将光谱分析方法引入到液滴分析技术中来,对液体进行综合分析,在被测液体形成液滴的过程中,对被测液滴实施监测,从而获得有关该被测液体的物理、化学特性信息,对液体进行定性和量化识别。
     光谱液滴分析系统通过融合光谱分析技术和液滴分析技术,将光纤、电容液滴分析方法与小型光谱仪结合起来,既可以得到样品液滴在不同时刻的轮廓与电学、光学信息的关系,也可以同时得到该液体在设定波段的光谱信息,经过数据融合可得到由液体物理、化学及力学等特性综合确定的三维液滴指纹图。由于光纤、电容液滴分析方法对于某些液体来说不适用,在应用上存在一定的局限性。在这种情况下,利用光谱分析方法可帮助我们获取液体的特性信息。同时,在鉴别液体的应用中,对于液滴指纹信息比较相近的液体,可借助液体的光谱信息增强对液体的识别能力。反过来,对设定波段的小型光谱仪无法区分的样品,基于液滴指纹数据可以起到鉴别功能。对于液体中指定成分的定量分析,可借用红外光谱分析中的方法实现,此时需将小型光谱仪的工作波段设定在被测液体有吸收的波长范围内。光谱液滴分析方法将光谱分析的快速便捷与液滴分析的多参数结果的优点结合起来,使液滴分析技术进入到化学成分分析的领域,拓宽了液滴分析技术的应用范围。
     由于液体物理、化学特性的差异,从而不同液体在相同条件下形成液滴的轮廓形状不同,因此本文中还研究了图像液滴分析方法,不仅可以解决通过电容液滴分析方法获取液滴体积受液体介电常数影响的问题,而且更重要的意义是对液体的液滴几何轮廓特征进行分析,进一步研究利用了液体的力学特性。图像液滴分析方法可以单独使用,得到液体的液滴轮廓特征指纹图,同时也可以作为对其它液滴分析方法的一种补充。
     本文的主要工作和创造性研究包括以下几个方面:
     1.将光谱分析理论引入液滴分析,并通过技术融合搭建了一体化的测量仪器。选取工作波段在近红外光谱范围的小型光纤光谱仪用于系统中对液体样品的光谱分析,综合考虑仪器的实用性和结构耦合,设计了仪器的机械结构和光学结构,并对信号检测电路进行了改进设计,设计出整体结构小、便于在线分析的光谱液滴分析系统。
     2.在光谱测量中引入了流动比色装置,解决了对不同液体进行光谱测量时的条件一致性问题。由于液滴在生长过程中光程不断变化,直接通过液滴测量光谱时很难保证对不同液体具有相同的光程,从而给定量分析带来困难,而且由于液滴分析的特点与结构限制,使得直接通过液滴测量液体的吸收光谱难以实现,因此在测量装置中加入了流动比色装置,运用固定光程的样品池保证了光谱测量的一致性和可行性。
     3.运用光谱液滴分析系统,实现了对液体光谱信号和光纤、电容信号的同步采集,并通过数据融合,得到被测液体的三维液滴指纹图,它包含丰富的液体力学、物理、化学特性信息,从而为精确识别液体提供重要依据。
     4.运用CCD摄像机实时记录液滴的生长过程,并进行液滴图像分析,实现了液滴轮廓特征参数的提取和分析。利用液滴轮廓特征参数,可对液体进行鉴别分析。
     5.利用光谱液滴分析系统,对不同液体进行了实验分析,根据实验中得到的液体特征数据,建立液体样品特征数据库,实现对数据查询对照和对数据库中数据的管理操作,从而可对液体进行定性鉴别。
     6.结合化学计量学方法,实现了光谱数据预处理以及建模测算的定量分析模型的建立,从而可以对液体组分进行定量分析。通过对多组分液体的建模实验,验证了方法的可行性。
The detection and analysis of liquid are significant in the fields such as environmental protection, medicine, food and safety inspection etc. With the improvement of living conditions, the consciousness of environmental protection is becoming stronger than ever. There are higher and higher requirements to the pollution control and quality detection of food, drink, medicine and industrial fluid. The research on practical and effective analytical methods and instruments based on advanced technology is an urgent demand. The spectral liquid signature analyzer introduces spectral analysis method into liquid analysis technology and studies the liquid sample synthetically. The physical and chemical property information of the liquid is acquired by monitoring the drop formation process under a certain measuring condition, and thus the qualitative and quantitative measurements and discrimination of liquids are realized.
     Through the merging of spectral analysis method and liquid analysis technology, the spectral liquid signature analyzer combines the fiber, capacitive drop analysis method with miniature spectrometer. The relationship between the sample liquid drop’s profile information at different time with the electrical and optical information of the liquid drop can be gained, as well as the spectral information of the liquid sample in the set waveband of miniature spectrometer. And after data merging the three-dimensional liquid fingerprints determined by the physical, chemical and mechanical properties of the liquid sample are available. As the fiber and capacitive liquid drop analysis are not suitable for some liquids and the application range is limited, the spectral method may be utilized to gain the character information of liquid in this condition. And in the application of liquid identification, for the liquid samples that can’t be distinguished with the set waveband miniature spectrometer, the discrimination function can be realized with the fingerprint data of the liquid drop. Moreover, for different liquids with similar fingerprint information, the discrimination ability can be also enhanced by spectrum information of liquids. The quantitative analysis of the specific component in liquid sample can be approached with the infrared spectrum analysis method, with the waveband of the miniature spectrometer be setted in the wavelength range in which the liquid sample has absorption phenomenon. The spectral liquid signature analysis method integrates the high speed, convenience of the spectrum analysis with the multifunction characteristics of liquid drop analysis. The application of spectral analysis makes it possible for research on the chemical composition of the liquid sample, which broadens the application fields of the liquid drop analysis technology.
     For the profile features of different liquid drops are different due to their physical and chemical characteristic differences, the image drop analysis method is also studied. With capacitance drop analysis method the drop volume obtained will be influced by the dielectric constant of the liquid. With the image drop analysis method this problem can be avoided, and more importantly this method can be used to analysis the liquid drop’s profile feature and to study the mechanical characteristics of the liquid. The image drop analysis method can be utilized solely and the profile characteristic fingerprints of the liquid drop are obtained. Moreover, the image drop analysis method can be as replenishment to other drop analysis methods.
     The dissertation covers the following aspects concerning the main work and creative researches.
     1. The spectral analysis theory is introduced to the liquid drop analysis technology and an integrated measuring instrument is developed through the technique merging. The near infrared miniature fiber spectrometer is applied in the system to acquire the spectrum of the liquid sample. Based on the consideration of structure coupling and the development of on-line analytical instrument, the mechanical and optical structures as well as signal processing circuit of the spectral liquid signature analyzer are designed.
     2. A flowing cuvette is introduced to the spectrum measuring part so as to solve the problem of consistency of the measurement condition for different liquid samples. During the drop formation process, the optical path changes with the growth of the drop. If the spectrum of the liquid sample were measured directly through the growing drop, it would be difficult to assure the same optical path length for different liquid samples, which would bring difficulty to quantitative analysis of liquid. The structure of the liquid drop analysis makes it impossible to measure the absorption spectrum directly through the liquid drop. Thus a flowing cuvette is utilized in the spectrum measurement, and the spectrum measurement of different liquid samples can be carried out with the fixed optical path length under the same conditions.
     3. With the spectral liquid signature analyzer, the fiber, capacitive signal and the spectrum of the liquid sample can be captured simultaneously. The three-dimensional liquid fingerprints reflecting physical, chemical and mechanical properties of liquid are obtained after data processing. The fine discrimination between different liquid samples may be done with the integrated characteristics embodied in the three-dimensional fingerprints.
     4. The growing process of the liquid drop is recorded by a CCD camera, and the analysis of the liquid drop images is realized. The profile characteristic parameters of the liquid drop are extracted and can be used to discriminate different liquids.
     5. Experiments have been conducted with the spectral liquid signature analyzer, and a liquid database is established by using the liquid property data from the experiments. Data inquiry and other management operations to the database can be done with the application program, and the qualitative discrimination of liquid is realizable with the database.
     6. Chemometrics is applied to preprocess the spectroscopic data and to establish the quantitative analysis model. The feasibility of this method has been proved through the modeling the multi-component liquids.
引文
[1] 马克·德维利耶(de villiers)著,严维明译,水—迫在眉睫的生存危机,上海:上海译文出版社,2001
    [2] 杨东平,走向绿色文明,自然之友通讯,2003,1: 6-7
    [3] 裘祖荣,液滴分析技术的研究:[博士学位论文],天津:天津大学,2000
    [4] Tate T., Philos. Mag. J. Sci.,1864, 27: 176
    [5] Rayleigh L., Philos. Mag. J. Sci., 1899, 48: 321
    [6] Heyrovsky J., Philos. Mag. J. Sci., 1923, 45: 303
    [7] Young J. P., White J. C., High-Temperature Cell Assembly for Spectrophotometric Studies of Molten Fluoride Salts, Anal. Chem., 1959, 31: 1892-1895
    [8] Young J. P., White J. C., Absorption Spectra of Molten Fluoride Salts, Solution of Praseodymium, Neodymium, and Samarium Fluorides in Molten Lithium Fluoride, Anal. Chem., 1960, 32: 1658-1661
    [9] Diebold G. J., Zare R. N., Laser Fluorimetry: Subpicogram detection of Aflatoxins using High-Pressure Liquid Chromatography, Science, 1977, 196 (4297): 1439-1441
    [10] Mahoney P. P., Hieftje G. M., Fluorimetric Analysis on Individual Nanoliter Sample Droplets, Appl. Spectrosc., 1994, 48 (8): 956-958
    [11] 鲁伟,刘乐,罗侃,王柯敏, 液滴光池的荧光光化学传感器研究, 理化检验-化学分册,2001, 37 (8), 339-342
    [12] Yang R., Wang K., Xiao D., et al., Flow Injection Renewable Drops Technique for Array of Micro-Amounts of DNA, Anal. Chim. Acta, 2001, 432 (1): 135-141
    [13] Liu H., Dasgupta P. K., A Liquid Drop: A Windowless Optical Cell and a Reactor without Walls for Flow Injection, Analysis. Anal. Chim. Acta, 1996, 326 (1-3): 13-22
    [14] Miller R., Joos P., Fainerman V. B., Adv. Colloid Interface Sci., 1994, 49, 249
    [15] Cronan C. L., U. S. Patent, 1987, 4, 646, 562
    [16] Diebold G. J., U. S. Patent, 1987, 4, 650, 582
    [17] Hool K., Schuchardt B., Meas. Sci. Technol., 1992, 3, 451
    [18] Hool K., U. S. Patent, 1996, 5, 269, 176
    [19] Lima L. R. III, Dunphy D. R., Synovec R. E., Anal. Chem., 1994, 66, 1209-1216
    [20] Olson N. A., Synovec R. E., J. Chromotogr. A, 1995, 691,195
    [21] Liu H., Dasgupta P. K., Analytical Chemistry in a Drop. Solvent Extraction in aMicrodrop. Anal. Chem. 1996, 68 (11): 1817-1821.
    [22] Jeannot M. A., Cantwell F. F., Solvent Microextraction into a Single Drop. Anal. Chem. 1996, 68 (13): 2236-2240.
    [23] Jeannot M. A., Cantwell F. F., Solvent Microextraction as a Speciation tool: Determination of Free Progesterone in a Protein Solution, Anal. Chem. 1997, 69 (15): 2935-2937.
    [24] Liu S., Dasgupta P. K., Liquid Droplet, a Renewable Gas Sampling Interface, Anal. Chem., 1995, 67 (13): 2042-2049
    [25] Liu H., Dasgupta P. K., A Renewable Liquid Droplet as a Sampler and a Windowless Optical Cell, Automated Sensor for Gaseous Chlorine, Anal. Chem., 1995, 67 (23): 4221-4228
    [26] Cardoso A., Dasgupta P. K., Analytical Chemistry in a Liquid Film/Droplet, Anal. Chem., 1995, 67 (15): 2562-2566
    [27] Milani M. R., Gomes Neto J. A., Cardoso A. A., Colorimetric Determination of Sulfur Dioxide in Air Using a Droplet Collector of Malachite Green Solution, Microchemical Journal, 1999, 62 (2): 273-281
    [28] Harkins W. D., Brown F. E., J. Am. Chem. Soc., 1919, 41, 499
    [29] McMillan N. D., Finlayson O., Fortune F., et al, The fiber drop analyser: a new multianalyser analytical instrument with applications in sugar processing and for the analysis of pure liquids, Measurement Science and Technology, 1992, 3: 746-764
    [30] McMillan N. D., Feeney F. E., Power M. J. P., et al, A qualitative study of fiber drop traces on mechanically excited damped vibrations of drops of pure liquids using FFT analysis, Instrumentation Science and Technology, 1994, 22(4): 375-395
    [31] McMillan N. D., Davern P., Lawlor V. N., et al, The instrumental engineering of a polymer fiber drop analyzer for both quantitative and qualitative analysis with special reference to fingerprinting liquids, Colloids and Surfaces A, 1996, 114: 75-97
    [32] McMillan N. D., Fortune F. J. M., Finlayson O. E., et al, A fiber drop analyzer: a new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids, Review of Scientific Instruments, 1992, 63(6): 3431-3454
    [33] Wang C. H., Augousti A. T., Mason J., et al, The capacitive drop tensiometer—anovel multianalysing technique for measuring the properties of liquids, Measurement Science and Technology, 1999, 10: 19-24
    [34] Wang Chunhai, Augousti A. T., Mason J., Zhang Guoxiong, Capacitive Drop Analyser for Measuring Physical Properties of Liquids, Transactions of Tianjin University, 1999, 5(2): 122-126
    [35] 裘祖荣,张国雄,王春海等,液滴分析技术的研究,天津大学学报,2001, 34(5): 587-590
    [36] 宋晴,光纤、电容液滴分析仪的设计研究:[硕士学位论文],天津:天津大学,2002
    [37] 郝刚,多波长液滴分析仪的研究:[硕士学位论文],天津:天津大学,2004,9-12
    [38] 冯国红,光纤电容液滴分析仪的改进设计及光谱液滴分析仪的研究:[硕士学位论文],天津:天津大学,2005
    [39] 柯以侃,董慧茹,分析化学手册第三分册 光谱分析,北京:化学工业出版社,1998
    [40] 王秀萍,仪器分析技术,北京:化学工业出版社,2003
    [41] 王乃岩,分子光谱分析及分子结构分析,南京:南京理工大学,1994
    [42] 陈允魁,红外吸收光谱法及其应用,上海:上海交通大学出版社,1993
    [43] 范世福,现代分析仪器发展的前沿技术和新思想,现代科学仪器,2000,3,10-13
    [44] 徐广通,袁洪福,陆婉珍,CCD 近红外光谱快速测定柴油中的芳烃含量,分析化学,1999,27 (1):29-33
    [45] 刘金英,朱培元,张其群等,CCD 智能化光谱仪的研制,光谱学与光谱分析,1994,14(6):117-120
    [46] 何树荣,肖宗扬,栾文魁,一种采用面阵彩色 CCD 及视频信号接口的光谱仪,光学技术,2000, 26(1):1-4
    [47] http://www.nobel.se/physics/laureates/feynman-bio.html
    [48] http://www.zyvex.com/nanotech/feynman.html
    [49] 潘武,钟先信等,微型光电机械系统技术在光通信中的应用及展望,光学精密工程,1999,7 (2): 1-7
    [50] 温志渝,钟先信等,硅微机械与光纤组合式阵列传感器的研制工艺,光学精密工程,1995,22 (4): 24-29
    [51] 金国藩,严瑛白等,二元光学,北京:国防工业出版社,1998
    [52] 鞠挥,吴一辉,微型光谱仪的发展现状,光学精密工程,2001,9 (4):372-376
    [53] Zhang Haiyi, Wang Xiaolu, Jolanta Soos, Design of a miniature solid-state NIR spectrometer, SPIE, 1995, 2475: 376-383
    [54] Silverman Steven, Bates Duane, Schueler Carl, et al., Miniature thermal emission spectrometer (TES) for Mars 2001 lander, SPIE, 1999, 3756 (7): 79-90
    [55] Morris Michael J., Walters Roy A., Miniature optical fiber-based spectrometer employing a compact tandem fiber probe, SPIE, 1993, 1796: 141-149
    [56] Goldman Don S., White P. L., Anheier N. C., Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis, Appl. Opt, 1990, 29 (11): 4583-4589
    [57] Yee Gaylin M., Hing Pan A., Maluf Nadim I., et al., Miniaturized spectrometer for biochemical analysis, Sensor and Actuators, 1997, 58 (1): 61-66
    [58] http://www.oceanoptics.com
    [59] 陆婉珍,袁洪福等,现代近红外光谱分析技术,北京:中国石化出版社,2000
    [60] 徐广通,袁洪福,陆婉珍,现代近红外光谱技术及应用前景,光谱学与光谱分析,2000,20 (2): 134-142
    [61] 梁逸曾,俞汝勤,分析化学手册 第十分册 化学计量学,北京:化学工业出版社,2000
    [62] 刘树深,易忠胜,基础化学计量学,北京:科学出版社,1999
    [63] Norris K. H., Predicting forage quality by infrared reflectance spectroscopy, J. Anim. Sci. 1976, 43: 4
    [64] http://www.muromachi.com/products/razel.html
    [65] 程传煊,表面物理化学,北京:科学技术文献出版社,1995
    [66] http://www.ortodoxism.ro/datasheets/texasinstruments/opa2111.pdf
    [67] http://web.mit.edu/6.301/www/OP07_a.pdf
    [68] 张国雄,金篆芷,测控电路,北京:机械工业出版社,2000
    [69] ADLINK Technology, NUDAQ PCI-9113A,2002
    [70] 赵继文.传感器与应用电路设计[M].北京:科学出版社,2002
    [71] http://www.maxim-ic.com.cn/quick_view2.cfm?qv_pk=1257
    [72] 孙圣和,王廷云,徐颖,光纤测量与传感技术,哈尔滨:哈尔滨工业大学出版社,2002
    [73] SONY CCD Black-and-White Video Camera Module Operating Instructions Book, 1992
    [74] 张凤林,孙学珠,工程光学,天津:天津大学出版社,1990
    [75] OK 系列 PCI 图像卡用户手册,北京嘉恒中自图像技术有限公司,2002
    [76] 刘君华,贾惠芹等,虚拟仪器图形化编程语言 LabVIEW 教程,西安:西安电子科技大学出版社,2001
    [77] 杨乐平,LabVIEW 高级程序设计,北京:清华大学出版社,2003
    [78] 陈敏,汤晓安,虚拟仪器开发环境 LabVIEW 及其数据采集,计算机工程与设计,2001,22(5): 61-63
    [79] Gary W. Johnson, Richard Jennings, LabVIEW 图形编程,北京:北京大学出版社,2002
    [80] 章毓晋,图像工程(上册)——图像处理和分析,北京:清华大学出版社,1999
    [81] 夏良正,数字图像处理,南京:东南大学出版社,2001
    [82] 阮秋琦,数字图像处理学,北京:电子工业出版社,2000
    [83] 罗希平,田捷,诸葛婴,王靖等,图像分割方法综述,模式识别与人工智能,1999,12(3):300-309
    [84] Otsu Nobuyuki, A Threshold Selection Method from Gray Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66
    [85] 吴潜,居太亮,姚伯威,应用种子填充算法提取图像的形状特征,电讯技术,2001,(4):88-90
    [86] 孙慧,周红霞等,图像处理中边缘检测技术的研究,电脑开发与应用,2002,27(12):7-9
    [87] 周心明,兰赛,徐燕,图像处理中几种边缘检测算法的比较,现代电力,2000,17(3):65-69
    [88] 张凯丽,刘辉,边缘检测技术的发展研究,昆明理工大学学报,2000,25(5):36-39
    [89] 周凌翔,顾伟康,最佳边缘检测的准则与算子,模式识别与人工智能,1998,11(1):54-61
    [90] 朱步瑶,赵国玺,液体表(界)面张力测定-滴体积法介绍,化学通报,1981,6:21-26
    [91] Lando J. L., Oakley H. T., J. Colloid Interface Sci., 1967, 25: 526
    [92] Strenge K. H., J. Colloid & Interf. Sci., 1969, 29:732
    [93] 张兰辉,滴体积(滴重)法校正因子的经验式,大学化学,1992,7(6):43-44
    [94] 张大洋,范文玉,赵鸣玉,滴体积法测定表面张力的快速计算,日用化学工业,2001,31(1):49-50
    [95] 郭琦,Visual Basic 数据库系统开发技术,北京:人民邮电出版社,2003
    [96] 陈义平,吉莉莉,Access 数据库程序设计,北京:清华大学出版社,2004
    [97] 郑小玲,Access2003 中文版实用教程,北京:清华大学出版社,2004
    [98] 苏金明,阮沈勇,MATLAB 6.1 实用指南,北京:电子工业出版社,2002
    [99] 于润伟,MATLAB 基础及应用,机械工业出版社,2003
    [100] 叶海华,吉海彦,张录达,MATLAB 语言在光谱定量分析中的应用,化学分析计量,2002,11(3): 39-41
    [101] 段慧琦,陆晓华,MATLAB 在化学计量学中的应用,分析科学学报,2003, 19(1): 86-89
    [102] 刘燕德,应义斌,基于 MATLAB 语言的苹果糖度近红外光谱定量分析,浙江大学学报,2004,38(10): 1371-1374
    [103] 袁洪福,陆婉珍,现代光谱分析中常用的化学计量学方法,现代科学仪器,1998,5:6-9
    [104] Lorber A., Kowalski Bruce R., Alternatives to Cross-Validatory Estimation of the Number of Factors in Multivariate Calibration, Applied Spectroscopy, 1990, 44(9): 1464~1470
    [105] David M. Haaland, Edward V. Thomas, Partial Least-Square Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information. Anal. Chem., 1988, 60 (11): 1193-1202
    [106] David M. Haaland, Edward V. Thomas, Partial Least-Square Methods for Spectral Analyses. 2. Application to Simulated and Glass Spectral Data, Anal. Chem., 1988, 60 (11): 1202-1208
    [107] 张玲,PLS 定标法在近红外光谱分析仪中的应用研究,光学精密工程,2000,8(3):238-241
    [108] 飞思科技产品研发中心编著,MATLAB6.5 辅助小波分析与应用,北京:电子工业出版社,2003
    [109] 董长虹,高志,余啸海,Matlab 小波分析工具箱原理与应用,北京:国防工业出版社,2004
    [110] 丛爽,面向 MATLAB 工具箱的神经网络理论与应用,合肥:中国科学技术大学出版社,1998
    [111] 闻新,周露,王丹力等,MATLAB 神经网络应用设计,北京:科学出版社,2001