光场量子态的性质及其耗散研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息处理过程中,信息的载体是量子态,关键技术之一是操控量子态,制备尽可能多的非经典光场量子态是量子信息研究的重要基础和先决条件,对光场量子态的制备及其性质(反聚束效应、亚泊松分布、压缩效应和负的Wigner函数)研究尤为重要。
     由于制备光场量子态是量子信息研究的先决条件。在本论文第三章,利用典型的光场量子态,首次在理论上通过玻色湮灭和产生算符的逆算符分别作用在平移Fock态上制备了增、减光子平移Fock态。又利用玻色产生算符作用于压缩真空态上得到了增光子压缩真空态,同时阐述了在实验上如何制备增光子压缩真空态。
     量子信息研究的光场量子态应为非经典光场量子态,非经典光场量子态可通过其非经典性质来反映。在本论文的第四章,根据二阶关联函数、Q因子、压缩效应和Wigner函数首次对所制备的光场量子态(增、减光子平移Fock态,单光子增压缩真空态)和Fock态及其叠加态的性质进行了数值计算和分析讨论。结果显示增、减光子平移福克态在|α|2较小区域展现出反聚束效应和亚泊松分布;单光子增压缩真空态展现出明显的反聚束效应和压缩效应,这表示这些光场量子态为非经典光场量子态。这些光场量子态的Wigner函数在相空间都有明显的负值分布。福克态|1〉、|2〉和|3〉的Wigner函数波包为非高斯波包,且随着光子数的增加,Wigner函数变化也越复杂。在相空间中心区域,Wigner函数的峰值与福克态数n的奇偶性存在一定的联系:n为奇数时,Wigner函数的尖峰向下,n为偶数时尖峰向上。Fock态叠加态的Wigner函数有明显的向下负值尖峰和向上尖峰,这反应出两量子态的叠加性质。单光子增压缩真空态的Wigner函数与福克态|1〉的Wigner函数相似,只是取负值的相空间被压缩了。总之,这些光场量子态都具有明显的非经典特性,为非经典光场量子态。
     量子信息的处理不可避免地受到环境的影响,因此量子退相干和量子态非经典性质消失的研究对量子信息处理具有重要意义。Fock态、福克态叠加态和增光子压缩真空态在量子信启、中具有重要的价值,然而未见对其耗散研究的报道。在本论文的第五章,根据Wigner函数的定义和密度算符主方程理论,利用纠缠态表象和拉盖尔多项式与厄米多项式的性质,首次解析推导了福克态、福克态叠加态和单光子增压缩真空态的Wigner函数随时间的演化,并对各参数如何影响这种演化进行了数值计算和分析讨论。在仅耗散情况,初始这些光场量子态的Wigner函数具有明显的非经典性质,且Wigner函数的负值在相空间中有明显的投影区域:|1〉的Wigner函数负值投影区域为一圆面;|2〉的Wigner函数负值投影区域为一空实心圆环;|3〉的Wigner函数负值投影区域为一中心区域的圆面和一实心圆环;|1〉和|2〉叠加态的Wigner函数负值投影区域为两个半月形;单光子增压缩真空态的Wigner函数负值投影区域为一圆面。随着时间的演化,这些光场量子态Wigner函数的负值向正的方向收缩,Wigner函数负值的相空间投影区域也减小。若演化时间足够长,这些光场量子态的Wigner函数负值将消失,Wigner函数负值所对应的相空间投影也消失,最终原来的非经典光场量子态将演化为真空的纯态。在有驱动的耗散情况下,当耗散系数L和(?)时间t给定时,随着驱动系数g的增大,这些光场量子态的Wigner函数负值将向正的方向收缩直至负值消失,Wigner函数负值所对应的相空间投影将减小直至消失,非经典的光场量子态将演化为经典量子态。当驱动系数g取不同值(大于或小于耗散系数k)时,对于同一光场量子态,Wigner函数的负值演化至负值消失所需时间不同。当耗散系数k大于驱动系数g时,光场量子态的Wigner函数由非经典性质演化至其消失所用时间相对较长,反之所用时间相对较短。因此通过控制g-k的大小,理论上就可以控制这些光场量子态的时间演化。这些结果为量子信息实际应用这些光场量子态的非经典性质提供了理论基础。
In the process of quantum information, the carrier of quantum information is quantum state. The operating of quantum state is one of the key technologies. Therefore, the quantum state preparation of nonclassical optical field is the important basis and prerequisite condition for quantum information research. The preparation of quantum state and its property research (antibunching effect, subpossion distribution, squeezed effect and negative of Wigner function) are important.
     Because the quantum state preparation of optical field is the prerequisite condition for quantum information research. In the third chapte, according to the classical optical field quantum state, the photon-added and photon-subtracted displaced Fork states are generated theoretically for the first time by applying the inverse operator of annihilation and generator operators on the displaced Fork states. In addition, the photon-added squeezed vacuum state is generated by using generator operator on the squeezed vacuum state and the preparation in experiment is described as well.
     The optical field quantum state of quantum information research is the nonclassical optical field quantum. the nonclassical optical field quantum can be responsed by their nonclassical properties. According to the second-order correlation function, Q factor, squeezed effect and Wigner function, the theoretical research of of properties are carried on for the photon-added and photon-subtracted displaced Fork states, signle photon-added squeezed vacuum state, and Fock state and its superposition states in the fourth chapter. The results are shown that the photon-added and photon-subtracted displaced Fork states have antibunching effect and subpoisson distribution in the small region of |α|2; Single photon-added squeezed vacuum state has clearly antibunching effect and squeezed effect, which denote that these optical field quantum states are the non-classical quantum states. The Wigner functions of these optical field quantum states all have clearly distribution of negative value in the phase space. The wave packages of |1>、|2> and |3> are non-gaussian package and these Wigner functions change to be more complexity with the increment of photon. In the center of phase space, the peak value of Wigner function is related to the parity of n:the peak value of Wigner function is downward with the odd of n, the peak value of Wigner function is upward with the even of n. The Wigner function of the superposition of Fock states have obviously the negative value peak and the upward peak, which show the superposition property of two quantum states. The Wigner function of signle photon-added squeezed vacuum state is similar to the Wigner function of |1>, but the phase space of negative value is shrink. In conclusion, these quantum states have obviously nonclassical property, and are the nonclassical optical field quantum state..
     The influence between the disposal of quantum information and the environment can not be prevented completely. Thus, the research of the decoherent and the disappearance of the nonclassical property of quantum state has very important significance in the process of quantum information. The Fock state, the superposition of Fock states and photon-added squeezed vacuum states have important practical value in the quamtum information research. However, there is rarely no report about the research of their dissipation. In the fifth chapter, according to the definition of Wigner function and the master equation theory, and the entangled state representation and the relation of Laguerre polynomials and Hermite polynomials, taking the Fock states and their superposition states, the photon-added squeezed vacuum state, the analytical expression of the time evolution Wigner function of these quantum states are obtained. The time evolution characteristics of Wigner functions of these quantum states with different parameters is systematically calculated and discussed. In initial stage, the Wigner functions of these quamtum states have obvious nonclassical property, and the negative value of their Wigner function has apparent and different projective region in the phase space on the condition of dissipation. For the Wigner function of |1>, the projective region of the negative value is a circular surface. For the Wigner function of |2>, it is a solid annulus surface. For the Wigner function of |3>, it is a combination of a centered circular surface and a solid annulus surface. For the Wigner function of |1> and |2>, the projective region of the negative value are two half-moon surfaces. As for the Wigner function of the single photon-added squeezed vacuum states, it is a circular surface. The negative values of the Wigner function of these optical field quantum states will shrink to the positive direction with the time evolution. The projective region of its negative value will decrease simultaneously. If the evolution time is long enough, the negative value of their Wigner function will disappear and the corresponding projective region will also disappear in the phase space. Finally, the original nonclassical optical field quantum states change into the pure state of vacuum. On the condition of the dissipation and the driving, the negative value will approach to positive value until the negative value disappear with the increment of driving coefficient when the dissipation coefficient and dissipation time are determined. The corresponding projective region will shrink and vanish at last. Then the nonclassical optical field quantum states change into the classical quantum states. When the dissipation coefficient and the driving coefficient are given different values, the evolution time is also different for the same optical field quantum states. When the dissipation coefficient is larger than the driving coefficient, it needs relative more time in the process which the nonclassical property of Wigner function of optical field quantum states change to be disappeared. On the contrary, the evolution time is relative short. Therefore, the evolution of these quantum states can be control by the value of g-k in terms of theory. For using the nonclassical property of these quantum states in quantum information, these results offer the foundation of theory.
引文
[1].郝三如.几何量子计算和量子信息传输问题的研究.西北大学博士学位论文.2003
    [2].李承祖等,量子通信和量子计算.国防科技大学出版社,2000
    [3]. M. A. Nielsen, and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press,2000
    [4].李军奇.量子退相干及其纠缠态的制备.山西大学博士学位论文.2008
    [5].梅迪.基于非最大纠缠态的量子通讯理论的研究.大连理工大学博士学位论文.2008
    [6].李崇.量子通讯理论的矩阵表示.大连理工大学博士学位论文.2003
    [7].陈菁.多中条件下原子体系量子纠缠的研究.大连理工大学博士学位论文.2007
    [8]. J. Preskill. Quantum Information and Quantum Computation. California Institute of Technology,1998.
    [9].曾谨言,裴寿铺,龙桂鲁.量子力学新进展(二).北京大学出版社,2001.
    [10].田欣.海森堡XY模型中的纠缠态.天津大学硕士学位论文.2005
    [11]. Gui Lu Long, and L. Xiao. Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A.2004,69:052303-1-7.
    [12]. P. W. Shor. in Procedeeings of the 35th Annual Symposium on Foundation of Computer Science. (IEEE Computer Society Press, Los Alamitos, CA) 1994, P.124.
    [13]. Li Xiao, Gui Lu Long, Fu-Guo Deng, et al. Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A.2004,69:052307-1-5.
    [14]. L. M. Duan, and G. C. Guo. Probabilistic Cloning and identification of linearly independent quantum states. Phys. Rev. Lett.1998,80:4999-5002.
    [15]. L.M. Duan, and G.C. Guo. Quantum error avoiding codes verses quantum error correcting codes. Phys. Lett. A.1999,255:209-212.
    [16]. L.M. Duan, and G.C. Guo. Scheme for reducing collective decoherence in quantum memory. Phys. Lett, A.1998,243:265-269.
    [17]. B. Yurke, and D. Stolen. Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett.1986,57: 13-16.
    [18]. Q. H. Xue, W Zhou, and G C. Guo. The preparation of a Fock state by quamtum measurement in the cross-phase modulation interaction. Phys. Lett. A.1996,221: 134-138
    [19]. D. T. Pegg, L. S. Phillips, and S. M. Barnett. Optical State Truncation by Projection Synthesis. Phys. Rev. Lett.1998,81:1604-1606
    [20]. A. I. Lvovsky, H. Hansen, T. Aichele, et al. Quantum State Reconstruction of the Single-Photon Fock State. Phys. Rev. Lett.2001,87:050402-1-4.
    [21]. M. Wilkens and P. Meystre. Nonlinear atomic homodyne detection:A technique to detect macroscopic superpositions in a micromaser. Phys. Rev. A.1991,43:3832-3835.
    [22]. P. J. Bardro, E. Mayr and W. P. Schleich. Quantum state endoscopy Measurement of the quantum state in a cavity. Phys. Rev. A.1995,51:4963-4966.
    [23]. K. Vogel and H. Riske. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A.1989,40: 2847-2849.
    [24]. G. M. D'Ariano, C. Macchiavello and M. G. A. Paris. Detection of the density matrix through optical homodyne tomography without filtered back projection. Phys. Rev. A. 1994,50:4298-4302.
    [25]. L. G. Lutterbach and L. Davidovich. Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps. Phys. Rev. Lett.1997,78:2547-2550.
    [26]. C. T. Bodendorf, G. Antesberger, M. S. Kim and H. Walther. Quantum-state reconstruction in the one-atom maser. Phys. Rev. A.1998,57:1371-1378.
    [27]. M. G. Raymer, D. F. McAlister and U. Leonhardt. Two mode quantum optical state measurement:Sampling the joint density matrix. Phys. Rev. A.1996,54:2397-2401.
    [28]. D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M. Itano and D. J. Wineland. Experimental Determination of the Motional Quantum State of a Trapped Atom. Phys. Rev. Lett.1996,77:4281-4285.
    [29]. P. Lougovski, E. Solano, Z. M. Zhang, H. Walther, H. Mack and W P. Schleich. Fresnel Representation of the Wigner Function:An Operational Approach. Phys. Rev. Lett.2003, 91:010401-1-4.
    [30]. W. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.2003,75:715-775.
    [31]. S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge,1995
    [32]. U. Leonhardt. Measuring the Quantum State of Light. Cambridge University Press, Cambridge,1997
    [33]. W. P. Schleich and M. Raymer. Quantum State Preparation and Measurement. J. Mod. Opt,1997,44:11-12
    [34]. O. Steuernagel and J. A. Vaccaro. Reconstructing Simple Projectors. Phys. Rev. Lett. 1995,75:3201-3205
    [35]. M. Freyberger and A. M. Herkommer. Probing a Quantum State via Atomic Deflection. Phys. Rev. Lett.1994,72:1952-1955
    [36].疏静.基于腔QED的量子态制备和量子信息处理.中国科学技术大学博士学位论文.2007
    [37].曾谨言.量了力学卷Ⅱ.科学出版社,2000
    [38]. Dirac P. A. M. The principles of quantum mechanics(4th edition). Oxford, England: Oxford University Press,1958
    [39].W.H.路易塞尔.辐射的量子统计性质.科学出版社,1982
    [40].彭金生,李高翔.近代量子光学导论.科学出版社,1996
    [41].范宏义,从量子力学到量子光学,上海交通大学出版社,2005.
    [42].范宏义,唐绪兵.量子力学数理基础进展.中国科学技术大学出版社,2008.
    [43]. Fan Hong-yi and J. R. Klauder, Phys. Rev. A.1994,49:704-707
    [44]. Fan Hong-yi and Fan Yue. Phys. Rev. A.1996,54:958-960
    [45]. Dirac. P. A. M. The pronciples of quantum mechanics.4th ed. New York:Oxford,1958
    [46].杨伯君,量子光学基础.北京邮电大学出版社,1996
    [47].陈刚.微腔中多体系统的新奇量子相变及其调控.山西大学博士学位论文.2009
    [48]. L. F. Wei, S.Y. Liu and X.L. Lei. Quantum computation with two-level traped cold ions beyond Lamb-Dick limit. Phys. Rev. A.2002,65:062316-1-9
    [49]. B. W. Shore, and P. L. Knight. Observation of quantum collapse and revaval. Journal of Modern Optics.1993,40:1195-1201
    [50]. T.Pellizzari, S.A.Gardiner, J..I. Carac, et al. Decoherence, continuous observation, and quantum computing:a cavity QED model. Phys. Rev. Lett.1995,75(21):3788-3791
    [51]. J. W. Pan, D. Bouwmeester, M. Danlell, et al. Experimental test of quantum n-onlocality in three-phone Greenberger-Horne-Zeilinger entanglement. Nature.2000, 403(1):515-519
    [52]. H. J. Kimble, M. Dagenais, and L. Mandel. Photon Antibunching in Resonance Fluorescence. Phys. Rev. Lett.1977,39:691-695
    [53]. K. Vogel, V M. Akulin, and W P. Schleich. Quantum state engineering of the radiation field. Phys. Rev. Lett.1993,71:1816-1819
    [54]. S. M. Barnett and D, T, Pegg. Optical state truncation. Phys. Rev. A.1999,60:4965-4973
    [55]. S. Raghavan, H. Pu and P. Meystre, et al.Generation of arbitrary Dicke states in spinor Bose-Einstein condensates. Opt. Comm.2001,188:149-154
    [56]. D. M. Meekhof, C. R. Monroe, B.E. King, et al. Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett.1996,76:1796-1799
    [57]. C. Monroe, D. M. Meekhof, B. E. King, et.al. A "Schrodinger Cat" superposition state of an atom. Science.1996,272:1131-1136
    [58]. G. M. D'Ariano, L. Maccone, M. G. A. Paris, and M. F. Sacchi. Optical Fock-state synthesizer. Phys. Rev. A.2000,61:053817-1-5
    [59]. R. S. Bondurant, P. Kumar, J. H. Shapiro, et al. Degenerate four-wave mixing as a possible source of squeezed-state light. Phys. Rev. A.1984,30:343-353
    [60]. G. Milburn and D. F. Walls. Production of squeezed states in a degenerate parametric amplifier. Opt. Commun.1981,39:401-404
    [61]. Z. Ficek, R. Tana's and S. Kielich. Squeezed states in resonance fluorescence of two interacting atoms. Opt. Commun.1983,46:23-26
    [62]. L. A. Lugiato and G. Strini. On the squeezing obtainable in parametric oscillators and bistable absorption. Opt. Commun.1982,41:67-70
    [63]. X. D. Hu and F. Nori. Phonon squeezed states generated by second-order raman scattering. Phys. Rev. Lett.1997,79:4605-4608
    [64]. C. T. Lee. Nonclassical photon states generated by stimulated Compton scattering. Phys. Rev. A.1988,38:1230-1239
    [65].彭堃墀,黄茂全等.双模光场压缩态的试验研究.物理学报1993,42:1079-1085.
    [66].彭石安,郭光灿.光了消灭算符高次幂的本征态及其性质.物理学报.1990,39(1):51-60.
    [67]. K. Wodkiewicz, J. H. Eberly. Coherent states squeeaed fluctuation and the SU(2) and SU(1,1) groups in quantum optics applications. J. Opt. Soc. Am.1982, B2:485-486.
    [68].李燕.光场量子态制备与光阱下的超冷原子量子态特性研究.中国科学院研究生院(武汉物理与数学研究所)博士学位论文.2007
    [69]. E. Schrodinger. The constant crossover of micro-to macro mechanics. Naturwiss.1926, 14:664-666
    [70]. R. J. Glauber. The quantum theory of optical coherence. Phys. Rev.1963,130(6): 2529-2539
    [71]. J. R. Klauder and B.-S. Skagerstam. Coherent States-Applications in Physics and Mathematical Physics. Singapore:World Scientific,1985.
    [72]. M. O. Scully and M. S. Zubairy. Quantum Optics. Cambridge University Press, UK, 1997
    [73]. L. F. Wei, S. J. Wang, and D. P. Xi. Inverse q-boson operators and their relation to photon-added and photon-depleted states. J. Opt. B:B:Quantum Semiclass. Opt.1999. 1:619-623.
    [74]. D. F.Walls. Squeezed state of light. Nature.1983,306:141-146
    [75].于租荣.量子光学中的非经典态物理学进展.1999,19:72-93.
    [76]. D. Stoler. Equivalence classes of minimum uncertainty packets. Phys. Rev. D.1970,1: 3217-3219
    [77]. H. P. Yuen. Two-photon coherent states of the radiation field. Phys. Rev. A.1976,13: 2226-2243
    [78].郭光灿.量子光学.高等教育出版社,1990
    [79]. R. Loudon, P. L. Knight. Squeezed light. J. Mod. Opt.1987,34:709-759.
    [80]. E. Wolf and L. Mandel. Optical Coherence and Quantum Optics. Cambridge, U. K.:Cambridge University Press,1995
    [81]. P. A. M. Dirac. Lectuers on Quantum Field theory. New York:Academic Press.1966.
    [82]. H. Y. Fan. Inverse operators in Fock space studied via a coherent-state approach. Phys. Rev.1993,47(4):521-523.
    [83]. C. L. Mehta, A. K. Roy, G. M. Saxena. Eigenstates of two-photon annihilation operators. Phys Rev. A.1992,46:1565-1572
    [84].韦联福,王顺金,揭泉林.相干态的激发态及其非经典特性.科学通报.1997,42:1724-1727
    [85].韦联福,杨庆怡.相干态是(α)-1的本征态吗.大学物理.1998,17(5):203
    [86].杨庆怡,韦联福,丁良恩.玻色算符的逆算符及其相关的奇偶相干态.物理学报.2003,52(6):1390-1935
    [87]. M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D.-G. Welsch. Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A.1997,55:3184-3194
    [88]. S. Masahide and S. Shigenari. Phys. Rev. A.2006,73:043807-1-18
    [89]. J. Seke, F. Rattay. Influence of the Fock state field on the many atom radiation processes in a damped cavity. Phys. Rev. A.1989,39:171-180.
    [90]. H. Paul. Photon antibunching. Rev. Mod. Phys.1982,54:1061-1102.
    [91]. L. Mandel and E. Wolf. Optical Coherence and Quantum Optics. Cambridge:Cambridge University Press,1995
    [92]. C. M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D.1981, 23(8):1693-1708
    [93]. W. K. Wootters. Entanglement of Formation of formation of an arbitrary state of two qubits. Phys. Rev. Lett.1998,80:2245-2248.
    [94].赵加强.腔QED中若干量子光学与量子信息问题的研究.曲阜师范大学硕士学位论文.2005
    [95].冷建材.光场相位与信息熵的研究.曲阜师范大学硕士学位论文.2005
    [96].高德营.量子纠缠与非经典效应等问题的研究.曲阜师范大学硕士学位论文.2007
    [97].秦东青.光与原子相互作用过程中某些问题研究.曲阜师范大学硕士学位论文.2006
    [98].杜少将.连续变量最小关联混态的若干问题研究.曲阜师范大学硕士学位论文.2006
    [99].杜秀梅.XY和J-C模型中量子纠缠和光场量子效应的研究.曲阜师范大学硕士学位论文.2008
    [100].邓阿丽.线性光学器件在量子光学和量子信息学中的研究.曲阜师范大学硕士学位论文.2005
    [101].谭霞.内禀退相干下光与原子相互作用系统的研究.曲阜师范大学硕士学位论文.2006
    [102].张英杰.腔QED中量子纠缠与非经典量子态的研究.曲阜师范大学硕士学位论文.2008
    [103]. H. J. Kimble, M. Dagenais and L. Mandel. Multiation and transit-time dffects on photon-correlation measurements in resonance fluorescence. Phys. Rev A.1978,18: 201-207
    [104]. W. A. T. Nogueira, S. P. Walborn and S. Padua et al. Spatial antibunching of photons with parametric down-conversion. Phys. Rev. A.2002,66:053810-1-5
    [105]. Y Yamaoto and H. A. Haus. Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys.1986,58:1001-1020
    [106]. S. Machida, Y.Yamamoto. Observation of Sub-Poissonian photoelectron statistics in a. negative feedback semiconductor laser. Opt. Commun.1986,57:290-296.
    [107]. J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, and S. Reynaud. Observation of high-intensity sub-Poissonian light using an optical parametric oscillator. Phys. Rev Lett. 1990,64:2897-2900
    [108].Chonghoon Kim and Prem Kumar. Tunable sub-Poissonian light generation from a parametric amplifier using an intensity feedforward scheme. Phys. Rev. A.1992, 45:5237-5242
    [109].Ruo-Ding Li, Sang-Kyung Choi, Chonghoon Kim, and Prem Kumar. Generation of sub-Poissonian pulses of light. Phys. Rev. A.1995,51:R3429-R3432
    [110].M. C. Teich and B. E. A Saleh. Observation of sub-Poisson Franck-Hertz light at 253.7 nm. J. Opt. Soc. Am.1985, B2:275-282.
    [111].Yun Zhang, Katsuyuki Kasai, and Masayoshi Watanabe. Investigation of the photon-number statistics of twin beams by direct detection. Opt. Lett.2002,27: 1244-1246
    [112].J. Liao, X. G. Wang, L. A. Wu, S. H. Pan. Superposition of negative binomial states. Journal of optics B. Quantum and semiclassical optics.2000,2:541-544.
    [113].顾樵.单模激光光子统计的新特点.中国科学(A辑).1990,20:721-727
    [114].曾谨言,裴寿墉.量子力学新进展(第一辑).北京大学出版社,2000
    [115].崔英华.二项式光场与几种典型原子系统相互作用过程的量子特性.内蒙古师范大学硕士学位论文.2008
    [116].格日乐Schradinger猫态光场与玻色—爱因斯坦凝聚原子相互作用的量子特性.内蒙古师范大学硕士学位论文.2009
    [117]. Z. Ficek, R. Tonas, S. Kielich. Amplitude-squared squeezing in two-atom resonance fluorescence. Opt. Commun.1988,69:20-24.
    [118]. E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev.1932, 40(5):749-759
    [119].杨庆怡.玻色场的非经典量子态及其操控的研究.华东师大博士学位论文.2004
    [120].张智明.利用微脉塞重构腔场的Wigner函数.物理学报.2004,53(Ⅰ):70-74.
    [121]. D. T. Smithey, M. Beck and M. G. Raymer. et al. Measurement of the Wigner distribution and the density matrix of alight mode using optical homodyne tomography:Application to squeezed states and the vacuum. Phys. Rev. Lett.1993,70:1244-1247
    [122]. S. Schiller, G. Breitenbach, S. F. Pereira, T. Muller and J. Mlynek. Quantum statistics of the squeezed vacuum by measurement of the density matrix in the number state representation. Phys. Rev. Lett.1996,77:2933-2936.
    [123]. K. Banaszek, C. Radzewica and K. Wodkiewica. Direct measurement of the Wigner function by photon counting. Phys. Rev. A.1999,60:674-677.
    [124]. G. Nogues, A. Rauschenbeutel, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, S. Haroche, L. G. Lutterbach and L. Davidovich. Measurement of a negative value for the Wigner function of radiation. Phys. Rev. A.2000,62:054101-1-4.
    [125]. R. Movshovich, B. Yurke, P. G. Kaminsky. et al. Observation of zero-point noise squeezing via a Josephson-parametric amplifier. Phys. Rev. Lett.1990,65(12): 1419-1422
    [126]. G. Breitenbach, S. Schiller and J. Mlynek. Measurement of the quantum states of squeezed light. Nature.1997,387:471-475
    [127].Bhuvnesh Jain. and Andy Taylor. Cross-Correlation tomography:measuring dark energy evolution with weak lensing. Phys. Rev. Lett.2003,91:141302-1-4
    [128]. M. W. Mitchell, C. W. Ellenor, S. Schneider, and A. M. Steinberg. Diagnosis, prescription, and prognosis of a bell-state filter by quantum process tomography. Phys. Rev Lett.2003, 91:120402-1-4
    [129]. S.Wallentowitz, and W.Vogel. Unbalanced homodyning for quantum state measurements. Phys. Rev. A.1996,53:4528-4533
    [130].K.Banaszek, and K.Wodkiewicz. Direct probing of quantum phase space by photon counting. Phys. Rev. Lett.1996,76:4344-4347
    [131]. Z. Kis, T. Kiss, and J. Janszky, et al. Local sampling of phase-space distributions by cascaded optical homodyning. Phys. Rev. A.1999,59:R39-R42
    [132]. P. J. Bardroff, E. Mayr, W. P. Schleich. et al. Simulation of quantum-state endoscopy. Phys. Rev A.1996,53:2736-2741
    [133]. S. M. Dutra, and P. L. Knight. Atomic probe for quantum states of the electromagnetic field. Phys. Rev. A.1994,49:1506-1508
    [134].H. Y Fan and H. R. Zaidi. Application of IWOP technique to the generalized Weyl correspondence. Phys. Lett. A.1987,124:303-307
    [135]. H. Y Fan and T.-N. Ruan. Coherent state formulation of the Weyl correspondence and the Wigner function. Commun. Theor. Phys.1983,2:1563-1585
    [136].H. Y. Fan and T. N. Ruan. Quantum theory for fermion system and its pseudo-classical correspondence. Commun. Theor. Phys.1984,3:45-48
    [137]. H. Y. Fan and Z. H. Xu. Symplectic transformations in the n-mode coherent-state representation using integration within an ordered product of operators. Phys. Rev. A. 1994,50(4):2921-2925.
    [138]. S. K. Ozdemir, A. Miranowicz and M. Koashi, et al. Quantum-scissors device for optical state truncation:A proposal for practical realization. Phys. Rev. A.2001,64: 063818-1-10.
    [139].B. Roy and P. Roy. Phase distribution of nonlinear coherent slates. J. Opt. B:Quantum Semiclass. Opt.1999, 1(3):341-344
    [140]. H. W. Lee. Theory and application of the quantum phase-space distribution function. Physics Reports.1995,259:147-211
    [141]. E. Wigner. Perspectives in quantum theory. Edited by W. Yourgrau and A vender Merwe. Cambridge,1971
    [142].R. P. Feynman. Statistical Mechanics. New York:Benjamin,1972
    [143]. J. Itano. Bollinger, W. M. Wineland, D. and D. Heinzen. Optimal frequency measurements with maximally correlated states. Phys Rev. A.1996,54:R464-4652
    [144]. J. E. Moyal. Quantum mechanics as statistical theory. Proc. Cambr. Phil. Soc.1949, 45:99-124
    [145]. K. E. Cahill and R. J. Glauber. Ordered expansions in boson amplitude operators. Phys. Rev.1969,177:1857-1881
    [146]. J. Glauber. Coherent and Incoherent States of the Radiation Field. Phys. Rev.1963,131: 2766-2788
    [147].范洪义,凤洛瑜.计算叠加态Wigner函数的简捷途径.量子电子学报.1993,10:82-83
    [148].王竹溪,郭敦仁.特殊函数概论.科学出版社,1965
    [149].范洪义.从量子力学到量子光学-数理进展.上海交通大学出版社,2005
    [150]. F. A. A. El-Orany and A-S. Obada. On the evolution of superposition of squeezed displaced number states with the multiphoton Jaynes-Cummings model. J. Opt. B: Quantum Semiclass. Opt.2003,5:60-72
    [151]. R. P. Feynman. "Negative probability" in quantum implications:essays in honor of David Bohm, Edited by F. David Peat and Basil Hiley, London & New York:Routledge & Kegan Paul Ltd,1987,235-248
    [152]. P. Dirac. The physical interpretation of quantum mechanics. Proc. Roy. Soc. A.1942,180: 1-39
    [153]. D. Sokolovski and J. N. L. Connor. Negative probability and the distributions of dwell, transmission, and reflection times for quantum tunneling. Phys. Rev. A.1991,44: 1500-1504
    [154]. M. O. Scully, H. Walther and Wolfgang Schleich. Feynman's approach to negative probability in quantum mechanics. Phys. Rev. A.1994,49:1562-1566
    [155]. A. Zavatta, S. Viciani, and M. Bellini. Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission. Phys. Rev. A.2005,72: 023820-1-9
    [156]. J. Jauszky, and T. Kobayashi. Effects of damping and reamplification of pure number states. Phys. Rev. A.1990,41:4074-4076.
    [157]. M. Brune, S. Haroche, J. M. Raimond. Manipulation of photons in a cavity by dispersive atom-field coupling:Quantum-nondemolition measurements and generation of "Schrodinger cat" states. Phys. Rev. A.1992,45:5193-5214.
    [158]. K. E. Cahill, R. J. Glauber. Density operators and quasiprobability distributions. Phys. Rev.1969,177:1882-1902
    [159]. A. Biswas and G. S. Agarwal. Nonclassicality and decoherence of photon-subtracted squeezed states. Phys. Rev. A.2007,75:032104-1-8
    [160]. J. von Neumann. Mathematical foundation of quantum mechanics. Princeton University Press,1955
    [161].孙昌璞,衣学喜,周端陆,郁司夏.量子力学新进展.北京大学出版社,2000
    [162]. W. H. Zurek. Environment-induced superselection rules. Phys. Rev D.1982, 26:1862-1880.
    [163].P. Glansdorff and I. Prigogine. Thermodynamics theory of structure:stability and fluctuations. Whey, New York,1971
    [164]. M. Namik and S. Pascazio. Wave-function collapse by measurement and its simulation. Phys. Rev. A.1991,44(1):39-53.
    [165]. C. P. Sun. Quantum dynamical model for wave-function reduction in classical and macroscopic limits. Phys. Rev. A.1993,48(2):898-906.
    [166]. L. H. Yu, and C. P. Sun. Evolution of the wave function in a dissipative system. Phys. Rev. A.1994,49(1):592-595.
    [167]. C. P. Sun, L. H. Yu. Exact dynamics of a quantum dissipative system in a constant external field. Phys. Rev. A.1995,51(3):1845-1853.
    [168]. E. Joos, H. D. Zeh, C. Kiefer, D. Ginlini, J. Kupsch, I. O. Stamatescu. Decoherence and the Appearance of a classical world in qnantum theory. Springer, Berlin,2003.
    [169].张永德.量子信息物理原理.科学出版社,2006
    [170]. G. J. Milburn. Intrinsic decoherence in quantum mechanics. Phys. Rev. A.1991,44: 5401-5406
    [171].D. Giulini. et. al. Decoherence and appearence of a classical world in quantum theory. Berlin, Springer,1998.
    [172]. A. Einstein, B. Podeschy, and N. Rosen. Can quantum mechanical description of physical reality be considered complete?. Phys. Rev.1935,47 (5):777-780.
    [173].H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun. Decay of loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett.2006,96:140604-1-4.
    [174]. S. Haroche and J. M. Raimond. In advances in atomic and molecular physics, Vol.20, ed. D. Bates and B. Bederson. Academic Press, New York,1985
    [175].杨洁.量子主方程及其求解的若干方法.中国科学技术大学硕士学位论文,2003.
    [176]. M. J. Collett. Exact density-matrix calculations for simple open systems. Phys. Rev. A. 1988,38(5):2233-2247.
    [177]. R. Dum, P. Zoller. Monte Carlo simulation of the atomic master equation for spontaneous emission. Phys. Rev. A.1992,45(7):4879-4887.
    [178]. C. W. Gardiner, P. Zoller. Quantum kinetic theory:A quantum kinetic master equation for condensation of a weakly interacting Bose gas without a trapping potential. Phys. Rev. A. 1997,55(4):2902-2921
    [179]. B. L. Hu, J. P. Paz and Y. Zhang. Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D.1992, 45:2843-2861.
    [180]. H. P. Breuer and F. Petruccione. The theory of open quantum systems. Oxford University Press,2002.
    [181].侯邦品.代数动力学方法在量子力学和量子光学中的应用.西南交通大学博士学位论文.2004
    [182]. C. W. Gardiner. Quantum Noise. Springer-Verlag, Berlin,2000.
    [183]. L. H. William. Quantum statistical properties of radiation. John Wiley, New York,1973
    [184]. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett.1993,70:1895-1899
    [185]. Hong-yi Fan. Entangled states, squeezed states gained via the route of developing dirac's symbolic method and their applications. International Journal of Modern Physics B. 2004,18:10-11
    [186].胡利云.量子退相干的纠缠态表象方法论.上海交通大学理学博士学位论文.2009.
    [187]. Li-yun. Hu, and Hong-yi. Fan. The evolution of Wigner function in laser process derived by entangled state representation. Opt. Commun.2009,282:4379-4383.
    [188]. Hong-yi. Fan, and Li-yun. Hu. New approach for analyzing time evolution of density operator in a dissipative channel by the entangled state representation. Opt. Commun. 2008,281:5571-5573
    [189]. R. R. Puri. Mathematical Methods of Quantum Optics. Springer-Verlag, Berlin,2001.
    [190]. J. Eisert, S. Scheel, and M. B. Plenio. Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett.2002,89:137903-1-4
    [191]. G. Giedke and J. I. Cirac. Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A.2002,66:032316-1-7
    [192]. H. Nha and H. J. Carmichael. Proposed test of quantum nonlocality for continuous variables. Phys. Rev. Lett.2004,93:020401-1-4
    [193]. A. K. Ekert. Qantum cryptography based on Bell's theorem. Phys. Rev. Lett.1991,67: 661-663
    [194]. C. H. Bennett and S. J. Wiesner. Communication via one-and-two particle operators Einstein-Podolsky-Rosen states. Phys. Rev. Lett.1992,69:2881-2884
    [195]. C.H. Bennett and D. P. DiVincenzo. Quantum information and computation. Nature. 2000,404:247-255
    [196]. A. Barenco, D. Deutsch, A. Ekert. and R. Josza. Conditional quantum dynamics and logic gates. Phys. Rev.Lett.1995,74:4083-4086
    [197].T. Sleator and H. Weinfurter. Realizable universal quantum logic gates. Phys. Rev. Lett. 1995,74:4087-4090
    [198]. J. I. Cirac and P. Zoller. Quantum computation with cold trapped ions. Phys. Rev. Lett. 1995,74:4091-4094
    [199]. Wolfgang P. Schleich. Quantum Optics in Phase Space. Wiley-VCH, Berlin,2001
    [200]. M. Hillery, R. F. O'Connell, M. O. Scully, E. P. Wigner. Phys. Rep.1984,106:121-167
    [201]. A. Wunsche. Hermite and Laguerre 2D polynomials. J. Computational and Appl. Math. 2001,133:665-678.
    [202]. A. Wunsche. General Hermite and Laguerre two-dimensional polynomials. J. Phys. A: Math. and Gen. 2000,33:1603-1629.
    [203]. W. Magnus, F. Oberhettinger, R. P. Soni. Formulas and theorems for the special functions of mathematical physics. Springer-Verlag, Berlin,1966.