直动式电液伺服阀关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液伺服控制系统以其控制精度高、响应速度快、抗负载刚性大等优点,在航空航天领域如导弹、火箭等的模拟加载装置,冶金领域如纠偏机构、张力控制机构,军事领域如火炮控制机构,工程机械领域如推土机、压路机等都有着广泛的应用。电液伺服阀作为电液伺服控制系统的核心部件,其作用是将输入的小功率电信号精确快速的转换为大功率的液压能输出,其性能优劣直接决定着电液控制系统的性能。直动式电液伺服阀因其具有结构简单、响应快、抗污染能力强、可靠性高、无先导级泄漏、特性不受供油压力影响等性能优点,已经成为流体传动与控制领域的一个重要发展方向和竞争焦点。提高电液伺服阀的性能指标,有助于改善电液伺服控制系统的控制特性,有益于更好地满足日益提高的市场需求,进而推动流体传动及控制技术的发展。
     论文以直动式电液伺服阀的关键技术为研究对象,在综合国内外文献的基础上,提出了永磁极化、差动磁通驱动、动铁式、耐高压双向电-机械转换器的新结构,通过理论分析和磁场的有限元计算,确定了各结构参数间的匹配关系,实验结果表明该电-机械转换器的线性工作范围±1mm,最大驱动力为±60N,滞环小于2%,幅频宽达到160Hz。针对目前阀用电感式传感器的频响有限,已难满足高频响电液伺服阀的要求,本论文还提出了耐高压阀用电涡流位移传感器的新结构,并就电涡流传感器易温度漂移的技术难点,在理论分析基础上,提出采用无感线圈进行温度补偿的新方法,仿真和实验结果表明,该位移传感器的测量量程为8mm,精度为0.5%,20~90℃测量范围内温升引起的测量偏差由未补偿时的12%降低到0.7%,频响高,能够满足高频电液伺服阀的性能要求。基于耐高压双向电-机械转换器和耐高压电涡流位移传感器,本论文研制了不带位移反馈以及带位移反馈的直动式电液伺服阀的新结构,仿真探讨了其结构参数与其输出特性的内在关系,实验研究了直动式电液伺服阀的输出特性,实验结果表明,该直动式电液伺服阀的额定压力为21MPa,额定流量为60L/min,额定电流为±2A,滞环小于7%(不带位移反馈),幅频宽达到100Hz(10%额定流量@-3dB)。
     有关各章内容分述如下:
     第一章,在综合国内外文献的基础上,介绍了电液伺服阀的发展历史,从新结构和新材料两个角度论述了国内外电液伺服阀的研究动态,重点介绍了电液伺服阀的工作原理和性能指标;介绍了伺服阀相关技术,包括冷却技术、位移反馈技术以及液动力补偿技术的进展,总结出电液伺服阀的若干发展趋势。
     第二章,介绍了传统型和新材料型两类电-机械转换器的作用、分类及工作原理,并进行了性能比较;分析讨论了单向比例电磁铁的输出特性及工作机理,深入探讨了其结构参数与其输出特性的关系及作用规律;在此基础上,提出了永磁极化式双向电-机械转换器,并就其关键技术包括永磁材料、软磁材料、衔铁支承以及激励线圈等给以了分析讨论。
As an important approach to automatic control, electrohydraulic servo control system has been widely used in many sections of national economy and social surroundings due to its advantages such as high level of control precision, quick response speed and high immunity to load variations. Electrohydraulic servo valves, the key part of an EHC servo system, with its function of transferring low-power electrical signal to large-power hydraulic output quickly and precisely, play an essential role in deciding the whole performance of the system. Direct-drive servo valve has come to be an important trend in fluid power transmission and control, in that it has advantages like compact structure, quick response, strong immunity to pollution, strong reliability, no leakage in pilot stage and no influence of supply pressure to performance. Therefore, improving its performance, can be beneficial to enhancing the control performance of the EHC servo system, better satisfying the market requirements and pushing forward the fluid power technology.
    The thesis deep analyzed and researched the direct-drive servo valve, utilizing theory analysis, computer simulation, finite element numerical computation and experimental study. A permanent-magnet polarized, differential controlled, moving-iron type, high pressure, bi-directional electrical-mechanical converter is put forward, the matching relation between its structure parameters is determined by simulation, and the experimental results indicate that the converter has a linear working range of ± 1mm, hysteresis lower than 2%, and frequency response 160Hz. A high-pressure eddy current displacement sensor is presented, and a temperature-drift compensation method employing non-inductive coil is also brought forward through theoretical analysis on the causes of temperature drift, both the simulated and experimental results show that the sensor has an effective range of 8mm, precision of 0.5%, frequency response of 500Hz. Finally, two types of direct-drive servo valve, one with and one without displacement feedback, are raised, then the matching relation between the structure parameters and the performance are discussed, and experiments are carried out, both the simulated and experimental results prove that the valves have achieved excellent characteristics, with nominal pressure 21MPa, nominal flow 40L/min, nominal electrical current 2A, hysteresis lower than 7% (without position feedback) and 3% (with position feedback), frequency response 120Hz.
    In chapter 1, based on the research information abroad and overseas, the history of the servo valve is introduced, and the present technical status, especially the structure and performance of every kind, is described in the term of new structure and new material, the related technologies including cooling technology, position feedback technology and flow force compensation are both reported, finally, some trends on the development of the servo valve are summarized.
    In chapter 2, the traditional and new-type electrical-mechanical converters are compared on their function, classification and working principle; the performance and working mechanism of the proportional solenoid are illustrated, and furthermore, the relation between its parameters and its characteristics are discussed; then a novel permanent-magnet polarized bi-directional linear actuator is presented, and its key technology including permanent magnet material, soft magnet material, armature and excitation coil are analyzed.
    In chapter 3, based on finite element analysis, considering the magnetic leakage and non-linear magnet characteristics, the static mathematical model is established, and the influence of the parameters on the performance are given, then the model is confirmed by experiments. The electrical-magnetic-mechanical coupling of the actuator's dynamic procedure is analyzed, and the transient performance of the actuator is calculated employing direct coupling method, the influence of the electrical and mechanical parameters on
引文
[1] 路甬祥.液压气动技术手册.北京:机械工业出版社.2002
    [2] H.E.梅里特,陈燕庆译.液压控制系统.北京:科学出版社,1976
    [3] 路甬祥,胡大紘.电液比例控制技术.北京:机械工业出版社.1988
    [4] 路甬祥.流体传动与控制技术的历史进展与应用.机械工程学报.2001(10):1-9
    [5] 王春行.液压伺服控制系统.北京:机械工业出版社.1981,7
    [6] 卢长耿,李金良.液压控制系统的分析与设计.北京:煤炭工业出版社.1991
    [7] 李洪人.液压控制系统.北京:国防工业出版社.1986
    [8] 吴根茂,邱敏秀,王庆丰.实用电液比例技术.杭州:浙江大学出版社.1993
    [9] R H Maskery, W J Thayer. A brief history of electrohydraulic servomechanisms. ASME Journal of Dynamic Systems Measurement and Control, 1978(6)
    [10] 陈愈,沈关耿,黄人豪等.液压阀.北京:中国铁道工业出版社.1982
    [11] Moog JR Williams. Electrohydraulic servo valve. US Patent: US2767689, 1956
    [12] Atchley R D. Valve. US Patent: US3017864, 1962
    [13] 横田省三,渡边诚,近藤信雄等.直動型摩耗檢知方法.JP Patent:03-79805.1991
    [14] 肖凯鸣,虞勤俭,王渝等.MK电液伺服阀结构原理及性能.液压气动与密封.1998(4):33-36
    [15] Ichiryu K, Watanabe H, Yamaguchi T. Direct-acting servo valve. US Patent: US4544129, 1985
    [16] Marco D A. Linear-force motors enhance proportional valves. Hydraulics & Pneumatics. 1998(7)
    [17] 朱盘生.MOOG(穆格)DDV伺服阀.液压与气动.1996(5):20-21
    [18] 张光琼.单级转轴式旋转电液伺服阀.机床与液压.1991(2):34-38
    [19] Nireco Co.调节机.http://www.nireco.co.jp
    [20] 刘向明,刘庆和.一种新型电液伺服阀.液压与气动.2000(6):34-35
    [21] 阮健,李胜,杨继隆.液压及气动阀直接数字控制的新途径.中国机械工程.2000,11(3):317-320
    [22] B D Hockaday. Direct optical actuation for hydraulic systems. Elsevier ScienceDirect Onsite
    [23] YokotA S, Hiraoto K. An ultra high-peed electro-hydraulic servo valve by making use of multilayered Piezo-electric device(PZT). Proc. of the 1st International Symposium of Fluid Power and Control. Beijing, 1991,10
    [24] 张永杲.电液伺服的最新成果—压电元件驱动的超高速电液伺服阀.中国机械工程.1992,3(4):11-12
    [25] Shinichi Y. An ultra fast-acting electri-hydraulic digital valve and high-speed electro-hydraulic servovalve using multilayered PNT elements. Proceeding of the sencond JHPS international symposium on fluid power. Edited by T.Maeda.Tokyo, 1993:121~130
    [26] 大内英俊.压電,電制御並应用.日本:油空压技术.1999(7):497~501
    [27] 王伯良.无力矩马达电液伺服阀.测控技术,1989(2):23-25
    [28] 戴旭涵.磁致伸缩电-机械转换器的理论分析与实验研究.浙江大学硕士学位论文.1997
    [29] Jenner A.G., Smith R.J.E., Wilkinson A.J, etc. Actuation and transduction by giant magnetostrictive alloys Mechatronics. 2000(4-5): 457-46
    [30] Hiratsuka, K, Urai,T. Magnetic Circuit Design of a Giant Magnetostrictive Actuator and Application to a Direct-Drive Servo-Valve. Nippon.Kikai, Gakkai. Ronbunshu, B.Hen. Transactions of the Japan Society of Mechanical Engineers, Part B. 1994(570): 479-483
    [31] 吴秀丽译.使用超磁致伸缩材料的高速伺服阀.上仪情报.1995(1):15-21
    [32] 王传礼.基于GMM转换器喷嘴挡板伺服阀的研究.浙江大学博士学位论文.2004
    [33] 米智楠,钱晋武等.形状记忆合金微型阀的研制.机床与液压.2001(1):20-21
    [34] Shinichi Yokota, Kazuhiro YOSHIDA,Kenichi BANDON,Masaaki SUHARA. A Small-Size Proportional Valve Using a Shape-Memory-Alloy Array Actuator, 日本机械学会论文集(B编) Vol.62,No 539:224~229
    [35] James R.D., Hane K.F. Martensitic transformations and shape-memory materials. Acta Materialia. 2000 (1): 197-222
    [36] 何峰,张正义等.新型材料—电流变液.功能材料.2001(1)
    [37] C Mavroidis, C Pfeiffer, M Mosley. Conventional Actuators, Shape Memory Alloys, and Electrorheological a) Fluids. Automation, Miniature Robotics and Sensors for Non-Destructive Testing and Evaluation, Y b) Bar-Cohen Editor, April 99
    [38] 余心宏,马伟增,王立忠.磁流变体制备与应用研究.电子工艺技术.2001(4)
    [39] 汪建晓,孟光.磁流变液装置及其在机械工程中的应用.机械强度.2001(1)
    [40] 东菱振动仪器有限公司,http://www.testunit.com
    [41] Hitachi公司阀类产品样本,2004 JP Patent
    [42] 蔡其恕.机械量测量.北京:机械工业出版社.1982,6
    [43] 王家桢,王俊杰.传感器与变送器.北京:清华大学出版社.2001,9
    [44] 袁希光.传感器技术手册.北京:国防工业出版社.1986,12
    [45] 赵坚.磁致伸缩位移传感器的最新发展及应用.测控技术.1998(2):20-21
    [46] 付辉.一种新型二节式差动变压器位移传感器的优化设计.制造业自动化,2002(5):29-31
    [47] 曹洁.电磁轴承系统位移传感器的分析与研究.传感器技术,2001(12):9-11
    [48] 张慧兰.液动力对滑阀使用的影响.南方冶金学院学报.1996(3):200-203
    [49] 汤志勇,曹秉刚.液压控制阀稳态液动力补偿方法的探讨:阀套运动法.机床与液压.1995(2):91-95
    [50] 曹秉刚,史维祥,中野和夫.内流式锥阀液动力及阀芯锥面压强分布的实验研究.西安交通大学学报.1995(7):7-13
    [51] 王林翔,章明川,方志宏.阀内流道布置对液动力的影响.液压与气动.2000(6):27-28
    [52] Xiaoping Liu, Hirotsugu Kasuya, Yuusaku Nozawa etc. Flow Analysis of Hydraulic Valve Used in Construction Machinery. JSME, 2001 (6)
    [53] Song Jae-Bok, Byun Kyung-Seok. Throttle actuator control system for vehicle traction control. Mechatronics. 1999(5): 477-495
    [54] 廖义德,张铁华,李杜云.无液动力分流阀设计及仿真研究.武汉化工学院学报.2002(1):79-80
    [55] 陈大军.电—气比例/伺服位置控制系统的研究.浙江大学博士学位论文.1999
    [56] Marco D'Amore, Gordon Pellegrinetti. Dissecting high-performance electrohydraulic valves. Machine Design. 2001(4)
    [57] 黄向东.电液控制系统中电机械转换器的研究.浙江大学硕士学位论文.1994
    [58] 金力民.浙江大学博士后研究报告.1992
    [59] S A Evans, I R Smith, J G Kettleborough. Permanent-Magnet linear actuator for static and reciprocating short-stroke electromechanical systems. IEEE/ASME Transactions on Mechatronics, 2001 (3):36-42
    [60] Kim Jaehwan, Kim Hyang-Ki, Choi Seung-Bok. A hybrid inchworm linear motor. Mechatronics. 2002(4): 525-542
    [61] 任耀先.电磁铁优化设计.北京:机械工业出版社.1990
    [62] 贾振元,杨兴,武丹等.超磁致伸缩执行器及其在流体控制元件中的应用.机床与液压.2000(2):3-5
    [63] 张宝裕.刘恒基.磁场的产生.机械工业出版社.1987
    [64] D Howe. Magnetic Actuators. Sensors and Actuators. 2000(3):268-274
    [65] 江田弘等.超磁超精密位置决装置搭载超精密工作机械开发.日本机械学会论文集(C篇).Vol.60,1994(572)
    [66] 陈海燕,杨庆新.螺管式步进比例电磁铁的设计计算.河北工业大学学报,2000,29(3):63-65
    [67] 林其壬,赵佑民.磁路设计原理.北京:机械工业出版社.1987
    [68] 沈榆如.线性直流比例电磁铁.低压电器,1991,161(2):36-39
    [69] 李其朋,丁凡.比例电磁铁行程力特性仿真与实验研究.农业机械学报,2005,36(2):104-107
    [70] 丁凡,李其朋等.耐高压永磁极化式双向比例电磁铁.发明专利:No.200410066406.6
    [71] 胡松青,杨渭.钕铁硼永磁体的发展与应用及面临的问题.凉山大学学报,2002(10):6-8
    [72] 邹光荣,傅恒志.实用稀土永磁体的研究和开发进展.微电机.1996(4)
    [73] 田民波.磁性材料.北京:清华大学出版社.2001
    [74] 夏平畴.永磁机构.北京:北京工业大学出版社.2000
    [75] 杉本榆[日].磁性材料的最近动向和未来.上海钢研,2002(3):1-3
    [76] 刘梅冬,许毓春.压电铁电材料与器件.武汉:华中理工大学出版社.1990
    [77] 李东风,贾振彬,魏雨.软磁铁氧体的发展历程及展望.化工纵横,2002(8):12-15 2.4.2
    [78] 洪沛,顾圣祥.功能材料及其发展.江苏电机工程,2001(12):52-54
    [79] 孟庆龙,颜威利电器数值分析.北京:机械工业出版社.1993
    [80] 金建明.电磁场有限元方法.西安电子科技大学出版社.1998
    [81] 许永兴.电磁场理论及计算.上海:同济大学出版社.1994
    [82] 孙雨施,王素菊,曲民兴等.直流磁系统的计算与分析.北京:国防工业出版社.1987
    [83] 陈桂明,张明照,戚红雨等.应用MATLAB建模与仿真.北京:科学出版社.2001
    [84] 雷银照.轴对称线圈磁场计算.北京:中国计量出版社.1991
    [85] 丁凡.超高压断路器液压操动机构的研究.浙江大学博士学位论文.1994.10
    [86] 翟国富,梁慧敏,郭成花等.极化磁系统永磁力矩特性曲线形状的分析与研究.中国电机工程学报.2002(11):110-114
    [87] 黄松岭.管道磁化的有限元优化设计.清华大学学报(自然科学版).2000,40(2):67-69
    [88] 丁宁.起重永磁吊的磁路设计程序与计算.长春大学学报.2000,10(1):8-10
    [89] 朱红殊.静态永磁磁路的非线性数值计算方法.应用科学学报.1998,16(3):300-304
    [90] 张冠生,陆俭国主编.电磁铁与自动电磁元件.北京:机械工业出版社,1982
    [91] V K Garg, M Masrur, K O PrakahAsante. Applications of solenoids in Automobiles. Technology engine of Ford Motor company. 2001:70-73
    [92] B P Lequesne. Finite Element Analysis of a Constant-Force Solenoid for Fluid Flow Control. IEEE transaction on Industry Applications. Vol. 24, July-August 1988
    [93] 费鸿俊,张冠生.电磁机构动态分析与计算.北京:机械工业出版社.1993
    [94] S B Yoon, J Hur, Y D Chun, S Hyun. Shape Optimization of Solenoid Actuator Using Finite Element Method a) and Numerical Optimization Technique. IEEE Transactions on Magnetics, Vol. 43, September 1997
    [95] G V Bida. Diferential Magnetic Method of Nondestructive Testing and Phase Analysis. Russian Journal of Nondestructive Testing, Vol. 38, No. 1, 2002, pp. 21-35
    [96] R E Clark, D S Smith, P H Mellor etc. Design Optimisation of Moving-magnet Actuators for Reciprocating Electrical-mechanical Systems. IEEE Transactions on Magnetics, Vol 31, No 6, 1995, pp3746-3748
    [97] Y Mitsutake, K Hirata. Dynamic Response of a Linear Solenoid Actuator. IEEE Trans on Magnetics, Vol 33, No 2, 1997, pp 1634-1637
    [98] D Howe. Electromagnetic Actuation Systems-Design and Applications. Published by IEE, Savoy Place, London, UK. 1998
    [99] M Piron, P Sangha, G Reid etc. Rapid Computer-Aided Design Method for Fast-Acting Solenoid Actuators. IEEE Trans on Ind Appl, Vol. 35, No. 5, March 1999,pp 991-999
    [100] K W Lim, N C Cheung, M F Rahman. Proportional Control of a Solenoid Actuator. IEEE Trans on magnetics, 1999,pp 2045-2050
    [101] C.Natale, E Velardi, C.Visone. Identification and compensation of preisach hysteresis models for magnetostrictive actuators. Physica B 2001(306): 161-165
    [102] Robert B.Gorbe, Kirsten A.Morris, David W.L.Wang. Passivity-based stability and control hysteresis in smart actuators. IEEE Transactions on control system technology Vol.9, 2001(1): 5-16
    [103] S.Y.R Hui, J. Zhu. Magnetic Hysteresis Modeling and Simulation using the Preisach Theory and TLM Technique. IEEE Transactions on Magnetics, 1999, 30(4): 123-127
    [104] Lanotte L., Ausanio G, Iannotti V.. Evidence of magnetostrictive influence on magnetic hysteresis behaviour at low temperature. Physics B. 2000(1-30): 150-153
    [105] Voltairas EA., Fotiadis D.I., Massalas, C.V. The role of material parameters and mechanical stresses on magnetic and magnetostrictive hysteresis. Journal of Magnetism and Magnetic Materials. 1999(1-2): 135-143
    [106] Y. Bulent Yildir, Bruce W. Klimpke, Dalian Zheng. A computer program for 2D/RS eddy current problem based on boundary element method. Technical bullet, Integrated Engineering Software Inc
    [107] 陈世欣,周克定.电磁场涡流问题的变分原理.华中理工大学学报.1990,18(4):23-29
    [108] 林鹤云等。有限元分析三维涡流场的A-ψ方法.中国电机工程学报.1993(5)
    [109] Lin D, Zhou P, Fu W N, Z Badics etc. A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis. IEEE Transactions on Magnetics, 2004, Vol.40, No.2, pp.1318-1325
    [110] 林鹤云.三维涡流场的一种迭代解法.中国电机工程学报.1999(11):72-75
    [111] 周广建.变压器横向漏磁的分布与绕组涡流损耗.机电工程.1995(2):31-33
    [112] 邵可然,周克定.用有限元—边界元耦合法解轴对称涡流问题.华中理工大学学报.1989(1):9-13
    [113] Christopher Oliver. A new core loss model for iron powder material. Switching Power Magazine, 2002, spring: 28-30
    [114] 陶旺斌.涡流环及其阻抗计算.南昌航空工业学院学报.1996(2):39-46
    [115] 何德日,贾兆平.长直矩形导体中的涡流分布.益阳师专学报.1996(5):79-81
    [116] 李永平,董欣.Pspice电路原理于实现.国防工业出版社,2004,10
    [117] 何希才,邹炳强.通用电子电路应用400例.电子工业出版社.2005,6
    [118] 何希才,新型集成电路及其应用实例.科学出版社,2003,4
    [119] Bong H K. Design of a highly stable electromagnet power supply. IEEE Transactions on Industrial Electronics, 1992, Vol.39, No.2,pp.149-158
    [120] Lin J S, Chen C L. Buck/boost servo amplifier for direct-drive-valve actuation. IEEE Transactions on Aerospace and Electronic Systems, 1995, Vol.31, No.3, pp.960-967
    [121] 谢文湘.对差动变压器式位移传感器的探讨.中量计报.1994(24):38-44
    [122] 刘元度.电感式线位移传感器参数的计算及其输出特性线性度的改善.传感器技术.1989(3):41-44
    [123] 张裕俚,李继承.高精度差动变压器式位移传感器.仪表技术与传感器.1994(2):19-21
    [124] 吕国强,付辉.差动变压器式位移传感器的三次设计.合肥工业大学学报.1998(3):43-48
    [125] 方志宏,黄克强,傅周东.耐高压电涡流式位移传感器的设计和优化.仪表技术与传感器,1998(2):4-6 4.1
    [126] 马小丽,翟小强.几种小位移传感器的性能比较及使用技术探讨.实用测试技术.1999(6):36-38
    [127] Schaevitz product file. http://www.msiusa.com
    [128] Jensen product file. http://www.hf-jensen.com
    [129] Positek product file. http://www.positek.com
    [130] 丁凡,李其朋等.耐高压电涡流位移传感器.发明专利:No.200410053924.4
    [131] 任吉林,林俊明,高春法.电磁检测.北京:机械工业出版社,2000
    [132] 凌保明,诸葛向彬,凌云.电涡流传感器的温度稳定性研究.仪器仪表学报,1994,15(4):342-346
    [133] 方秋华,茅佩,田新启等.电涡流传感器温度漂移的自动补偿.仪器仪表学报,1997,18(2):198-201
    [134] 韩韬,施文康,张玉林.源于温度的电涡流传感器交叉敏感的补偿.仪表技术与传感器,2000(2):10-12
    [135] 丛华,张德魁,赵鸿宾.电涡流传感器温度稳定性研究.清华大学学报(自然科学版),1999,39(10):65-68.
    [136] H. Franz. Circuit and Method for Compensating for Temperature. US Patent: US2004075452.
    [137] 丁凡,李其朋等.电涡流位移传感器的温度补偿方法.发明专利:No.200410053925.9
    [138] G Y Tian, Z X Zhao, R W Baines, N Zhang. Computational algorithms for linear variable differential transformers, lEE Proc. Sci. Meas. Technol, 1997, 144(4): 189-192
    [139] Lidu Huang, Aziz Rahman, W. Donald Rolph, Chris Pare. Electromagnetic finite element analysis for designing high frequency inductive position sensors. IEEE Transactions on Magnetics, 2001, 37(5): 3702-3705
    [140] Eero B, Kari P. Dynamic properties of moving magnet transducers. IEEE Transactions on Magnetics, 1980, 16(2): 468-475
    [141] Frederick W Hintz, James P Bobis. Development of finite element design simulation tool for proximity sensor coils with ferrite cores. IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada, 1997, May: 139-145
    [142] 高燕梅,付文秀.电容三点式振荡电路的研究与SPICE仿真.吉林大学学报(信息科学版),2002,20(2):11-15
    [143] K Diaz de L, A Garcia-Arribas, J M Barandiaran, J Gutierrez. Comparative study of alternative circuit configurations for inductive sensors. Sensors and Actuators A, 2001, 91:226-229
    [144] Ralph M Ford, Robert S Weissbach, David R Loker. A novel DSP-based LVDT signal conditioner. IEEE Transactions on Instrumentation and Measurement, 2001, 50(3): 768-773
    [145] 叶树亮,王克奇.采用场效应管稳幅的高稳定度正弦波信号源.信息技术,2003,27(12):18-20
    [146] 贾静科.基于AD598的差动变压器式位移传感器.传感器世界,2000(9):21-24
    [147] James E Lenz. A review of magnetic sensors.Proceedings of the IEEE, 1990, 78(6):973-989
    [148] 丛华,张德魁,安钢.电涡流传感器动态响应特性研究.传感器技术,1999(9):1-3
    [149] Perry Y L. Dynamic Redesign of a Flow Control Servo-valve Using a Pressure Control Pilot. Proceedings of ASME International Mechanical Engineering Congress and Exposition., New York, USA, November 2001:11-16
    [150] R K Schneidler. The hazy line between servo and proportional valves. Hydraulics & Pneumatics. 2001(11):35-36
    [151] D DeRose. Proportional and Servo Valve Technology. Fuid Power Journal. March/April 2003:8-12
    [152] S M Wang, Takashi Miyano, Mont Hubbard. Elecromagnetic Field Analysis and Dynamic Simulation of a Two-Valve Solenoid Actuator. IEEE Trans on Magnetics, Vol 29, No 2, March 1993, pp 1741-1746
    [153] Song Jae-Bok, Byun Kyung-Seok. Throttle actuator control system for vehicle traction control. Mechatronics. 1999(5): 477-495
    [154] Mokhtarzadeh-Dehghan M. M, Ladommatos N., Brennan T. J.. Finite element analysis of flow in a hydraulic pressure valve. Applied Mathematical Modelling. 1997(7): 437-445
    [155] 田奇.直喷式柱型液压阀流体稳态力的研究.中国机械工程.2002(13):1102-1105
    [156] 郭晓娥,赵金录.瞬态液动力对液压系统中电磁换向阀安全运行的影响.矿业安全与环保.2000(7):27-29
    [157] 付永领,裴忠才等,新型直接驱动伺服阀的瞬态液动力分析.机床与液压.1999(1):23-24
    [158] 付永领,宋国彪等.新型直接驱动伺服阀的稳态液动力分析.机床与液压.1998(6):18-20
    [159] 纪远升,穆希辉.新型锥式电磁换向阀结构特点及液动力.机床与液压.1996(5):30-33
    [160] 张慧兰.瞬态液动力对系统设计的影响.液压与气动.1996(3):23-24
    [161] Bora Eryilmaz, Bruce H. Wilson. A Unified Model of a Proportional Valve. Proceedings of the ASME Fluid Power System and Technology, 1999.
    [162] Shahram Tafazoti, Clarence W. de Silva, Peter D. Lawrence.Tracking Control of an Electrohydraulic Manipulator in the Presence of Friction. IEEE Transactions on Control Systems Technology, Vol. 6, No. 3, MAY 1998:401-411
    [163] William S. Owen, Elizabeth A. Croft, The Reduction of Stick-Slip Friction in Hydraulic Actuators. IEEE/ASME Transactions on Mechatronics, Vol. 8, No. 3, SEPTEMBER 2003:362-371
    [164] AMESim handbook, 2005. http://www.amesim.com
    [165] Li Ke, Mannan M.A., Xu Mingqian. Electro-hydraulic proportional control of twin-cylinder hydraulic elevators. Control Engineering Practice Volume. 2001(4): 367-373
    [166] H Lausch, A Feuser. Development and Optimization of Industrial Proportional Pressure-Relief Valves. International Exposition for Power Transmission and Technical Conference. April 2000
    [167] 王广林,陶崇德,邵东向等.伺服阀阀口棱边几何精度的研究.哈尔滨工业大学学报.1999,31(5):120-122
    [168] 任光融,张振华,周永强.电液伺服阀制造工艺.北京:宇航出版社,1988
    [169] 王广林.伺服阀阀口加工质量自动检测与控制的研究.哈尔滨工业大学博士学位论文.2000,12.
    [170] Virvalo T. Modeling hydraulic position srvo realized with commercial components. 3rd International Conference on Fluid Power Transmission and Control, 1993, Zhejaing University, Hanghzou
    [171] H.Kuwano, T.Matsushita. Observers for direct drive servovalves. Journal of Hydraulics & Pneumatucs. 1984(4): 15-19
    [172] 张胜昌.高速电磁开关阀性能分析与优化设计的基础研究.上海交通大学博士学位论文,2002,7
    [173] 雷天觉主编.液压工程手册.北京:机械工业出版社.1990
    [174] 阮健.电液(气)直接数字控制技术.杭州:浙江大学出版社.2000
    [175] 王成焘.现代机械设计-思想与方法.上海:上海科学技术文献出版社.1999,12