基于滚动轴承接触问题的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接触是普遍存在的力学问题,由于其问题的复杂性,它一直是工程学与力学两门学科所共同面临的难题。对于多体接触,即使是弹性光滑接触问题,由于其边界非线性,采用数值方法分析求解也有很大的难度。正是由于该问题的普遍性和复杂性,也使得该问题的计算分析显得极为重要。
     本文以某型号固体火箭发动机轴承类接头多体接触的关键问题为研究背景,基于滚动轴承,采用接触问题的非线性有限元方法,在额定载荷下进行全尺寸三维多体非线性有限元分析。
     作为滚动轴承工程学基础的轴承力学分析与轴承的设计和应用技术密切相关。而作为评定滚动轴承实际工作状态下的各项技术因素如负荷能力、疲劳寿命、变形与刚度、振动与噪声等都与这种弹性接触问题有着密切的联系。通过寻求合适的数值计算方法并借助高速电子计算技术对这种接触问题进行局部乃至整体的接触应力和弹性变形分析求解,将成为滚动轴承及轴承类零部件进行优化设计和可靠性分析的关键。
     传统计算轴承的方式是采用力平衡方法及Hertz接触理论。由于这类问题受负荷作用情况复杂,且Hertz接触理论的前提假设在简单形状的单体规则体接触,在半无限空间的边界条件下,对于多体及三维复杂几何及载荷边界条件,其解析解尚未建立。
     本研究在进行轴承分析之前,先根据Hertz接触理论的解析解,验证滚动体与钢板有限元接触模型的分析结果,同时它也是某型号固体火箭发动机喷管接头单项预研的基础。然后分别对二维和三维接触模型的分析,进行边界条件、接触参数及单元尺寸、形状、离散网格方式的预测,以确立适合滚动轴承全尺寸三维有限元接触分析的有限元模型,从而得到更为精确的计算分析结果。
     对61801深沟球轴承,在其接触角为零,不考虑游系的情况下,分别对局部和整体进行静态有限元计算分析。基于有限元分析软件ANSYS,建立了滚动轴承接触分析的三维有限元模型,对轴承的接触问题进行了数值模拟,得到了轴承承载过程中的应力和变形分布趋势。通过与Hertz理论计算结果对比分析,两者结果比较接近。在此基础上进行了某型号固体火箭发动机喷管接头的三维弹性接触应力及摩擦分析( f =0.003),其结果有待于实验进一步验证。
     滚动轴承及某型号全轴摆动喷管接头处接触问题的计算分析结果,为轴承的动力学仿真及高性能材料的某型号固体火箭发动机类轴承接头的接触问题的进一步分析研究奠定了理论基础。
The contact is a universal mechanics question, as a result of its complexity; it is always a difficult problem to both the engineering and mechanics. Regarding polysome contact, even if it is the elastic smooth contact question, as a result of its boundary non-linearity, it is very difficulty to analysize with numerical method. Just for its universality and complexity, it appears extremely important.
     In this article taking the attachment polysome contact key question of bearing which is used for some model solid propellant engine as the research background, based on the rolling bearing, applying the non-linear contact question in finite element method, the whole size 3D polysome non-linear finite element analysis under the work load is carried on.
     As the basis of engineering theory of the Bearings, the mechanics analysis of the Bearing is closely involved in the Bearings' design and application technical. Several main technical factors used to evaluate the practical working states of the Bearing such as capacity to load, fatigue life, tolerance life, deformation and rigidity, vibration and noise should be related to the contact problem. It’s a key for the optimization design and reliability analysis of the Bearing to calculate and analyze the partial or entire contact stress and elastic deformation through seeking accurate algorithm approach based on the computer.
     Static force balancing and Hertz contact theory are adopted to calculate the bearing; however it is difficult to obtain the accurate stiffness value due to the complicated loading of the bearing. In addition Hertz contact theory is only applied to the simple shape and semi-infinite boundary condition. Therefore the penalty method has been adopted here to solve the contact problem with the consideration of large deformation and the friction. The finite element method also has been employed to establish and analyze the bearing model built with ANSYS to estimate the relative displacement of inner and outer ring and bearing stiffness under various boundary conditions.
     According to Hertz contact theory, its analysis result can be applied to verify the contact model of a steel ball and a plate in numerical techniques. Then the optimum contact analysis model is built for finite element in elementary mesh way to estimate the normal stiffness. The result of this investigation proofs the finite element method is more suitable.
     Based on the software of ANSYS, the finite element contact model of the bearing 61801 was established. The bearing of contact deform process was numerically simulated with ANSYS. The direction of the stress and strain of the bearing contact was founded. Compared with the results which were calculated by Hertz theory, there were nearly equal. That means the finite element analysis is feasible. And the simulation applied precondition for the dynamic study in theory. Based on which the contact stress and the friction analysist to some solid propellant engine nozzle contacts is carried on, and the result waits to be confirmed furtherly by experiment. The computation and analysis of the contact question to the bearing and this model nozzle attachment place has laid the rationale for the bearing dynamics simulation and the further analysis of attachment contact question to the bearing which is used for some solid propellant engine and made with high performance materiall.
引文
[1] 王时任,周都刚,彭文生.轴承基础知识. [M]上海科学技术出版社出版.1983.5
    [2] 郭敦霖,谢志强.国外轴承工业概况.[M] 机械工业部第十设计研究院.机械工业科技情报课题92100302 号
    [3] H. Hertz, “ Uber die Beruhrung Fester Elastischer Korrper ( On the contact of elastic solids),” [M]J. Reine Angew. Math., 92, 156-171,1882.
    [4] K. L. Johnson, “Contact Mechanics,” [M] Cambridge University Press, London, 1985.
    [5] 俞茂宏,工程强度理论.北京:高等教育出版社,1998
    [6] 濮良贵,级名刚.机械设计.高等教育出版社,1996
    [7] P. A 别捷尔曼,Б.В 茨伯金.滚动轴承手册.北京:机械工业出版社,1966
    [8] Hertz H. Miscellaneous papers on the contact of elastic solids. Translation by Jones D E. London: Mc. Millan, 1896
    [9] Galin L A. Contact problems in theory of elasticity. (in Russian). Moscow: Gostekhizdat, 1953. English translation. ed. by Ⅰ N Sneddon Releigh: North Carolina State College. Dept. of mathematics, 1961
    [10] Gladwell G M L. Contact problems in the classical theory of elasticity. Sijthoff and Noordhoff, 1980
    [11] Johnson K L. One hundred years of Hertz contact. Proc. Inst. Mech. Engrs, 1982, 196: 363~378
    [12] Kalker J J. A survey of the mechanics of contact between solids bodies. ZAMM, 1977, 57: 3~14
    [13] L. E. Goodman. Contact Stress Analysis of Normally Loaded Rough Spheres. Joumal of Mechanics, 1962, 515~522
    [14] 冯登泰.磨耗型轮轨弹塑性机静力接触的解析解.铁道学报,1988 ,10(2):1~13
    [15] A. Ekberg. H. Bjamched, R. Lunden. A Fatigue Litc Model for General Rolling Contact with Application to Wheel/Rail Damage, Fatigue Fract. Engng Mater ,1995, 18(10): 1189~1199
    [16] 雷任静 颜秉善 减缓轨头接触疲劳损伤的对策研究 铁道学报 1992,13(2):5~9
    [17] R. Smallwood. J. C. Sinclair, KJ. Sawley. An Optimization Technique to Minimize Rail Contact Stresses. Wear, 1999, (144): 373~384
    [18] A.P.Boresi, O. M. Sidebottom F .D.Seely, J.O. Smith. ADVANCED MECHANICS OF MATERIALS. THIRD EDITION. John Wiley and Sons, 1978
    [19] 加林.弹性理论的接触问题.北京:科学出版社,1958
    [20] G. M. L. Glabwell,范天佑译.经典弹性理论中的接触问题.北京:北京理工大学出版社,1991
    [21][英]K.L.Johnson 著.徐秉业,罗学富,刘信声等译.接触力学[M].高等教育出版社.1992.5
    [22] 孔祥安,江晓禹,金学松. 固体接触力学[M]. 北京:中国铁道出版社,1999
    [23] 冯登泰.接触力学的发展概况.力学进展,1987,4
    [24] S. K. Chan, and I. S. Tuba, “A finite element method for contact problems of solid bodies-part I: Theory and validation; part II: Application to turbine blade fastenings,” [J]International Journal of Mechanical Sciences, 13, pp. 615-625; pp. 627-639, 1971.
    [25] K. J. Bathe, and A. Chaudhary, “A solution method for planar and axisymmetric contact problems,” [M] International Journal for Numerical Methods in Engineering, 21, pp. 65-88, 1985.
    [26] H. Parisch, “A consistent tangent stiffness matrix for three-dimensional non-linear contact analysis,” [M] International Journal for Numerical Methods in Engineering, 28, pp. 1803-1812, 1989.
    [27] M. Bartos, and Z. Kestránek, “Numerical solution of the contact problem. Application to a simple model of the human hip joint,” [M] Journal of Computational and Applied Mathematics, 63, pp.439-447, 1995.
    [28] S. H. Ju, J. J. Stone, and R. E. Rowlands, “A new symmetric contact element stiffness matrix for frictional contact problems,” [M] Computers & Structures, 54(2), pp. 289-301, 1995.
    [29] R. E. Jones, and J. M. Solberg, “A novel finite element formulation for frictionless contact problems,” [M] International Journal for Numerical Methods in Engineering, 38, pp. 2603-2617, 1995.
    [30] M. Sassi, and M. Desvignes, “A seminumerical method for three-dimensional frictionless contact problems,” [M] Mathl. Comput. Modelling, 28(4-8), pp. 413-425, 1998
    [31] D. Barlam, and E. Zahavi, “The reliability of solutions in contact problems,” [M] Computers & Structures, 70, pp. 35-45, 1999.
    [32] 冯登泰.磨耗型轮轨弹塑性静力接触的解析解.铁道学报,1988,10(2):1~13
    [33] 雷腾.轮轨接触应力的计算和分析.中国铁道科学,1985,6 ( l ):53~65
    [34] Paul B , Hashemi J. Rail-wheeigeometry geometry associated with contact stress analysis. Repo- rt no. FRD / ORD - 78 / 41, Sept. 1979, 1~13
    [35] 颜秉善.钢轨伤损及换轨周期的预侧.铁道学报,1988,10 ( 2 ):86~95
    [36] Lawn BR , Wiederhorn SM . Contact Fracture in Brittle Materiais, Contact Mechanics and Wear Rail / Wheel System , Waterloo USA : University of Waterloo PreSS,1982,133~146
    [37] 魏先祥.轮轨静接触时的应力状态.铁道学报,1991,13 ( 2 ):1~11
    [38] 张焱,孔祥安,金学松等.轮轨三维弹塑性接触应力的算法研究.力学与实践, 2000,22(1): 23~27
    [39] 张焱.铁路轮轨接触应力研究:[学位论文]. 四川:西南交通大学, 1998
    [40]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社.1990:14-125
    [41]G.M.I.Gladwell 著,范天佑译.经典弹性理论中的接触问题[M].北京.北京大学出版社.1991:68-106
    [42]G.Lundberg&A.Palmgren:Dynamic Capacity of Rolling Bearings [M]. Jngeniors-vetenskademiens Nr.196(1947)
    [43] [日]冈本纯三.《球轴承的设计计算》[M]黄志强译、罗继伟校.机械工业出版社.2003.3
    [44] 罗继伟.滚动轴承受力分析及其进展.[J].轴承.2001.9
    [45] 吴又南,刘双发.新编滚动轴承应用技术手册. [M]上海科学技术出版社 1997.3
    [46] Harris T.A. Rolling Bearing Analysis. [M]. John Wiley and Sons,1984
    [47] [英]F.T.巴威尔.轴承系统——理论和实践.西安交通大学机械原理及机械零件教研室译. [M]机械工业出版社.1983.2
    [48] 万长森.滚动轴承的分析方法. [M]机械工业出版社 1987.3
    [49] 余俊.滚动轴承计算[M].高等教育出版社.1993.7
    [50] 成大先. 机械设计手册(四版) [M] 第一卷. 北京:化学工业出版社.2001.1
    [51] 濮良贵,纪名刚.机械设计.第七版[M]高等教育出版社 2001.6
    [52] 白葳,喻海良.通用有限元分析 ANSYS8.0 基础教程. [M]清华大学出版社.2005.5
    [53] 张胜民.基于有限元软件 ANSYS7.0 的结构分析. [M]清华大学出版社.2003.12
    [54] 杜平安,甘娥忠,于亚婷.有限元法――原理、建模及应用. [M]国防工业出版社 2004.8
    [55] 张朝晖.ANSYS 工程应用范例入门与提高. [M]清华大学出版社.2004.10
    [56] 叶先磊,史亚杰.ANSYS 工程分析软件应用实例[M].北京:清华大学出版社,2003
    [57] 王勖成.有限单元法. [M].清华大学出版社 2003.7
    [58] 张波,盛和太.ANSYS 有限元数值分析原理与工程应用[M].清华大学出版社.2005.9
    [59]J. C. Simo, T. A. Laursen. An Augmented Lagrangian Treatment of contact Problems Involving Friction. Computer and Structures, 1992, 43(1): 97~116
    [60] 岳宝增、李笑天. ALE 有限元方法研究及应用[J]力学与实践.2001.12
    [61] 博弈创作室.APDL 参数化有限元分析技术及其应用实例.[M].中国水利水电出版社.2004.2
    [62] 穆立祥.滚动接触之刚度探讨.[D].私立中原大学.博士论文 1990:1-90
    [63] 马国华. 无摩擦弹性接触问题的数值计算分析及其在滚动轴承中的应用.[D]硕士论文.西安交通大学.2002.11:1-68
    [64] 王建伟,罗 宁 有限元法在分析轴承接触问题中的应用. [J]《轴承》2004.12
    [65] 王大力,孙立明等.ANSYS 在求解轴承接触问题中的应用. [J]《轴承》2002.9
    [66] 马国华,胡桂兰.滚动轴承弹性接触问题的数值计算. [J]《轴承》.2005.1
    [67] 贾淑霞,宋金松.滚动球窝喷管接触应力分析.[J].固体火箭技术.第 28 卷第 2 期.2005.2:105-107
    [68] 王守信,张建军.工程中弹性接触问题的数值计算.[J].河北工业大学学报. 第 28 卷第 2 期.1999.4:63-67
    [69] 潘辉.货车滚动轴承压装过程的仿真.[J].组合机床与自动化加工技术.2003.7
    [70] 宣兆成,李兴斯.接触分析的光滑模型及迭代算法.[J]力学学报.第 33 卷第 3 期.2001.5:340-347
    [71] 张良春,孙卓,王惠贞等.接触分析中一种确定接触面的方法.[J].舰船科学技术.第 25 卷第 2期.2003.4:62-64
    [72] 张焱,孔祥安,陈平等.接触力学中的变分原理.[J].西南石油学院学报.第 20 卷第 1期.1998.2:100-104
    [73] 胡孟君.接触体有限元网格划分及可行性[J].重型机械科技.2001.3:26-29
    [74] 冯伟,周新聪,严新平等.接触问题实体建模及有限元法仿真实现[J].武汉理工大学学报.第 26卷第 6 期.2004.6:52-55
    [75] 孙林松,王德信,谢能刚.接触问题有限元分析方法综述.[J]水利水电科技进展.第 21 卷第 3 期.2001.6:18-21
    [76] 陈家庆,俞接成,徐林林.经典弹性点接触问题德数值求解与应用. [J]机械.2000.第 27 卷增刊.90-92
    [77] 魏延刚.空心圆柱滚子与滚道接触应力及位移分析. [J]轴承 2003.5
    [78] 吴昌华,张军.轮轨接触德有限元研究. [J]大连铁道学院学报.第 18 卷第 4 期.1997.12:25-30
    [79] 汪召华,高莲士,宋文晶.三维摩擦接触德有限元分析.[J].清华大学学报.2002.第 42 卷第 S1 期:93-97
    [80] 李录贤,沈亚鹏.无摩擦弹性接触问题德数学规划方法. [J]西安矿业学院学报.1998.9 第 18 卷第 3期.266-270
    [81] 宁桂峰,满翠华.有限元接触分析应用研究. [J]现代制造工程.2005.4:66-68
    [82] 胡美燕,姜献峰.有限元分析法在接触现象中德应用研究. [J]机电工程.2003.第 20 卷第 5 期:160-162
    [83] 王建伟,罗宁.有限元法在分析轴承接触问题中德应用. [J]信阳农业高等专科学校学报.2004.12第 14 卷第 4 期.
    [84] 刘金朝,王成国.圆柱滚子轴承的静态应力分析. [J]中国铁道科学.2002.4.第 23 卷第 2 期.86-93
    [85] 赵杰,常俊英,陈家庆.ANSYS 在求解带摩擦接触问题中的应用. [J].北京石油化工学院学报.2003.12
    [86] 陈家庆,信朝华.弹性点接触问题的数值求解与应用. [J]. 轴承.2001.1
    [87] 王烈衡,王光辉.弹性接触问题的对偶混合有限元分析.[J].计算数学.1999.11
    [88] 蒋桐,王晓芳.多体摩擦型接触问题的边界元与有限元耦合法.[J].南京建筑工程学院学报.1999.1