磷光铱配合物和宽禁带聚合物母体的合成与光电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属配合物磷光材料在电致发光器件中的应用大大提升了器件的效率水平,而铱配合物是其中的佼佼者。各种高效率的铱配合物不断被报道出来,但器件性能仍然没有达到实用化的水平,且高效率的深蓝光铱配合物发展较慢。铱配合物体系中还有一些基本的问题需要更深入的研究,如辅助配体对铱配合物发光性质的影响在机理上还需要进一步的认识,为材料发展提供思路。另外,磷光材料寿命较长,制备发光器件时需要在母体材料中进行分散以减小激发态分子间的浓度淬灭。聚合物母体具有可以进行低成本的溶液加工的优点,但宽禁带的聚合物母体材料目前还很有限,限制了蓝光和白光旋涂器件的发展。本论文立足于发展铱配合物和宽禁带聚合物材料体系,并研究了它们的光电性质,主要内容包括以下四个方面:
     1.选择高能量的苯基吡唑作为主配体,引入不同结构的辅助配体合成了一系列铱配合物,发现辅助配体会影响铱配合物的发光颜色和效率。电化学和理论计算的研究表明,辅助配体的引入主要影响配合物的LUMO能级,当辅助配体的LUMO能级比主配体低时,配合物的LUMO主要由辅助配体决定。配合物的发光本质上都具有金属和配体共同参与的“MLCT态”特征。
     2.为了提高铱配合物材料的热稳定性以及减小分子间相互作用引起的发光淬灭,以螺二芴单元构建配体合成的配合物Ir(SBFP)2(acac)是一种高效率的纯黄色发光材料,在器件中可以进行高浓度的掺杂。通过对配体的结构进行微调大大降低了材料的蒸镀温度,并保持了高效率的纯黄光发射。
     3.利用δ-Si打断共轭和咔唑间位连接的方式限制聚合物的有效共轭长度,得到的聚合物P36HCTPSi具有宽的HOMO-LUMO能带以及高的三线态能量。以其为母体材料掺杂铱配合物作为发光层制备了高效率的蓝光,绿光,黄光和白光器件。器件结果表明P36HCTPSi是一种性能优异的普适性母体材料。
     4.为了抑制掺杂体系中主客体间的相分离,在聚合物P36HCTPSi的支链上引入不同含量的蓝光铱配合物。接枝聚合物具有良好的成膜性,与共混体系相比薄膜中的相分离得到了抑制,并实现了主客体间更有效的能量转移。
Phosphorescent iridium complexes have drawn much attention since they were used in EL devices by Forrest et al. in 1999. Iridium complexes show high PL efficiency and their emission colors can be tuned by the structure of the ligands. Highly efficient blue, green, red and white devices have been reported based on iridium complexes, but the stability of phosphorescent devices can not satisfy the request of practice yet,and highly efficient deep blue emissive iridium complexes are still scarce. Deeper researches on the materials are needed to solve these problems. The effect of ancillary ligands on luminescent properties of iridium complexes needs further understanding on the mechanism. This kind of research can help to understand the luminescence process of the complexes deeply, and provide ideas for materials development. Because of the long life time of phosphorescent materials, the intermolecular interaction between excited molecules would strongly quench the luminescence. So it is necessary to disperse the phosphorescent materials in the hosts. Polymer hosts have the advantage of allowing inexpensive solution processing technologies, but wide band gap polymer hosts are scarce, which limits the development of blue and white PLEDs. Starting from the above questions, in this thesis, we designed a series of iridium complexes to research the effect of ancillary ligands on luminescent properties of iridium complexes, and understand the basic luminescence process; developed stable and high luminescent efficiency iridium complexes and wide band gap polymers, and researched their photophysical, electrochemical and EL properties.
     It was considered that the emission colors of iridium complexes were determined by the nature of cyclometalating ligands, while the ancillary ligands operated insignificant control. In Chapter 2, we chose high energy phenylpyrazole (ppz) as the cyclometalating ligand and introduced different ancillary ligands to obtain four iridium complexes. These complexes show either no emission or medium intensity emission at room temperature. But at low temperature (77 K), all complexes emit strongly and the emission colors change from deep blue (422 nm) to orange red (587 nm). The results from electrochemistry and DFT data demonstrate ancillary ligands affect the electronic structure of the complexes mainly on LUMO, while with little effect on HOMO. When the LUMO level of ancillary ligand is lower than the cyclometalating ligand, the LUMO of the complex would be determined by the ancillary ligand. The study by TD-DFT demonstrates that the emission nature of four complexes is MLCT essentially. When ancillary ligand has lower LUMO level than the cyclometalating ligand, it would take part in the MLCT process that contributes the lowest excited state of the complex. The MLCT excited state with the lowest energy would determine the luminescent properties of the complex.
     To improve the thermal stability of iridium complexes and decrease the emission quenching induced by molecular interaction, in Chapter 3, we designed and synthesized three complexes using spirobifluorene-pyridine (SBFP) as the cyclometalating ligand. Owing to the introduction of spirobifluorene part, the complexes show good thermal stability with weight loss temperature higher than 400°C. All three complexes show yellow emission, and the PL efficiencies of Ir(SBFP)3 and Ir(SBFP)2(acac) in solution are 0.30 and 0.28, respectively. We emphatically researched the EL properties of Ir(SBFP)2(acac). The complex showes anti-aggregation property in EL devices. The device performances change little when the doping concentration lies between 12 wt% and 25 wt%. The optimized device shows pure yellow emission, and the luminous and external quantum efficiency of the device exceed 50 cd/A and 15%, respectively. At the luminance of 1000 cd/m2, the efficiency retains 90% of the maximum value. By breaking the connection of the two benzenes in spirobifluorene-pyridine to modify the structure of Ir(SBFP)2(acac), we obtained the complex Ir(DPFP)2(acac), which maintains highly efficient pure yellow emission with PL efficiency of 0.26 in solution. The evaporation temperature of Ir(DPFP)2(acac) (270°C) is 130°C lower that that of Ir(SBFP)2(acac) (400°C), this demonstrates the free vibration of the two benzenes in ligands could improve the sublimation property of the material as the rigidity of the molecule decreased, which is beneficial for fabricating EL devices with good stability. By simple molecular design, the evaporation temperature of the material is much decreased.
     Theδ-Si interrupted main chain can confine the effective conjugation length, and increase the band gap of the polymer. In Chapter 4, byδ-Si interrupted main chain, we designed and synthesized two wide band gap polymers P36HCTPSi and P27HCTPSi, with derivatives of tetraphenylsilicane and carbazole connected by meta- and para-linkage, respectively. P36HCTPSi and P27HCTPSi show deep blue emission in solution with PL efficiency of 0.19 and 0.67, and the emission peaks are 392 and 410 nm, respectively. The blue emission of P27HCTPSi is not stable, and its triplet energy is relatively low (2.44 eV), which limit its application as a host. P36HCTPSi shows good thermal stability (Tg = 217°C), good film formation, wide HOMO-LUMO gap (HOMO and LUMO levels are -5.5 and -2.3 eV, respectively), stable blue emission (422 nm) in device and high triplet energy (2.67 eV), which can be used as a wide band gap host. The blue, green and yellow devices with P36HCTPSi doped iridium complexes as the light emitting layer show luminous efficiency up to 3.4,27.6 and 61.7 cd/A, respectively. The white device with red, green and blue iridium complexes doped shows luminous efficiency up to 8.6 cd/A, while the efficiency of yellow and blue complexes doped white device up to 25.1 cd/A. The device performances demonstrate P36HCTPSi is a good universal host material.
     In a blending system of polymer host and complex guest, there are problems of phosphor aggregation, phase separation and incomplete energy transfer. Combing the host and guest in one material can solve these problems. In Chapter 5, we added blue iridium complex FIrpic onto the side chain of P36HCTPSi by Suzuki coupling reaction. The content of FIrpic in the polymers could be controlled by feed ratio of the monomers. We synthesized two polymers PCzSiIr2.5 and PCzSiIr5, with the FIrpic content of 2.5 and 5 mol%, respectively. The FIrpic content calculated from 1H NMR spectra is similar to the monomer ratio. The polymers show good film formation, the phase separation is depressed in films compared with the blending system and more efficient energy transfer between the host and guest is realized. Using grafting FIrpic as the“internal standard”, EL spectra of PLEDs with PCzSiIr5 doped by a red iridium complex as the light emitting layer were compared before and after annealing, and we found that the doped material is not as stable as FIrpic in film. PLEDs based on the polymers show blue phosphorescence from FIrpic with a maximum luminous efficiency of 2.3 cd/A. The efficiency roll-off at high current densities is suppressed in the devices.
引文
[1] Tang C W, Vanslyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51:913-915.
    [2] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347:539-541.
    [3] Ma Y G, Zhang H Y, Che C-M, Shen J C. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synth. Met., 1998, 94:245-248.
    [4] Baldo M A, O’Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395:151-154.
    [5] Li F, Zhang M, Feng J, Cheng G, Wu Z J, Ma Y G, Liu S Y, Shen J C, Lee S T. Red electrophosphorescence devices based on rhenium complexes [J]. Appl. Phys. Lett., 2003, 83:365-367.
    [6] Welter S, Brunner K, Hofstraat J W, De Cola L. Electroluminescent device with reversible switching between red and green emission [J]. Nature, 2003, 421:54-57.
    [7] Xia H, Zhang C B, Qiu S, Lu P, Zhang J Y, Ma Y G. Highly efficient red phosphorescent light-emitting diodes based on ruthenium(II)-complex-doped semiconductive polymers [J]. Appl. Phys. Lett., 2004, 84:290-292.
    [8] Jiang X Z, Jen A K Y, Carlson B, Dalton L R. Red-emitting electroluminescent devices based on osmium-complexesdoped blend of poly(vinylnaphthalene) and 1,3,4-oxadiazole derivative [J]. Appl. Phys. Lett., 2002, 81:3125-3127.
    [9] Adachi C, Baldo, M A, Forrest S R, Thompson, M E. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials [J]. Appl. Phys. Lett., 2000, 77:904-906.
    [10] Baldo M A, Lamansky S, Burrows P E, Thompson M E, Forrest S R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Appl. Phys. Lett., 1999, 75:4-6.
    [11] O’Brien D F, Baldo M A, Thompson M E, Forrest S R. Improved energy transferin electrophosphorescent devices [J]. Appl. Phys. Lett. 1999, 74:442-444.
    [12] Lu W, Mi B-X, Chan M C W, Hui Z, Che C-M, Zhu N Y, Lee S-T. Light-Emitting Tridentate Cyclometalated Platinum(II) Complexes Containingσ-Alkynyl Auxiliaries: Tuning of Photo- and Electrophosphorescence [J]. J. Am. Chem. Soc., 2004, 126:4958-4971.
    [13] Baldo M A, Adachi C, Forrest S R. Transient analysis of organic electrophosphorescence. II.Transient analysis of triplet-triplet annihilation [J]. Phys. Rev. B, 2000, 62:10967-10977.
    [14] Tamayo A B, Alleyne B D, Djurovich P I, Lamansky S, Tsyba I, Ho N N, Bau R, Thompson M E. Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes [J]. J. Am. Chem. Soc., 2003, 125:7377-7387.
    [15] Yang C-H, Fang K-H, Chen C-H, Sun I-W. High efficiency mer-iridium complexes for organic light-emitting diodes [J]. Chem. Commun., 2004, 2232-2233.
    [16] Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson M E. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J]. Inorg. Chem., 2001, 40:1704-1711.
    [17] Adachi C, Baldo M A, Thompson M E, Forrest S R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J]. J. Appl. Phys., 2001, 90:5048-5051.
    [18] Zhu W, Mo Y, Yuan M, Cao Y. Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes [J]. Appl. Phys. Lett., 2002, 80:2045-2047.
    [19] Wang Y, Herron N, Grushin V V, LeCloux D, Petrov V. Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds [J]. Appl. Phys. Lett., 2001, 79:449-451.
    [20] Wang Y, Gao W, Braun S, Salaneck W R, Amy F, Chan C, Kahn A. Enhancement of iridium-based organic light-emitting diodes by spatial doping of the hole transport layer [J]. Appl. Phys. Lett., 2005, 87:193501(1-3).
    [21] He G, Pfeiffer M, Leo K, Hofmann M, Birnstock J, Pudzich R, Salbeck J. High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers [J]. Appl. Phys. Lett., 2004,85:3911-3913.
    [22] Su S J, Tanaka D, Li Y-J, Sasabe H, Takeda T, Kido J. Novel Four-Pyridylbenzene-Armed Biphenyls as Electron-Transport Materials for Phosphorescent OLEDs [J]. Org. Lett., 2008, 10:941-944.
    [23] Adachi C, Baldo M A, Forrest S R, Lamansky S, Thompson M E, Kwong R C. High-efficiency red electrophosphorescence devices [J]. Appl. Phys. Lett., 2001, 78:1622-1624.
    [24] Gong X, Ostrowski J C, Bazan G C, Moses D, Heeger A J. Red electrophosphorescence from polymer doped with iridium complex [J]. Appl. Phys. Lett., 2002, 81:3711-3713.
    [25] Lee C-L, Lee K B, Kim J-J. Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter [J]. Appl. Phys. Lett., 2000, 77:2280-2282.
    [26] Duan J-P, Sun P-P, Cheng C-H. New Iridium Complexes as Highly Efficient Orange–Red Emitters in Organic Light-Emitting Diodes [J]. Adv. Mater., 2003, 15:224-228.
    [27] Song Y-H, Yeh S-J, Chen C-T, Chi Y, Liu C-S, Yu J-K, Hu Y-H, Chou P-T, Peng S-M, Lee G-H. Bright and Efficient, Non-Doped, Phosphorescent Organic Red-Light-Emitting Diodes [J]. Adv. Func. Mater., 2004, 14:1221-1226.
    [28] Su Y-J, Huang H-L, Li C-L, Chien C-H, Tao Y-T, Chou P-T, Datta S, Liu R-S. Highly Efficient Red Electrophosphorescent Devices Based on Iridium Isoquinoline Complexes: Remarkable External Quantum Efficiency Over a Wide Range of Current [J]. Adv. Mater., 2003, 15:884-888.
    [29] Li C-L, Su Y-J, Tao Y-T, Chou P-T, Chien C-H, Cheng C-C, Liu R-S. Yellow and Red Electrophosphors Based on Linkage Isomers of Phenylisoquinolinyliridium Complexes: Distinct Differences in Photophysical and Electroluminescence Properties [J]. Adv. Funct. Mater., 2005, 15:387-395.
    [30] Rayabarapu D K, Jennifer B M, Paulose S, Duan J-P, Cheng C-H. New Iridium Complexes with Cyclometalated Alkenylquinoline Ligands as Highly Efficient Saturated Red-Light Emitters for Organic Light-Emitting Diodes [J]. Adv. Mater., 2005, 17:349-353.
    [31] Huang J, Watanabe T, Ueno K, Yang Y. Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives [J]. Adv. Mater., 2007,19:739-743.
    [32] Adachi C, Kwong R C, Djurovich P, Adamovich V, Baldo M A, Thompson M E, Forrest S R. Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials [J]. Appl. Phys. Lett., 2001, 79:2082-2084.
    [33] Holmes R J, Forrest S R, Tung Y-J, Kwong R C, Brown J J, Garon S, Thompson M E. Blue organic electrophosphorescence using exothermic host–guest energy transfer [J]. Appl. Phys. Lett., 2003, 82:2422-2424.
    [34] Yeh S-J, Wu M-F, Chen C-T, Song Y-H, Chi Y, Ho M-H, Hsu S-F, Chen C H. New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices [J]. Adv. Mater., 2005, 17:285-289.
    [35] Laskar I R, Hsu S-F, Chen T-M. Synthesis, photoluminescence and electroluminescence of some new blue-emitting phosphorescent iridium(III)-based materials [J]. Polyhedron, 2005, 24:189-200.
    [36] Holmes R J, D’Andrade B W, Forrest S R, Ren X, Li J, Thompson M E. Efficient, deep-blue organic electrophosphorescence by guest charge trapping [J]. Appl. Phys. Lett., 2003, 83:3818-3820.
    [37] Yeh S-J, Wu M-F, Chen C-T, Song Y-H, Chi Y, Ho M-H, Hsu S-F, Chen C H. New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices [J]. Adv. Mater., 2005, 17:285-289.
    [38] Zhang X, Jiang C, Mo Y, Xu Y, Shi H, Cao Y. High-efficiency blue light-emitting electrophosphorescent device with conjugated polymers as the host [J]. Appl. Phys. Lett., 2006, 88:051116(1-3).
    [39] Holmes R J, Forrest S R, Sajoto T, Tamayo A, Djurovich P I, Thompson M E, Brooks J, Tung Y-J, D’Andrade B W, Weaver M S, Kwong R C, Brown J J. Saturated deep blue organic electrophosphorescence using a fluorine-free emitter [J]. Appl. Phys. Lett., 2005, 87, 243507(1-3).
    [40] Yang C-H, Cheng Y-M, Chi Y, Hsu C-J, Fang F-C, Wong K-T, Chou P-T, Chang C-H, Tsai M-H, Wu C-C. Blue-Emitting Heteroleptic Iridium(III) Complexes Suitable for High-Efficiency Phosphorescent OLEDs [J]. Angew. Chem. Int. Ed., 2007, 46:2418-2421.
    [41] Chiu Y-C, Hung J-Y, Chi Y, Chen C-C, Chang C-H, Wu C-C, Cheng Y-M, Yu Y-C, Lee G-H, Chou P-T. En Route to High External Quantum Efficiency (~12%), Organic True-Blue-Light-Emitting Diodes Employing Novel Design ofIridium (III) Phosphors [J]. Adv. Mater., 2008, 20:1-5.
    [42] Lee J, Lee J-I, Song K-I, Lee S J, Chu H Y. Effects of interlayers on phosphorescent blue organic light-emitting diodes [J]. Appl. Phys. Lett., 2008, 92:203305(1-3).
    [43] Jeon S O, Yook K S, Joo C W, Lee J Y. High efficiency blue phosphorescent organic light emitting diodes using a simple device structure [J]. Appl. Phys. Lett., 2009, 94:013301(1-3).
    [44] Xiao L, Su S-J, Agata Y, Lan H, Kido J. Nearly 100% Internal Quantum Efficiency in an Organic Blue-Light Electrophosphorescent Device Using a Weak Electron Transporting Material with a Wide Energy Gap [J]. Adv. Mater., 2009, 21:1271-1274.
    [45] P-W Wang, Y-J Liu, C Devadoss, P Bharathi, J S. Moore. Electroluminescent diodes from a single component emitting layer of dendritic macromolecules [J]. Adv. Mater., 1996, 8:237-241.
    [46] Markham J P J, Lo S-C, Magennis S W, Burn P L, Samuel I D W. High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes [J]. Appl. Phys. Lett., 2002, 80:2645-2647.
    [47] Lo S-C, Male N A H, Markham J P J, Magennis S W, Burn P L, Salata O V, Samuel I D W. Green Phosphorescent Dendrimer for Light-Emitting Diodes [J]. Adv. Mater., 2002, 14:975-979.
    [48] Lo S-C, Namdas E B, Burn P L, Samuel I D W. Synthesis and Properties of Highly Efficient Electroluminescent Green Phosphorescent Iridium Cored Dendrimers [J]. Macromolecules, 2003, 36:9721-9730.
    [49] Anthopoulos T D, Frampton M J, Namdas E B, Burn P L, Samuel I D W. Solution-Processable Red Phosphorescent Dendrimers for Light-Emitting Device Applications [J]. Adv. Mater., 2004, 16:557-560.
    [50] Lo S-C, Anthopoulos T D, Namdas E B, Burn P L, Samuel I D W. Encapsulated Cores: Host-Free Organic Light-Emitting Diodes Based on Solution-Processible Electrophosphorescent Dendrimers [J]. Adv. Mater., 2005, 17:1945-1948.
    [51] Liang B, Wang L, Xu Y, Shi H, Cao Y. High-Efficiency Red Phosphorescent Iridium Dendrimers with Charge- Transporting Dendrons: Synthesis and Electroluminescent Properties [J]. Adv. Funct. Mater., 2007, 17:3580-3589.
    [52] Lo S-C, Bera R N, Harding R E, Burn P L, Samuel I D W. Solution-Processible Phosphorescent Blue Dendrimers Based on Biphenyl-Dendrons andFac-tris(phenyltriazolyl)iridium(III) Cores [J]. Adv. Funct. Mater., 2008, 18:3080-3090.
    [53] Ding J, Wang B, Yue Z, Yao B, Xie Z, Cheng Y, Wang L, Jing X, Wang F. Bifunctional Green Iridium Dendrimers with a“Self-Host”Feature for Highly Efficient Nondoped Electrophosphorescent Devices [J]. Angew. Chem. Int. Ed., 2009, 48:6664-6666.
    [54] Lee C L, Lee K B, Kim J J. Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter [J]. Appl. Phys. Lett., 2000, 77:2280-2282.
    [55] Chen F C, Yang Y. High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex [J]. Appl. Phys. Lett., 2002, 80:2308-2310.
    [56] Lee C-L, Kang N-G, Cho Y-S, Lee J-S, Kim J-J. Polymer electrophosphorescent device: comparison of phosphorescent dye doped and coordinated systems [J]. Opt. Mater., 2002, 21:119-123.
    [57] Tokito S, Suzuki M, Sato F, Kamachi M, Shirane K. High-efficiency phosphorescent polymer light-emitting devices [J]. Org. Electron., 2003, 4:105-111.
    [58] Kawamura Y, Yanagida S, Forrest S R. Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers [J]. J. Appl. Phys., 2002, 92:87-93.
    [59] Suzuki M, Tokito S, Sato F, Igarashi T, Kondo K, Koyama T, Yamaguchi T. Highly efficient polymer light-emitting devices using ambipolar phosphorescent polymers [J]. Appl. Phys. Lett., 2005, 86:103507(1-3).
    [60] Chen X, Liao J-L, Liang Y, Ahmed M O, Tseng H-E, Chen S-A. High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety [J]. J. Am. Chem. Soc., 2003, 125:636-637.
    [61] Jiang J, Jiang C, Yang W, Zhen H, Huang F, Cao Y. High-Efficiency Electrophosphorescent Fluorene-alt-carbazole Copolymers N-Grafted with Cyclometalated Ir Complexes [J]. Macromolecules, 2005, 38:4072-4080.
    [62] You Y, Kim S H, Jung H K, Park S Y. Blue Electrophosphorescence from Iridium Complex Covalently Bonded to the Poly(9-dodecyl-3-vinylcarbazole): Suppressed Phase Segregation and Enhanced Energy Transfer [J]. Macromolecules, 2006, 39:349-356.
    [63] Evans N R, Devi L S, Mak C S K, Watkins S E, Pascu S I, K?hler A, Friend R H, Williams C K, Holmes A B. Triplet Energy Back Transfer in Conjugated Polymers with Pendant Phosphorescent Iridium Complexes [J]. J. Am. Chem. Soc., 2006, 128:6647-6656.
    [64] Du B, Wang L, Wu H, Yang W, Zhang Y, Liu R, Sun M, Peng J, Cao Y. High-Efficiency Electrophosphorescent Copolymers Containing Charged Iridium Complexes in the Side Chains [J]. Chem. Eur. J., 2007, 13:7432-7442.
    [65] Yang X-H, Wu F-I, Neher D, Chien C-H, Shu C-F. Efficient Red-Emitting Electrophosphorescent Polymers [J]. Chem. Mater., 2008, 20: 1629-1635.
    [66] Zhen H, Jiang C, Yang W, Jiang J, Huang F, Cao Y. Synthesis and Properties of Electrophosphorescent Chelating Polymers with Iridium Complexes in the Conjugated Backbone [J]. Chem. Eur. J., 2005, 11: 5007-5016.
    [67] Zhen H, Xu W, Yang W, Chen Q, Xu Y, Jiang J, Peng J, Cao Y. White-Light Emission from a Single Polymer with Singlet and Triplet Chromophores on the Backbone [J]. Macromol. Rapid Commun., 2006, 27:2095-2100.
    [68] Zhen H, Luo C, Yang W, Song W, Du B, Jiang J, Jiang C, Zhang Y, Cao Y. Electrophosphorescent Chelating Copolymers Based on Linkage Isomers of Naphthylpyridine?Iridium Complexes with Fluorene [J]. Macromolecules, 2006, 39:1693-1700.
    [69] Schulz G L, Chen X, Chen S-A, Holdcroft S. Enhancement of Phosphorescence of Ir Complexes Bound to Conjugated Polymers: Increasing the Triplet Level of the Main Chain [J]. Macromolecules, 2006, 39:9157-9165.
    [70] Zhen H, Luo J, Yang W, Chen Q, Ying L, Zou J, Wu H, Cao Y. Novel light-emitting electrophosphorescent copolymers based on carbazole with an Ir complex on the backbone [J]. J. Mater. Chem., 2007, 17:2824-2831.
    [71] Zhang K, Chen Z, Yang C, Zou Y, Gong S, Tao Y, Qin J, Cao Y. Iridium complexes embedded into and end-capped onto phosphorescent polymers: optimizing PLED performance and structure–property relationships [J]. J. Mater. Chem., 2008, 18:3366-3375.
    [72] Jiang J, Xu Y, Yang W, Guan R, Liu Z, Zhen H, Cao Y. High-Efficiency White-Light-Emitting Devices from a Single Polymer by Mixing Singlet and Triplet Emission [J]. Adv. Mater., 2006, 18: 1769-1773.
    [73] Mei C, Ding J, Yao B, Cheng Y, Xie Z, Geng Y, Wang L. Synthesis and characterization of white-light-emitting polyfluorenes containing orangephosphorescent moieties in the side chain [J]. J. Polym. Sci. Pol. Chem., 2007, 45:1746-1757.
    [74] Kappaun S, Eder S, Sax S, Saf R, Mereiter K, List E J W, Slugovc C. WPLEDs prepared from main-chain fluorene-iridium(III) polymers [J]. J. Mater. Chem., 2006, 16:4389-4392.
    [75] Wu F-I, Yang X-H, Neher D, Dodda R, Tseng Y-H, Shu C-F. Efficient White-Electrophosphorescent Devices Based on a Single Polyfluorene Copolymer [J]. Adv. Funct. Mater., 2007, 17:1085-1092.
    [76] Gong X, Lim S H, Ostrowski C J, Moses D, Bardeen C J, Bazan G C. Phosphorescence from iridium complexes doped into polymer blends [J]. J. Appl. Phys., 2004, 95:948-953.
    [77] Xia H, Li M, Lu D, Zhang C B, Xie W J, Liu L D, Yang B, Ma Y G. Host Selection and Configuration Design of Electrophosphorescent Devices [J]. Adv. Funct. Mater., 2007, 17:1757-1764.
    [78] Kim J H, Liu M S, Jen A K Y, Carlson B, Dalton L R, Shu C F, Dodda R. Bright red-emitting electrophosphorescent device using osmium complex as a triplet emitter [J]. Appl. Phys. Lett., 2003, 83:776-778.
    [79] Niu Y H, Chen B, Liu S, Yip H, Bardecker J, Jen A K Y, Kavitha J, Chi Y, Shu C F, Tseng Y H, Chien C H. Highly efficient red electrophosphorescent devices based on an iridium complex with trifluoromethyl-substituted pyrimidine ligand [J]. Appl. Phys. Lett., 2004, 85:1619-1621.
    [80] Kwong R C, Lamansky S, Thompson M E. Organic Light-emitting Devices Based on Phosphorescent Hosts and Dyes [J]. Adv. Mater., 2002, 12:1134-1138.
    [81] Lamansky S, Kwong R C, Nugent M, Djurovich P I, Thompson M E. Molecularly doped polymer light emitting diodes utilizing phosphorescent Pt(II) and Ir(III) dopants [J]. Org. Electron., 2001, 2:53-62.
    [82] Baldo M A, Forrest S R. Transient analysis of organic electrophosphorescence: I. ?Transient analysis of triplet energy transfer [J]. Phys. Rev. B, 2000, 62:10958-10966.
    [83] Chen F-C, He G, Yang Y. Triplet exciton confinement in phosphorescent polymer light-emitting diodes [J]. Appl. Phys. Lett., 2003, 82:1006-1008.
    [84] Rothe C, Monkman A P. Dynamics and trap-depth distribution of triplet excited states in thin films of the light-emitting polymer poly(9,9-di(ethylhexyl)fluorene) [J]. Phys. Rev. B, 2002, 65:073201(1-4).
    [85] Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F. Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices [J]. Appl. Phys. Lett., 2003, 83:569-571.
    [86] Lei G T, Wang L D, Duan L, Wang J H, Qiu Y. Highly efficient blue electrophosphorescent devices with a novel host material [J]. Synth. Met. 2004, 144:249-252.
    [87] Tanaka D, Agata Y, Takeda T, Watanabe S, Kido J. High Luminous Efficiency Blue Organic Light-Emitting Devices Using High Triplet Excited Energy Materials [J]. Jpn. J. Appl. Phys., 2007, 46:117-119.
    [88] Ren X, Li J, Holmes R J, Djurovich P I, Forrest S R, Thompson M E. Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices [J]. Chem. Mater., 2004, 16:4743-4747.
    [89] Shih P-I, Chien C-H, Chuang C-Y, Shu C-F, Yang C-H, Chen J-H, Chi Y. Novel host material for highly efficient blue phosphorescent OLEDs [J]. J. Mater. Chem., 2007, 17:1692-1698.
    [90] Lin J-J, Liao W-S, Huang H-J, Wu F-I, Cheng C-H. A Highly Efficient Host/Dopant Combination for Blue Organic Electrophosphorescence Devices [J]. Adv. Funct. Mater., 2008, 18:485-491.
    [91] Wu M-F, Yeh S-J, Chen C-T, Murayama H, Tsuboi T, Li W-S, Chao I, Liu S-W, Wang J-K. The Quest for High-Performance Host Materials for Electrophosphorescent Blue Dopants [J]. Adv. Funct. Mater., 2007, 17:1887-1895.
    [92] Lee M-T, Lin J-S, Chu M-T, Tseng M-R. Low-voltage, high-efficiency blue phosphorescent organic light-emitting devices [J]. Appl. Phys. Lett., 2008, 92:173305(1-3).
    [93] Hu D H, Lu P, Wang C L, Liu H, Wang H, Wang Z M, Fei T, Gu X, Ma Y G. Silane coupling di-carbazoles with high triplet energy as host materials for highly efficient blue phosphorescent devices [J]. J. Mater. Chem., 2009, 19:6143-6148.
    [94] Burrows P E, Padmaperuma A B, Sapochak L S, Djurovich P, Thompson M E. Ultraviolet electroluminescence and blue-green phosphorescence using an organic diphosphine oxide charge transporting layer [J]. Appl. Phys. Lett., 2006, 88:183503(1-3).
    [95] Vecchi P A, Padmaperuma A B, Qiao H, Sapochak L S, Burrows P E. ADibenzofuran-Based Host Material for Blue Electrophosphorescence [J]. Org. Lett., 2006, 8:4211-4214.
    [96] Cai X, Padmaperuma A B, Sapochak L S, Vecchi P A, Burrows P E. Electron and hole transport in a wide bandgap organic phosphine oxide for blue electrophosphorescence [J]. Appl. Phys. Lett., 2008, 92:083308(1-3).
    [97] Su S-J, Sasabe H, Takeda T, Kido J. Pyridine-Containing Bipolar Host Materials for Highly Efficient Blue Phosphorescent OLEDs [J]. Chem. Mater., 2008, 20:1691-1693.
    [98] Shih P-I, Chien C-H, Wu F-I, Shu C-F. A Novel Fluorene-Triphenylamine Hybrid That is a Highly Efficient Host Material for Blue-, Green-, and Red-Light-Emitting Electrophosphorescent Devices [J]. Adv. Funct. Mater., 2007, 17:3514-520.
    [99] Whang D R, You Y, Kim S H, Jeong W-I, Park Y-S, Kim J-J, Park S Y. A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices [J]. Appl. Phys. Lett., 2007, 91:233501(1-3).
    [100] Chen S, Xu X, Liu Y, Qiu W, Yu G, Sun X, Zhang H, Qi T, Lu K, Gao X, Liu Y, Zhu D. Highly efficient blue electrophosphorescent devices with a new series of host materials: polyphenylene-dendronized oxadiazole derivatives [J]. J. Mater. Chem., 2007, 17:3788-3795.
    [101] Kim J H, Yoon D Y, Kim J W, Kim J-J. New host materials with high triplet energy level for blue-emitting electrophosphorescent device [J]. Synth. Met., 2007, 157:743-750.
    [102] Vaeth K M, Tang C. W. Light-emitting diodes based on phosphorescent guest/polymeric host systems [J]. J. Appl. Phys., 2002, 92:3447-3453.
    [103] Gong X, Robinson M R, Ostrowski J C, Moses D, Bazan G C, Heeger A J. High-Efficiency Polymer-Based Electrophosphorescent Devices [J]. Adv. Mater., 2002, 14:581-585.
    [104] Shao K-F, Xu X-J, Yu G, Liu Y-Q, Yang L-M. Blue Electrophosphorescent Light-emitting Device Using a Novel Nonconjugated Polymer as Host Materials [J]. Chem. Lett., 2006, 35:404-405.
    [105] Mo Y, Tian R, Shi W, Cao Y. Ultraviolet-emitting conjugated polymer poly(9,9’-alkyl-3,6-silafluorene) with a wide band gap of 4.0 eV [J]. Chem. Commun., 2005, 4925-4926.
    [106] Zhang X, Jiang C, Mo Y, Xu Y, Shi H, Cao Y. High-efficiency bluelight-emitting electrophosphorescent device with conjugated polymers as the host [J]. Appl. Phys. Lett., 2006, 88:051116(1-3).
    [107] Wu Z, Xiong Y, Zou J, Wang L, Liu J, Chen Q, Yang W, Peng J, Cao Y. High-Triplet-Energy Poly(9,90-bis(2-ethylhexyl)-3,6-fluorene) as Host for Blue and Green Phosphorescent Complexes [J]. Adv. Mater., 2008, 9999:1-6.
    [108] Yeh H-C, Chien C-H, Shih P-I, Yuan M-C, Shu C-F. Polymers Derived from 3,6-Fluorene and Tetraphenylsilane Derivatives: Solution-Processable Host Materials for Green Phosphorescent OLEDs [J]. Macromolecules, 2008, 41:3801-3807.
    [109] Sajoto T, Djurovich P I, Tamayo A, Yousufuddin M, Bau R, Thompson M E. Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands [J]. Inorg. Chem., 2005, 44:7992-8003.
    [110] Lumpkin R S, Kober E M, Worl L A, Murtaza Z, Meyer T J. Metal-to-ligand charge-transfer (MLCT) photochemistry: experimental evidence for the participation of a higher lying MLCT state in polypyridyl complexes of ruthenium(II) and osmium(II) [J]. J. Phys. Chem., 1990, 94:239-243.
    [111] Nonoyama M. Benzo[h]quinolin-10-yl-N Iridium(III) Complexes [J]. Bull. Chem. Soc. Jpn., 1974, 47:767-768.
    [112] Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee H-E, Adachi C, Burrows P E, Forrest S R, Thompson M E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic LightEmitting Diodes [J]. J. Am. Chem. Soc., 2001, 123: 4304-4312.
    [113] Adamovich V I, Cordero S R, Djurovich P I, Tamayo A, Thompson M E, D’Andrade B W, Forrest S R. New charge-carrier blocking materials for high efficiency OLEDs [J]. Org. Electron., 2003, 4:77-87.
    [114] Park N G, Choi G C, Lee Y H, Kim Y S. Theoretical studies on the ground and excited states of blue phosphorescent cyclometalated Ir(III) complexes having ancillary ligand [J]. Curr. Appl. Phys., 2006, 6:620-626.
    [115] Gu X, Zhang H Y, Fei T, Duan G H, Ma Y G, Liu X D. Electronic Structures and Spectronic Properties of Phosphorescent Iridium(III) Complexes with Phenylpyrazole Ligands by a Density Functional Theory Study [J]. Chem. J. Chinese Univerties., 2009, 30:1-4.