液压自由活塞发动机运动特性及其数字阀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压自由活塞发动机(Hydraulic Free Piston Engine,以下简称HFPE)是近30年逐渐发展起来的新型动力装置,它是将内燃机和液压泵集成为一体,以液体为工作介质,利用油液的压力能,实现动力非刚性传输的特种发动机。在HFPE中活塞组件是由内燃机活塞与液压泵活塞通过活塞杆直接刚性连接而成。和传统发动机/液压泵的组合动力相比,它省去了曲轴式内燃机中将活塞往复运动转换为旋转运动的曲柄连杆机构,以及液压泵中将旋转运动转换为泵活塞往复运动的旋转斜盘机构。因此具有结构简单、零件数少、重量轻、成本低、效率高、燃料适用性好及易于回收系统频繁启停中惯性能和重力势能等优点。
     本论文以双活塞式液压自由活塞发动机(Dual Piston HFPE,以下简称DHFPE)及其关键部件作为研究对象。在国家“863”高技术发展计划项目和国家自然科学基金项目共同资助下,试制成功第一代DHFPE原理样机。通过对DHFPE的试验与仿真研究,提出DHFPE的工作频率与工质压缩比间存在单调递增的函数关系,并且DHFPE系统是大范围稳定系统。
     针对第一代样机中存在的不足之处,开展了第二代样机的研制工作。目前已经研制成功第二代DHFPE的关键部件——数字阀和增压式燃油喷射系统。采用试验与仿真相结合的方法对数字阀阀芯优化设计开展了系统地研究。针对球阀、锥阀和滑阀三种数字阀阀芯,提出不同的液动力补偿方案,并给出阀芯设计参数与液动力的关系曲线。当阀口压差较大时,传统阀口射流流场仿真模型的计算误差较大,鉴于这种状况,提出阀口紊流射流经验数值仿真模型。该模型能考虑气穴现象对液流物理性能的影响,从而提高了阀口流场的计算精度。根据DHFPE的特点确定其燃油系统采用增压式燃油喷射系统。对增压式燃油系统中的压力冲击现象和燃油喷射可控性进行了试验研究,为DHFPE控制系统研制提供了试验依据。
     本论文的主要内容可分为6章,现分述如下:
     第1章,阐述了HFPE研究背景以及国内外研究现状,论述了DHFPE系统需要解决的关键技术问题,提出了本课题的研究内容。
     第2章,依据第一代DHFPE样机的实际参数建立了仿真模型,仿真结论与实验数据吻合良好。在仿真和试验数据的基础上分析了DHFPE与传统发动机在运动和燃烧特性上的差异,以及DHFPE设计参数与系统整体性能指标间的耦合关系。最后运用相轨迹法研究了DHFPE的运动特性,并提出DHFPE稳定运行的必要条件。在简化线性运动模型基础上研究了DHFPE的幅频特性,
     第3章,阀芯液动力补偿是数字阀设计中的一个关键环节。针对不同类型的数字阀,提出了不同的液动力补偿方法。滑阀阀芯设计中提出了缝隙滑阀结构,以减小阀芯的稳态液动力和瞬态液动力;球阀数字阀采用二次节流技术,减小阀芯运动阻力;锥阀阀芯设计采用阻尼套压力补偿法,该方法能实现稳态液动力的欠补偿或过补偿。最后对阀口
This doctoral thesis comes from the project "Free Piston Engine Hydraulic Reciprocating Pump" supported by the National High Technology Research and Development Program ("863" Program, the project serial number is 2001 AA423150) and the project "Study on the Mechanism of Hydraulic Free Piston Internal Combustion Engine" (the project serial number 50075077) supported by National Science Foundation of china (NSFC).
    A hydraulic free piston engine (abbreviated as HFPE) integrates internal combustion engine and a hydraulic pump into one compact unit. In practical view, there is only one linearly moving part, i.e. the piston assemble in the HFPE. Comparing with crankshaft internal combustion engine , the piston assemble within HFPE is not restricted by any mechanical linkages, so its forth between left and right extremes by means of the fuel energy, simultaneously its hydraulic piston directly produce hydraulic energy.
    Comparing with the single piston or opposed piston HFPE, the dual piston HFPE (abbreviated as DHFPE) has its own special features such as the highest power density, so the aim of this thesis is to study the mechanism of DHFPE and its key component. The main content of this thesis could fall into five chapters as the followings.
    Chapter 1 the history and current research status of HFPE are introduced based on a lot of the publications and conference papers. The key techniques of HFPE are also described. Consequently, the goal of research and project are brought forward.
    Chapter 2 study on the mechanism of the DHFPE. The mathematical models of every subsystem included in the DHFPE have been built up and verified by experiment data. Based on simulation result of DHFPE, DHFPE structure parameters optimization were developed. Then the performance and stability of DHFPE was analyzed. The motion of DHFPE is self-sustained oscillation with variable rigidity and variable damp. According to DHFPE amplitude frequency characteristics, the necessary condition of DHFPE stable operation was presented.
    Chapter 3 discusses the design of digital valve spool. A new slid valve has been developed. The valve, named "slot valve" because of its slop-spool shape, make it possible to keep flow force in low level. A new method was presented to reduce flow force of diverged flow cone valve, the damping ring method. First an experiment device was designed that used for measuring flow force without friction influence. Then spool flow force with various design parameters was measured by the experiment device. Final the relationship between cone valve design parameter and flow force is presented. At the end of this chapter, a new k-
引文
1 铃木孝[日]著.赵淑琴译.发动机的浪漫.北京:北京理工大学出版社.1996:323~327.
    2 刘传李.浅议能源技术.环境保护和内燃机工业.内燃机.1994.3(1):3~5.
    3 杨华勇,夏必忠,傅新.液压自由活塞发动机——未来的动力之星.中国机械工程.2001,12(3):353~357.
    4 杨华勇,夏必忠,傅新.液压自由活塞发动机的发展历程及研究现状.机械工程学报.2001,37(2):1~7.
    5 Achen A J. A review of Free Piston Engine Concepts. SAE paper 941176, Warrendale, USA.
    6 Li L J, Beachley N H. Design feasibility of Free Piston Internal Combustion Engine/Hydraulic Pump, Warrendale USA paper 880657, Warrendale, USA.
    7 Tikkanen M. Hydraulic Free piston Engine-The Power Unit of the Future. In: Proceeding of the 4th JHPS International Symposium on Fluid Power Tokyo: 99: 297~302.
    8 Hibi A. A Prime Mover Consists of Free Piston Internal Combustion Hydraulic Power Generator and a Hydraulic Motor. SAE paper 930313. Warrendale, USA.
    9 Heintz R P. Free Piston Engine-Pump/Hydrostatic Motor Control Concepts. In: Proceedingd 22nd Intersociety Energy Conversion Engineering conference. Philadelphia. 1987. 112: 969~974.
    10 Tikkanen S. On the Dynamic characteristics of the Hydraulic Free Piston Engine. In: The 2nd Tampere International conference on Machine Automation. Tampere 1998: 15~18.
    11 吴光强,王会义.汽车静液储能系统及控制.上海:科学技术出版社,1997.
    12 陈清泉,詹宜巨著.21世纪的绿色交通工具——电动车.北京:清华大学出版社, 2000.
    13 孙逢春,张承宁等.电动汽车——21世纪的重要交通工具.北京:北京理工大学出版社.1997.
    14 王会义等.静液储能传动系统及其功率流分析.中国机械工程,1996,7(2):42~43
    15 Heintz et. A Free-piston Engine-Pump for an Automotive Propulsion System. SAE paper No.810266, 1981.
    16 Wu, P. Luo, N., Fronczak, F.J., Beachley, N. H. Fuel Economy and Operating Characteristics of a Hydropneumatic Energy Storage Automobile. SAE paper 851678, 1985.
    17 Beachley N. H. Comparison of Accumulator and Flywheel Energy Storage for Motor Vehicle Application. SAE paper 859136.
    18 Buchwald P., Christensen G., Larsen H., etc. Improvement of City-bus Fuel Economy Using a Hydraulic Hybrid Propulsion System-A Theoretical and Experimental Study. SAE paper 790305.
    19 P. Wu, N. Luo, F. J. Fronczak, etc. Fuel economy and operating characteristics of a hydro-pneumatic energy storage automobile. SAE paper 851678.
    20 Tikkanen, S. Evolution of Engine-Hydraulic Free Piston Engine. ESPOO 2000.
    21 Hibi, A., Kumara S. Hydraulic Free-piston Internal Combustion Engine-Test Results. Power, September 1984, p.244~249.
    22 黎志勤.内燃机工作过程与计算.吉林:人民出版社,1984.
    23 雷天觉.液压工程手册.北京:机械工业出版社,1990.
    24 周盛,徐兵,杨华勇,赵阳.双活塞式液压自由活塞发动机仿真研究.机械工程学报,2005(4):92~96.
    25 周盛,徐兵,杨华勇.双活塞式液压自由活塞发动机活塞组件振动特性.煤炭学报, 2005(6):792~795.
    26 田中裕久 高速开关磁弁柔研究.日本机械学会论文集(C编).1984,Vol.50.No.457.
    27 田中裕久.制御应用.油空压化设计, 1984, Vol.22, No.1
    28 田中裕久,田开中弘义, 荒木一雄.三方向形高速电磁弁电子油压,制御.日本机械学会论文集(B编), 1984,Vol.50,No.458.
    29 田中裕久.油空压制御.油压空气压.1985, Vol.16,No.1.
    30 川崎盅幸.高速电磁弁.油压己空气压, 1985,Vol.16,No.1.
    31 腾迟英也,宫本正彦.电子制御高压燃料喷射 ECD—U2.内燃机关.1992(7),Vol.31,No.393.
    32 卢关宗,佐腾修一,佐川隆一.高速电磁阀弁开关.日本机械学会论文集(C编),1994, Vol.60.No.576.
    33 卢关宗,河村吉久.高速电磁弁阀关考察.日本电气学会论文志, 1994,114(7/8).
    34 苗建中,郑云川.螺纹插装式高速电磁阀.液压与气动, 1993(6).
    35 周福章,李力千等.高速开关阀的设计与研究.机械工程学报,1998,34(5).
    36 Thomas Dresner and Philip Barkan, A Review and Classification of Variable Vale Timing Mechanisms. SAE paper 890674.
    37 M. Natsuki, K. Nakano, T. Amemiya, Y. Tanabe, D. Shimizu and I. Ohmura, Development of a Lean Bum Engine with a Variable Vale Timing Mechanism. SAE paper 96583.
    38 Kiyoshi Hatana, Kazumasa Lida, Hirohumi Higashi, and Shinichi Murata, Development of a New Multi-Mode Variable Vale Timing Engine. SAE paper 930878.
    39 Richard Stonc and Eric Kwan, Variable Vale Actuation Mechanisms and the Potential for their Application. SAE paper 890673.
    40 Pter Kreyuter, Peter Heuser, and Michael Schebitz, Strategies To Improve SI-Engine Performance By Means of Variable Intake Lift, Timing and Duration. SAE paper 920449.
    41 Michael M, Schechter and Michael B, Camless Engine. SAE paper 960581.
    42 T. H. Ma, Effect of Variable Engine Valve Timing on Fuel Economy. SAE Ppaper 880390.
    43 T. H. Ma and H. Rajabu, Computer Simultion of an Otto-Atkinson Cycle Engine with Variable Timing Multi-intake Vales and Variable Compression Ration. SAE paper 884053.
    44 J. Robneit, Performance Characteristics of an electro-hydraulic variable valve timing system: Lost motion principle. SAE paper 937102.
    45 D.J. Haugen, P. L. Blackshear, M. J. Pipho and W. J. Ealer, Modifications of a Quad 4 Engine to Permit Late Intake Valve Clouse. SAE paper 921663.
    46 刘少军.高速开关电磁阀的现状及应用.液压与气动.1995(6).
    47 李俊明,付维坊等.汽车无级变速操作液压系统的神经模糊与数字控制方法研究.液压与气动,2001(1).
    48 N. Lhermet, F. Claeyssen, H. Fabbro. Electro-fluidic components based on smart materials for aircraft electro-hydraulic actuators. ACTUATOR 2004, 9th International Conference on New Actuators, 14-16 June 2004, Bremen, Germany: 718~721.
    49 John H. Lumkes Jr and Frank J. Fronczak. Design, Simulation, and Validation of a Bond Graph Model and Controller to Switch Between Pump and Motor Operation Using On/Off Valves With a Hydraulic Axial Piston Pump/Motor. Proceedings of the American Control Conference Chicago. June 2000.
    50 米智楠,曹泉.高速开关电磁阀在位置伺服控制系统中的应用.矿山机械,1999(9).
    51 王会义,韩宏博等.液压高速开关阀位置控制系统在泵/马达上的应用研究.哈尔滨工业大学学报,1996,28(2).
    52 蒋彬,蔡长青.液压调速系统的脉宽调制控制.液压与气动,2002(9).
    53 Sojiro Tsuchiya, Hironao Yamada and Takayoshi Muto A Precision Driving System Composed of Hydraulic Cylinder and High-Speed On/Off Valve. International Journal of Fluid Power. 2(2001) No. 1.
    54 汤志勇,曹秉刚.液压控制阀稳态液动力补偿方法的探讨:阀套运动法.机床与液压.1995(2):91~95.
    55 廖义德,张铁华,李杜云.无液动力分流阀设计及仿真.武汉化工学院学报.2002 (1):79~80.
    56 Xiaoping Liu, Hirotsugu Kasuya, Yuusaku Nozawa, etc. Flow Analysis of Hydraulic Valve Used in Construction Machinery. JSME, 2001(6).
    57 田奇.直喷式柱型液压阀流体稳态力的研究.中国机械工程.2002(13):1102~1105.
    58 郭晓娥,赵金录.瞬态液动力对液压系统中电磁换向阀安全运行的影响.矿业安全与环保.2000(7):27~29.
    59 付永领,裴忠才等.新型直接驱动伺服阀的瞬态液动力分析.机床与液压.1999(1):23~24.
    60 付永领,宋国彪等.新型直接驱动伺服阀的稳态液动力分析.机床与液压.1998(6):18~21.
    61 纪远升,穆希辉.新型锥式电磁换向阀结构特点及液动力.机床与液压.1996(5):30~33.
    62 张慧兰.液动力对滑阀使用的影响.南方冶金学院学报.1996(3):200~203.
    63 张慧兰.瞬态液动力对系统设计的影响.液压与气动.1996(3):23~24.
    64 曹秉刚,史维祥,中野和夫.内流式锥阀液动力及阀芯锥面压强分布的实验研究.西安交通大学学报.1995(7):7~13.
    65 王林翔,章明川,方志宏.阀内流道布置对液动力的影响.液压与气动.2000(6):27~28
    66 Lakehal D, Theodoridis G, Rodi W. Computation of film cooling of a flat plate by lateral injection from a row of holes. Int J of Heat Fluid Flow. 1998, 19(5): 418~430.
    67 Lakehal D, Thiele F. Sensitivity of turbulent shedding flows past cylinders to non-linear stress-strain relations and Reynolds stress models. Computers and Fluids, 2001, 30(1): 1~35.
    68 Theodoridis G, Lakehal D, Rodi, W. 3D calculations of the flow field around a turbine blade with film cooling injection near the leading edge. Flow Turbulence and Combustion. 2001, 66(1): 57~83.
    69 Rodi W. Experience with two-layer models combining the k- ε model with a one-equation model near the wall. AIAA paper 91~0218, 1991.
    70 Kim S W, Benson T J. Fluid flow of a row of jets in cross flow a numerical study. AIAA J 1993, 31(5): 806~811.
    71 Kim S W, Benson T J. Calculation of a circular jet in cross-flow with a multiple-time-scale turbulence model. Int J Heat Mass Transfer,1992, 35(10): 2357~2365.
    72 槐文信,李炜.横流中单圆孔紊动射流计算与特性分析.水利学报,1998(4):7~14.
    73 张晓元,李炜,李长城.横流环境中射流的数值研究.水利学报,2002(3):32~38.
    74 韩会玲,李炜.横流中扩散器长度对浮力射流的影响.水动力学研究与进展,2000, 15(4):511~517.
    75 吴海玲,陈听宽.应用不同紊流模型对二维横向射流传热数值模拟研究.西安交通 大学学报,2001,35(9):903~907.
    76 Holzbock,Werner G伺服阀电磁致动器.液压与气动.1980(4).
    77 Holzbock,Werner G伺服阀电磁致动器(续).液压与气动.1981(1).
    78 Ohuchi H, Nakano K, and the Others. High-Speed Electro-Hydraulic Servovalves Using Electrostrictive Ceramic PMN Actuators. International Symposium on Fluid Power and Measurement. Tokyo: 2-6 Sept. 1985.
    79 田民波磁性材料.清华大学出版社.2001
    80 武汉钢铁股份有限公司产品检测报告
    81 浙江天通电子股份有限公司Mn—Zn铁氧体研制报告
    82 James R. Crawshaw. Design of a linear step Actuator. SAE paper 790121. p: 436~439.
    83 Takeo Kushida. High speed powerful and simple solenoid actuator "DISOLE" and its dynamic analysis results. SAE paper 850373. p: 3.127~3.136.
    84 A. H. Seilly. Helenoid Actuators- A new concept in Extremely Fast acting solenoids. SAE paper 790119. p: 426~436.
    85 A.A. Seilly. Colenoid actuators-further developments in extremely fast acting solenoids. SAE paper 810462. p: 1771~1781.
    86 Davie B. Mohler. Rotary and linear DC proportional solenoids. SAE paper 860759. p: 4.1~4.6.
    87 Ralph E. Mishler. Work solenoids-environmental and design consideration for earthmoving equipment application. SAE paper 860760. p: 4.7~4.13.
    88 William G. Wolber. An overview of automotive control actuators. SAE paper 840306. p: 2.539~2.550.
    89 A. H. Seilly HELENOID Actuators-A New Concept in Extremely Fast Acting Solenoids. SAE 790119.
    90 A. H. Seilly. COLENOID Actuators—Further Developments in Extremely Fast Acting Solenoids. SAE 810462.
    91 Michael M. Schechter Fast Response Multipole Solenoids. SAE 820203.
    92 Takeo Kushida. High Speed Powerful and Simple Solenoid Actuator DISOLE and its Dynamic Analysis Results. SAE 850373.
    93 周宽伟.高速直喷柴油机电控喷油系统的现状和发展(Ⅱ).国外内燃机,1998(3):28~35.
    94 Masahiko Miyaki, Hideya Fujisawa, Akira Masuda, and Yoshihisa Yamamoto. Development of New electronically controlled fuel injection system ECD-U2 for diesel engines. SAE paper 910252. p: 312~327.
    95 王浩.柴油打桩锤.北京:中国建筑工业出版社,1978.6.
    96 刘古岷,王渝,胡国庆.桩工机械.北京:机械工业出版社,2001.4.
    97 陆家详,王均效,王桂华等.电控柴油机高压共轨系统分析.车用发动机.No4 (128) Aug.2000.
    98 徐家龙,腾泽英也.柴油机电控喷射技术.内燃机燃油喷射和控制.2001(1)
    99 宓浩祥.国内外柴油机电控技术发展动态及我国今后发展的动向.内燃机燃油喷射和控制,1996(1).
    100 王钧效,陆家祥.柴油机共轨式喷油系统的结构及发展动态.汽车技术.2001(9):11~19
    101 John B. N. Direct Digital Control of Electronic Unit Injectors. SAE Trans. 840273.
    102 柳原弘道等 高扩散混合气形成燃烧解析.第13回内燃机关讲演论文集.1996(7).
    103 Komiyma K. Electronically Controlled High Pressure Injection System for Heavy Duty Engine-KOMPICS. SAE Trans 810997.
    104 Glassey S F et al. HEUI—Anew Direction for Diesel Engine Fuel System. SAE paper 93027O.
    105 Suckner A. R. et al. Development of the HEUI Fuel System Integration of Design, Simulation, Test and Manufacturing. SAE paper 930271.
    106 Miyaki M et al. Development of New Electronically Controlled Fuel Injection System ECD-U2 for Diesel Engine. SAE Trans. 910252.
    107 Jolmson P. Common Rail injection developed for Hino Engine. High Speed Diesels & Drives. 1996(3).
    108 Guerrassi N et al. A Common Rail Injection System for High-Speed, Direct-injection Engine. SAE Special 980803.
    109 Brucher E. Die Entwicklung. Common-Rail-Einspritz systems fur Die Baureihe 4000. MTZ sotulerans gabe. 1997.
    110 张小军,卢兰光,朱国伟等.共轨增压式柴油机电控燃油喷射系统实验.武汉交通科技大学学报.2000,24(1).
    111 张小军,卢兰光,朱国伟等.中压共轨系统油压控制中PID参数整定的方法.武汉交通科技大学学报.2001,2(1).
    112 唐厚君,韩正之等.一种共轨式电控柴油机的燃油喷射系统.内燃机学报.2000,18 (2).
    113 王学合,杨莫等.液压增压式共轨电控燃油喷射系统的设计及模拟计算.2001,22 (4).
    114 蔡遂生,常久鹏等.共轨蓄压式电控泵喷嘴系统的实验研究.北京理工大学学报.2000,20(6).
    115 蔡遂生.共轨蓄压式电控喷油器的设计与计算分析.车用发动机.2001(5).
    116 刘兴华,王鹏,马安丽.中压共轨蓄压式供油系统喷油延迟的研究.车用发动机.2001(5).
    117 周文华.柴油机高压共轨燃油喷射—电控系统开发研究.内燃机工程.2001,22(3).
    118 苏万华,汪洋,谢辉等.一种新型共轨蓄压式柴油机电控单体喷油器.内燃机学报.1999,17(1).
    119 张景卢,梁海东.燃油电控喷射系统中快速电磁阀的特性及结构分析.内燃机车,1992(9).
    120 方葛文,陆瑞松.高速电磁阀动态特性分析.武汉水运工程学报,1992,16(4).
    121 卢启龙,欧阳明高.电控柴油喷射用高速强力电磁阀的机构设计与功率驱动.车用发动机,1996(3).
    122 朱春雨,卢启龙,欧阳明高.电控柴油喷射用高速强力电磁阀的数字仿真与实验验证.车用发动机,1997(5).
    123 索海韬,张宗杰,王雪怀.柴油机电控喷油系统高速电磁阀的动态特性.华中理工大学学报,1998,26(5).
    124 刘新武,张建武,陈兆能.高速开关阀功率驱动特性研究及电路实现.液压气动与密封,1998(2).
    125 王尚勇,陈昌圻.柴油机电控燃油系统中的高速电磁阀设计.兵工学报—坦克装甲车与发动机分册,1996(2).
    126 卢启龙,杜传进等.电控柴油喷射系统用高速强力电磁阀的工作特性研究.车用发动机.1996(4).
    127 谢云臣,王九如.柴油机电控用高速电磁阀的设计及实验研究.内燃机燃油喷射和控制,1997(1).
    128 黄官升,丁华荣,杨青.高速响应电磁阀的研究.兵工学报,1998,19(2).
    129 黄官升,吴纬,丁华荣.高速响应电磁阀可靠性实验研究.北京理工大学学报,1998, 18(3).
    130 S. F. Glassey, A. R. Stockner, and M.Aflinn, HEUI—A new direction for diesel engine fuel system, SAE 930271
    131 Schuckert M,Schlzel等.共轨柴油机喷射系统的设计.国外内燃机,1999年(3).