生物材料冷冻特性及冻融传递现象机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以生物组织冷冻特性为对象,通过可视化实验、微CT扫描重构实验和显微PIV实验方法,探讨生物组织冷冻特性,总结影响冷冻过程及生物组织变化的因素,分析水分形态和内部结构对于生物组织冷冻特性的影响。进一步结合热科学的理论和研究方法,重点考察核化过程、冰晶界面特性、晶枝间的竞争现象以及界面附近的流动形态等基础现象,进行深入基础理论探析,全面了解和认识生物多孔介质冷冻过程中的传递现象及其机理。
     生物材料冷冻中冰晶产生生长及冻融过程后生物活性的维持,都与生物组织中水分形态及分布有密切联系,而生物组织内部结构影响了水分分布,并且冷冻过程中本身的变化,也会对冰晶产生及界面附近的传递现象产生影响。水分存在形态与生物组织的内部结构存在相互影响的耦合效应。
     剥离出水分形态和组织结构两个影响生物组织冷冻特性的因素,利用预置骨架结构进行模拟实验来简单讨论组织结构对溶液冷冻特性的影响,以盐溶液来对水分形态的影响进行模拟研究,着重实验观察探讨冰晶的生长特性。
     将统计力学涨落理论引入过冷溶液核化理论中,引进核化特征长度定义,该概念一方面代表了系统内产生核化点的平均分布尺度,另一方面也是对系综内核化能力的衡量。借助核化几率的推导、计算,可以对一定体积的封闭溶液系统在降温过程中的核化几率变化有更为清晰的认识,并对细胞内冰晶产生这一影响生物组织冷冻损伤的重要过程进行讨论。
     结合实验现象总结溶液单向冷冻过程中冰晶生长和界面形态发展特性,分析其中的控制因素和产生机理。定义冰晶界面发展过程的三个阶段,通过对界面区扰动发展、浓度分布的分析说明界面规则形态的形成和维持。总结了界面发展过程中因为内部或者外界扰动导致的晶枝间竞争现象,分析其驱动力。
     分析探讨界面区域微细流动对冰晶界面附近传递过程的影响,给出晶枝间区域存在的热毛细流动理论表达式,讨论了流动对于界面生长和传递过程的影响,数值计算与荧光显微PIV实验观测结果的比较显示出良好的一致性。
A series of experimental observations, including visualization experiments, micro-CT scanning experiments and micro-PIV experiments, was conducted to investigate freezing/thawing characteristics of bio-tissues and materials, and particularly an emphasis was addressed on exploring and understanding the fundamental mechanisms of transport phenomena associated with liquid-solid phase transition. Water morphology and bio-tissue/material inner structure were considered to be the most important factors affecting the fundamental phenomena and transport processes. Incorporating with classical theories and methods in thermal science, characteristics of the nucleation, solidification interface and ice crystal growing competition were discussed comprehensively.
     Ice crystal growth and the survival of cells in tissues and/or bio-materials were strongly influenced by water morphology and distribution which were originally decided by the tissues structure. Furthermore, the coupling effects of water distribution and tissue structure would also have important influence on freezing/thawing process.
     For evaluating their own influences on the freezing/thawing and associated transport phenomena, a technique was introduced to separately investigate impact of water morphology and structure. Visualization experiment was conducted to observe directional freezing of solutions with solid frames accounting for the effect of structure. The focus was addressed on observing the characteristics of ice crystal growth and the effects of solution properties.
     Classical nucleation theory was revisited as long with fluctuation theory for analyzing the freezing nucleation in bio-tissues. A concept, nucleation character length was introduced and defined as the size of average energy space a nuclei needed. This proposed concept represents both the averaged spatial distribution of nuclei generated and the nucleation capability in an ensemble. With computation of nucleation probability, the change of nucleation probability in an enclosed solution system was clearly described, and a comprehensive discussion was conducted on intracellular ice formation which significantly influenced the tissue damage in freezing process.
     Characteristics of crystal growth and interfacial morphology in a directional freezing process were theoretically discussed together with experiment results. From the experimental observations the ice front development was characterized as three periods during freezing of aqueous sodium chloride solutions. The coupling effect of concentration distribution with temperature profile near the interface was explored to have critical importance in forming and maintaining the regular interfacial morphology. Particularly, the growing competition phenomena between crystals in the interfacial region were high dependent upon the characteristics of both concentration and temperature profiles. Actually any disturbance of these two factors inside or outside the interfacial region would induce non-uniform crystal growth and growing competition. The concentration-dependent liquid subcooling was found to be a main driving force of the competition phenomena.
     Both natural convection and thermocapillary flow in the interface zone were simulated to explore their importance in this kind of freezing/thawing. The flow can significantly alter the transfer process and influence ice crystal growth. The numerical data was compared with experiment results and quite reasonably consistent with each other.
引文
[1]林瑞泰,多孔介质传热传质引论,科学出版社,北京,1995.
    [2] Chu, C. P., Lee, D. J. and Chang, C. Y., Thermal Pyrolysis Characteristics of Polymer Flocculated Waste Activated Sludge, Wat. Res., 35, 2001, 49-56.
    [3] V.J. Lunardini, Heat transfer with freezing and thawing, Elsevier, Amsterdam, 1991
    [4] Derek B. Ingham, Ioan Pop, Transport Phenoment In Porous Media, Elsevier Science, 1998.
    [5] Virgil. J. Lunardini, Heat Transfer in Cold Climates, Van Nostrand Reinhold, New York, 1981.
    [6]华泽钊,食品冷冻冷藏原理与设备,机械工业出版社,1999.
    [7]李广武,郑从义,唐兵.低温生物学,湖南科学技术出版社,1998.
    [8]华泽钊,任禾盛,低温生物医学技术,科学出版社,1994.
    [9]王补宣,热物理和热工研究开发的进展与机遇.物理与工程, 2000, 10(6):14.
    [10] Bronfenbrener, Leonid; Korin, Eli, Two-phase zone formation conditions under freezing of porous media, Journal of Crystal Growth, 198-199, 1999, 89-95.
    [11]刘静,王存诚.生物传热学,科学出版社,1997.
    [12] Gwo, J.P.; Jardine, P.M.; Wilson, G.V.; Yeh, G.T. A multiple-pore-region concept to modeling mass transfer in subsurface media. Journal of Hydrology. 164 (1-4), 1995, pp. 217-237
    [13] Chu C.P., Lee D.J., Sludge Treatment (I): Introduction to the Characteristics of Floc, Bulletin College Engng., Natl. Taiwan Univ., Vol. 81, pp 47-58, 2001
    [14] Vesilind P. A., Treatment and Disposal of Wastewater Sludge. Ann Arbor, Mich., USA, 1979.
    [15] Lee D.J., Hsu Y.H. Fast freeze/thaw treatment on waste activated sludge: floc structure and sludge dewaterability. Environment Science and Technology, 1994, 28: 1444.
    [16] Lu, G. Q., Low, J. C. F., Liu, C. Y. and Lua, A. C. Surface area development of sewage sludge during pyrolysis. Fuel, 74(3), 1995, 344-348.
    [17] Mazur P. Cryobiology: The Freezing of biological systems. Science, 168, 1970, 939-949.
    [18] Jens O. M. Karlsson and Mehmet Toner. Long-term storage of tissues by cryopreservation: Critical Issues. Biomaterials, 17, 1996, 243-256.
    [19]华泽钊,低温生物医学与热物理,物理与工程. 11 (6), 1-4, 2001.
    [20] Rubinsky B., A. Arav, J. S. Hong, and C. Y. Lee, Freezing of mammalian livers with glycerol and antifreeze proteins, Biochem. Biophys. Res. Commun., 200, 1994,732-741.
    [21] Fahy G. M., MacFarlane D. R., Angell C.A., Meryman H.T., Vitrification as an approach to cryopreservation. Cryobiology, 1984, 21, 1407-426.
    [22] Tiller, William A., The science of crystallization : microscopic interfacial phenomena / William A. Tiller. Cambridge University Press, 1991.
    [23] Boris Rubinsky, Microscale heat transfer in biological systems at low temperatures, Microscale energy transport, Chang-Lin Tien, Arunava Majumdar, Frank M. Gerner, Washington, D.C. : Taylor & Francis, c1998
    [24]陈剑波,柔松可变形多孔介质干燥特性.清华大学硕士论文. 2003.
    [25]华泽钊,低温医学的一些新问题研究,制冷技术,vol.4, 2001,.
    [26] Felix Franks, Biophysics and biochemistry at low temperatures, Cambridge University Press, New York 1985
    [27]陶乐仁,华泽钊,生物与食品材料低温保存中的玻璃化方法,制冷学报,vol.4, 19-22, 1997
    [28] M. Kaviany, Principles of heat transfer in porous media, New York : Springer-Verlag, c1991
    [29] Lovelock, J. E., The mechanism of the protective action of glycerol against haemolysis by freezing and thawing, Biochim, Biophys.Acta, vol.17,pp.28-36,1953
    [30] Mazur,.P., Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing, J.Gen. Physiol, vol.47,pp.347-369,1963
    [31] Mazur,.P., S.P.Leibo, J. Farrant, H. H. Chu, M. G. Hanna, and L.M. Smith, Interaction of cooling rate, warming rate and protective additives on the survival of frozen mammalian cells, The Frozen Cell .J. and A,Churchill, London, 1970
    [32] Mazur,.P., Cryobiology: The freezing of biological systems, Science, vol. 168, pp. 939-949, 1970
    [33] Mazur,.P., Freezing of living cells: Mechanisms and implications, Am. J.Physiol.,vol.247,pp.C125-C142,1984
    [34] Turnbull, D., Under what conditions can a glass be formed?, Contemp. Phys., vol.10,pp.473-488, 1969
    [35] Erik J. Woods,a James D. Benson,b Yuksel Agca,b and John K. Critser, Fundamental cryobiology of reproductive cells and tissues, Cryobiology, vol.48,pp. 146–156 , 2004
    [36] John C. Bischof, QUANTITATIVEMEASUREMENT AND PREDICTION OF BIOPHYSICAL RESPONSE DURING FREEZING IN TISSUES, Annu. Rev. Biomed. Eng. 02:pp257–288, 2000
    [37] J. 0. M. Karlsson and E. G. Cravalho, A model of diffusion-limited ice grow inside biological cells during freezing, J. Appl. Phys. 75 (9), 4442-4455, 1994
    [38]赵刚,刘志峰,杨锐,程曙霞,冷冻过程中细胞内水非平衡相变的研究, vol.65(4), pp295 2007
    [39] Ramachandra V. Devireddy, David J. Smith, and John C. Bischof, Mass Transfer During Freezing in Rat Prostate Tumor Tissue, AIChE Journal Vol. 45, No. 3, p639-654, 1999
    [40] J.P. Acker, J.A.W. Elliott, L.E. McGann, Intercellular ice propagation: experimental evidence for ice growth through membrane pores, Biophys. J. 81 (2001) 1389–1397
    [41] P. Mazur, The role of cell membranes in the freezing of yeast and other cells, Ann. NY Acad. Sci. 125 (1965) 658–676.
    [42] P. Mazur, Principles of cryobiology, in: B.J. Fuller, N. Lane, E.E. Benson (Eds.), Life in the Frozen State, CRC Press, Boca Raton, 2004, pp. 3–65.
    [43] F.W. Kleinhans, J.F. Guenther, D.M. Roberts, Peter Mazur, Analysis of intracellular ice nucleation in Xenopus oocytes by differential scanning calorimetry, Cryobiology, vol.52, 128–138, 2006
    [44] Mehmet Toner, Ernest G. Gravalho, Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells, J. Appl. Phys. 67(3) 1582-1593, 1990
    [45] James F. Guenther, Shinsuke Seki, F.W. Kleinhans, Keisuke Edashige, Daniel M. Roberts, Peter Mazur, Extra- and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes, Cryobiology 52, 401–416, 2006
    [46] B. Herrera, M.M. Desco, G. Eisenberg, P. Garc Barreno, and J.F. Del Ca~nizo, Role of elastic fibers in cooling-induced relaxation, Cryobiology 44, 54–61, 2002
    [47] Gemma Pascual et al., New approach to improving endothelial preservation in cryopreserved arterial substitutes, Cryobiology 48,62–71,2004
    [48] D.E. Pegg, M.C. Wusteman, S. Boylan, Fractures in cryopreserved elastic arteries, Cryobiology 34, 183–192, 1997
    [49] Arne E. Nielsen. Kinetics of precipitation, Oxford : Pergamon Pr., 1964
    [50] Peter V. Hobbs,ice physics, Oxford : Clarendon Press, 1974
    [51] Howard Reiss, The kinetics of phase transition in binary systems, The journal of chemical physics, vol.18, 840-848, 1950
    [52] Frenkel, Kinetics theory of liquids, p.488. Oxford University Press, 1946
    [53] Turnbul, Fisher, Rate of nucleation in condensed systems, J. chem. Phys. 17,71-3 1949
    [54] J. W. Gibbs, The Scientific Papers of J. Willard Gibbs, Dover, New York,1961.
    [55] M. Volmer and A. Weber, Keimbildung in ubersaqttigtenGebilden, Z. Phys. Chem. 119, 227, 1926
    [56] L. Farkas, Z. Phys. Chem. 125, 236, 1927
    [57] R. Becker and W. D?ring, Ann. Phys. 24, 719, 1935.
    [58] K. F. Kelton, Crystal Nucleation in Liquids and Glasses, Academic, Boston, Vol. 45, pp. 75–177, 1991
    [59] C. Valeriani, E. Sanz, D. Frenkel, Rate of homogeneous crystal nucleation in molten NaCl, THE JOURNAL OF CHEMICAL PHYSICS 122, 194501, 2005
    [60] C. Flageollet-Daniel, J. P. Garnier, and P. Mirabel, J. Chem. Phys. 78, 2600 , 1983.
    [61] Tomá? Němec, Franti?ek Mar?ík, Binary nucleation of water and sodium chloride, THE JOURNAL OF CHEMICAL PHYSICS 124, 044509, 2006
    [62] G. Narsimhan and E. Ruckenstein, A new approach for the prediction of the rate of nucleation in liquids, J. Colloid Interface Sci. 128, 549-565, 1989.
    [63] E. Ruckenstein and B. Nowakowski, A kinetic theory of nucleation in liquids, J. Colloid Interface Sci. 137, 583, 1990.
    [64] Yuri Djikaev, Eli Ruckenstein, Kinetic theory of binary nucleation based on a first passage time analysis, THE JOURNAL OF CHEMICAL PHYSICS 124, 124521, 2006
    [65] Yannis Drossinos1, and Panayotis G. Kevrekidis, Classical nucleation theory revisited, PHYSICAL REVIEW E 67, 026127, 2003
    [66]李如生.平衡与非平衡统计力学[M ].北京:清华大学出版社, 1995.
    [67] Mihalis Lazaridisy and Yannis Drossinosz, Energy fluctuations in steady-state binary nucleation, J. Phys. A: Math. Gen. 30 , 3847–3865, 1997
    [68]曾丹苓,敬成君.利用涨落理论确定液体的极限过热度[J ].中国科学(A辑), 25 (10) : 1075-1081, 1995
    [69]刘朝,明向军,曾丹苓,.液体理论极限过热度的确定[J ].工程热物理学报, 18 (3) : 265- 269, 1997
    [70]林文胜,顾安忠,利用涨落理论确定液体均匀核化速率[J ].上海交通大学学报,34(9):1167-1170,2000
    [71] Massimo Conti, Thermal and chemical diffusion in the rapid solidification of binary alloys, PHYSICAL REVIEW E VOL.61, pp642-650 , 2000
    [72] V. Ayel, O. Lottin, M. Faucheux, D. Sallier, H. Peerhossaini, Crystallisation of undercooled aqueous solutions: Experimental study of free dendritic growth in cylindrical geometry, International Journal of Heat and Mass Transfer, 49, 1876–1884, 2006
    [73] Noriaki Kubota,. J.W. Mu|lin, A kinetic model for crystal growth from aqueous solution in the presence of impurity, Journal of Crystal Growth 152 (1995) 203-208
    [74] Takehiko Gonda, Tadanori Sei, The inhibitory growth mechanism of saccharides on the growth of ice crystals from aqueous solutions, Progress in Crystal Growth andCharacterization of Materials, 51, 70-80, 2005
    [75] M. Song, R. Viskanta, Lateral freezing of an anisotropic porous medium saturated with an aqueous salt solution, International Journal of Heat and Mass Transfer, 44, 733-751, 2001
    [76] C. Weiss, N. Bergeon, N. Mangelinck-No¨el, B. Billia, Effects of the interface curvature on cellular and dendritic microstructures, Materials Science and Engineering A, 413–414, 296–301, 2005
    [77] S. Bottin-Rousseau, A. Pocheau1 Self-Organized Dynamics on a Curved Growth Interface, PHYS ICAL RE V IEW LETTERS, vol.87(7), 076101, 2001
    [78] T. B?rzs?nyi, T. Tóth-Katona,á. Buka, and L. Gránásy, Dendrites Regularized by Spatially Homogeneous Time-Periodic Forcing, PHYSICAL REVIEW LETTERS, VOLUME 83, pp2853-2856, 1999
    [79] Hendrik C. Kuhlmann, Thermocapillary Convection in Models of Crystal Growth, Springer, Germany, 1999
    [80] M. Ouriemi, P. Vasseur, A. Bahloul, L. Robillard, Natural convection in a horizontal layer of a binary mixture, International Journal of Thermal Sciences 45, 752–759, 2006
    [81] Norihiro Matubayasi, Hideyuki Matsuo, Kazuo Yamamoto, Shin-ichiro Yamaguchi, and Asako Matuzawa, Thermodynamic Quantities of Surface Formation of Aqueous Electrolyte Solutions I. Aqueous Solutions of NaCl, MgCl2, and LaCl3, Journal of Colloid and Interface Science 209, 398–402, 1999
    [82] Norihiro Matubayasi, Shin-ichiro Yamaguchi, Kazuo Yamamoto, and Hideyuki Matsuo, Thermodynamic Quantities of Surface Formation of Aqueous Electrolyte Solutions II. Mixed Aqueous Solutions of NaCl and MgCl2, Journal of Colloid and Interface Science 209, 403–407, 1999
    [83] Norihiro Matubayasi, Kazuo Yamamoto, Shin-ichiro Yamaguchi, Hideyuki Matsuo, and Norihiro Ikeda, Thermodynamic Quantities of Surface Formation of Aqueous Electrolyte Solutions III. Aqueous Solutions of Alkali Metal Chloride, Journal of Colloid and Interface Science 214, 101–105, 1999
    [84] H.C. Kuhlmann, Ch. Nienhuser, Dynamic free-surface deformations in thermocapillary liquid bridges, Fluid Dynamics Research, 31, 103–127, 2002
    [85] V. Luengo, J. Meseguer, I.E. Parra, Experimental study of the stability of long axisymmetric liquid bridges between solid supports at different temperatures, Experiments in Fluids, 34, 412–417, 2003
    [86] S. Tanaka, H. Kawamura, I. Ueno, Flow structure and dynamic particle accumulation in thermocapillary convection in a liquid bridge, PHYSICS OF FLUIDS 18, 067103, 2006
    [87] Suguru Shiratori, Hendrik C. Kuhlmann, Taketoshi Hibiya, Linear stability of thermocapillary flow in partially confined half-zones, PHYSICS OF FLUIDS 19, 044103,2007
    [88] D. Schwabe, Xiaodong Da, A. Scharmann, Unstable flow and solidification speed due to the interaction of thermocapillary and solutocapillary forces in directional solidification, Journal of Crystal Growth, 166, 483-488, 1996
    [89] J.S. Walker, P. Dold, A. Cr€oll, M.P. Volz, F.R. Szofran, Solutocapillary convection in the float-zone process with a strong magnetic field, International Journal of Heat and Mass Transfer, vol.45, 4695–4702, 2002
    [90] T.P. Lyubimova, R.V. Skuridin, I.S. Faizrakhmanova, Thermo- and soluto-capillary convection in the floating zone process in zero gravity conditions, Journal of Crystal Growth, 303, 274–278, 2007
    [91] William A. Tiller, The science of crystallization: microscopic interfacial phenomena, Cambridge [England] : Cambridge University Press, 1991.
    [92] Shan Liu, , P. Mazumder, R. Trivedi, A new thermal assembly design for the directional solidification of transparent alloys, Journal of Crystal Growth 240 (2002) 560–568
    [93] H. Jamgotchian, N. Bergeon, D. Benielli, P. Voge, B. Billia, R. Gu′erin, Localized Microstructures Induced by Fluid Flow in Directional Solidification, Phys. Rev. Lett. 87166105, 2001
    [94] SKYSCAN 1074 Portable Micro-CT Scanner V2.1 Instruction Manual, Skyscan n.v. Belgium
    [95]孙艳飞,亚微米荧光粒子显微镜下的三维追踪定位,清华大学硕士学位论文, 2006
    [96] R Luo, Y. F. Sun, X. F. Peng, X. Y. Yang. Tracking sub-micron fluorescent particles in three dimensions with a microscope objective under non-design optical conditions. Meas. Sci. Technol. , 2006, 17: 1358~1366
    [97]翟中和,王喜忠,丁明孝,细胞生物学[M],北京,高等教育出版社,2000
    [98] T. Tao, X.F. Peng, D.J. Lee, J.P. Hsu. Micromechanics of wastewater sludge floc:Force–deformation relationship at cyclic freezing and thawing. Journal of Colloid and Interface Science 298 (2006) 860–868
    [99] T. Tao, X.F. Peng, D.J. Lee, Interaction betweenwastewater-sludge floc and moving ice front. Chemical Engineering Science 61 (2006) 5369– 5376
    [100] Nyquist, Talanquer, and Oxtoby. Density functional theory of nucleation, J. Chem. Phys., 1995, 103:1175-1179
    [101] J.D. Hoffman, Thermodynamic driving force in nucleation and growth process, The Journal of Chemical Physics 1958, 29: 1192-1193
    [102] E.R. Buckle, Studies on the freezing of pure liquids II, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1961, 189-196
    [103]刘春元热毛细对流的研究及其数值模拟,河北工业大学硕士学位论文, 2003