蛹虫草人工培养技术及其主要有效成分调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛹虫草(Cordyceps militaris)是一种重要的中药,也是名贵中药冬虫夏草(Cordyceps sinensis)的常用替代品。蛹虫草含有虫草多糖、虫草素、核苷类物质、麦角甾醇、虫草酸等多种有效成分,这些有效成分含量是蛹虫草子实体品质的重要指标。蛹虫草的人工培养方式包括液体发酵和固体发酵,有关蛹虫草有效成分含量的影响因素的研究在液体发酵中较多,而固体发酵中大多仅限于对子实体生长条件优化。本文研究了培养条件及培养基对蛹虫草子实体生长及有效成分合成的影响,为高产优质的蛹虫草子实体和主要活性物质生产提供一定的基础依据。
     1.研究了培养条件(光照、温度、培养时间)对蛹虫草原基形成、子实体生长及有效成分含量的影响,主要结果如下:
     (1)光照(光强、光照时间及光质)是影响蛹虫草子实体生长及有效成分合成的重要因素。光照越强,虫草多糖、腺苷及类胡萝卜素含量越高。较弱的光照则更有利于子实体产量提高和虫草素、麦角甾醇、可溶性蛋白及游离氨基酸合成。延长每天光照时间对原基形成、类胡萝卜素、多糖、腺苷及虫草酸的合成有促进作用,而对子实体生长及可溶性蛋白合成则有抑制作用。对于多糖、虫草素及类胡萝卜素的合成,白炽光显著优于黄光和红光,而对麦角甾醇和游离氨基酸则相反。综合考虑,确定蛹虫草培养适宜的光照条件为:白炽光、光照强度为200 lx,每天光照时间分阶段设置,原基形成阶段为24 h/d,子实体生长阶段16 h/d为最佳。
     (2)不同培养温度(20℃、22℃、24℃和26℃)对蛹虫草子实体产量和不同的有效成分含量的影响不同。当温度从20℃升高到26℃时,蛹虫草原基不能正常形成。从20-24℃间,子实体产量和虫草酸含量随着温度的升高而显著下降;对于多糖、虫草素含量,3种培养温度间都有显著性差异,22℃为最佳;20℃与22℃温度条件下培养的子实体腺苷、类胡萝卜素含量显著高于24℃条件下的,可溶性蛋白则相反;对于游离氨基酸的合成,22℃显著优于20℃与24℃。综合分析子实体产量及有效成分含量,确定蛹虫草子实体培养的严格温度区间为20-22℃。
     (3)子实体产量及有效成分含量随培养时间的变化而变化。子实体在接种后第40 d达到最大产量,除了多糖外,其他有效成分均能在子实体生长旺盛期大量积累,但随着培养时间延长虫草素含量增加幅度较大。除虫草素、可溶性蛋白及游离氨基酸外,其他5种成分含量达到最高后随着培养时间的延长而下降,培养时间超过40 d后子实体颜色开始变黑。综合子实体产量及颜色、虫草素含量及其他成分,确定最佳采收时间应选择子实体达最大产量后5 d即接种后培养45 d左右。
     2.研究了培养基(碳源、氮源、无机盐、维生素、pH)对子实体生长及有效成分含量的影响,主要结果如下:
     (1)不同的碳源对子实体生长及其不同有效成分含量的影响不同。对子实体生长,麦芽糖与甘露醇最好。在保证子实体产量的前提下,分析对比麦芽糖与甘露醇对虫草素、腺苷及虫草酸等各种有效成分的合成与积累作用,确定最合适的碳源为甘露醇。
     (2)各种氮源添加物对蛹虫草生长及不同有效成分合成的作用不同。对子实体产量、游离麦角甾醇、虫草素和可溶性蛋白的含量,有机氮源的作用要显著优于无机氮源,而对虫草酸的合成则相反。有机氮源中鲜蛹能促进5种有效成分(多糖、虫草素、虫草酸、可溶性蛋白及类胡萝卜素)合成,无机氮源中磷酸氢二铵对4种有效成分(虫草酸、腺苷、游离氨基酸及类胡萝卜素)的积累有明显促进作用。则最佳的有机氮源添加物为鲜蛹,无机氮源为磷酸氢二铵。
     (3)维生素作为微量生长因子对蛹虫草生长有明显影响,但对有效成分的合成影响作用不大。相比其他维生素,VB1能促进3种有效成分(虫草酸、游离氨基酸及类胡萝卜素)的合成,对子实体生长也有促进作用,最终选VB1作为最佳添加物。
     (4)不同的无机盐对不同的有效成分积累影响不同。添加的所有无机盐中,KH2PO4和NaNO3能促进合成的有效成分种类最多,KH2PO4能促进虫草多糖、虫草素、腺苷、可溶性蛋白及类胡萝卜素的合成,对子实体生长也有促进作用,NaNO3对多糖、腺苷、虫草酸、可溶性蛋白、类胡萝卜素及游离麦角甾醇的合成有明显促进作用,但不利于子实体生长,因此添加KH2PO4最佳。
     (5)培养基pH对不同的有效成分合成的影响规律不同。对虫草多糖、虫草素、虫草酸、麦角甾醇、游离氨基酸及类胡萝卜素合成,酸性条件更有利:中性条件下,可溶性蛋白含量最高。综合考虑,蛹虫草培养基pH应调在5.5-6.5之间。
Cordyceps militaris is one of the important traditional Chinese medicine (TCM), also the common substitutes of expensive TCM Cordyceps sinensis. Cordyceps militaris contains polysaccharides, cordycepin, nucleoside substances, ergosterol, cordyceps acid, and other active ingredients, these effective ingredients are important indicator of the quality of Cordyceps militaris fruiting bodies. The artificial cultivation Cordyceps militaris including liquid fermentation and solid-state fermentation, research on the effective constituents of the Cordyceps militaris mainly in liquid fermentation, while the solid state fermentation mostly focus on the optimization growth conditions of the fruitbody. The paper studies on the effect of cultivating conditions and medium to the gorwth of fruitbody Cordyceps militaris and its effective components, providing certain basis of synthesis of high quality Cordyceps militaris and the main active material production base.
     Studied the culture conditions (light, temperature, cultivating time) on the primordium formation and fruitbody growth and effective ingredient content, the main results are as follows:
     (1) Illumination is one of the most impotant factors of Cordyceps militaris fruitbody growth and effective component synthesising. The stronger light, polysaccharide, adenosine, carotenoids content was higher, the weaker light is more conducive to yield increase and cordycepin, ergosterol, soluble protein and free amino acid synthesis. Extending the time of light will boost the growth of carotenoids, polysaccharide, adenosine and cordyceps acid synthesis, but restrain the fruitbody growth and soluble protein synthesising. For synthesis of polysaccharide, cordycepin and carotenoids, the incandescent light is much better than yellow and red light, superior to ergosterol and free-amino acids oppositely. Comprehensive consideration, determine the appropriate illumination conditions for:the incandescence light of 200 lx, the primordium forming stage for 24 h/d, while 16 h/d for fruitbody growth stage is the best.
     (2) Different temperature (20℃、24℃、22℃and 26℃) have different effect to the fruitbody yield and effective ingredients synthesis. When the temperature increases from 20℃to 26℃, the primordium can not be properly formed. From 20-24℃, the fruiting body and cordyceps acid of production decreased significantly as the temperature increasing; for the content of polysaccharides, cordycepin, it has significantly difference between those three culture temperatures, while,22℃for the best; 20℃and 22℃, culture temperature, the bodies of adenosine, carotenoid content are significantly higher than that of 24℃, soluble protein is opposite; for the synthesis of amino acids,22℃and 20℃was significantly higher than 24℃. Comprehensive analysis of fruiting body yield and composition, to determine Cordyceps militaris cultured strict temperature range 20-22℃.
     (3) The production and effective ingredient content varied by the cultivation time. The fruitbody after inoculation 40d to maximum yield, besides polysaccharides, other effective ingredients are accumulated greatly at the esse bloom period, but the cordcepin increased lager as prolonger the culrivation time. Except for cordycepin, soluble protein and amino acid, the other 5 elements reached their highest level then turned down as the extension of time, after more than 40d the fruit color went black. Considing the production and color, content of cordycepin and other ingredients content, determined the optimal harvest time should choose the maximum yield of fruitbody after 5 d, that's to say, about 45 days after inoculation cultivation.
     2 Researched the effect of substrate (carbon sources, nitrogen source, inorganic salt, vitamin, pH) on the growth of fruitbody and effective ingredient content, the main results are as follows:
     (1) For the fruitbody growth, maltose and mannitol is the best. Different carbon source have vary influence on different availability composition synthesis,. Analyse and contrast the effect of maltose and mannitol on cordycepin adenosine cordyceps acid and various effective component synthesis and accumulation, determine the most appropriate carbon source is mannitol.
     (2) All sorts of nitrogen additive have different effect to the grow and effective ingredient of Cordyceps militaris synthesis. Considing the fruitbody production, free ergostrerol, cordycepin and soluble protein content, organic nitrogen source will significantly better than inorganic nitrogen source, while the cordycep acid is opposite. Organic nitrogen source of fresh pupa can promote 5 kind of effective components's synthesis (polysaccharide, cordycepin, cordycep acid, soluble protein and carotenoids), inorganic nitrogen source of synthesis and diammonium phosphate have obvious role in promoting the accumulation of 4 kinds of effective ingredients (cordyceps acid, adenosine, free amino acid and carotenoids). So the best source of organic nitrogen additive is fresh pupa, and inorganic nitrogen source is diammonium phosphate.
     (3) Vitamins as the trace growth factor for Cordyceps militaris growth has obvious effect. VB1 can promote 3 kinds of the effective components (cordycep acid, free amino acid and carotenoids), also promote the fruitbody growth, finally VB1 chosen as the best additive.
     (4) Of different inorganic salts on the cumulative effects of different active ingredients in different. Through contrast KH2PO4 and NaNO3, which can promote most types of effective components, by the effect of polysaccharide, cordycepin, adenosine of effective ingredients of synthesis and fruitbody, finally the former chosen as the better additive.
     (5) Medium pH value has various different effects on the synthesis of the active ingredient. For the synthesis of polysaccharide, coedycepin, cordyceps acid, free ergosterol, free amino acid and carotenoids acidic conditions, acidity is more advantageous; On the neutral condition, soluble protein content is the highest. Comprehensive consideration, medium pH Cordyceps militaris should be adjustable betweent 5.5-6.5.
引文
[1]Kirk PM, Cannon PF and David JC. Ainsworth & Bisby's Dictionary of the Fungi. CAB International,2001, Wallingford, Oxon:UK;
    [2]汤晓云.蛹草的研究进展[J].基层中药杂志,2002,16(4):50~53;
    [3]张显科,王玉柱,刘文霞.蛹虫草的研究—蛹虫草与冬虫夏草化学成分比较[J].辽宁大学学报,1996,23(4):80~83;
    [4]高怀安.秦巴蛹虫草与冬虫夏草某些化学成分的对比研究[J].中药通报,1987,12(2):44~50;
    [5]付鸣佳.蛹虫草产类胡萝卜素的研究[J].食品与生物技术学报,2005,24(5):107~110;
    [6]Goumenos DS, Tsamandas AC, NaHas AM, et al. Apoptosis and Myofibroblast Expression in Human Glomerular Disease:a Possible Link with Transforming Growth Gactor [J]. Nephron, 2002,92:287~296;
    [7]吴光宴.蛹虫草多糖的分离及免疫活性的研究[J].中国天然药物,2007,5(1):72~75;
    [8]杜德极,曾庆田.冬虫夏草及人工培养虫草菌丝体抗肿瘤作用的研究[J].中药通报,1986,11(7):51~54;
    [9]许周善.冬虫夏草多糖的研究进展[J].工业微生物,2000,30(1):56~57;
    [10]任健,张倩落,郑莉.人工虫草多糖对免疫低下小鼠免疫功能的影响[J].第四军医大学学报,2007,28(21):1967~1969;
    [11]昌鸣先,陈孝煊,吴志新,等.虫草多糖对日本沼虾免疫机能的影响[J].华中农业大学学报,2001,20(3):275~278;
    [12]臧其中.虫草多糖的药理作用[J].中草药,1985,16(7):18~22;
    [13]靖大道,邱德凯,萧树东,等.虫草多糖对人外周血IL-2IL-2R及IFN调节作用的研究[J].上海免疫学杂志,1995,15(6):321~323;
    [14]金涌,李俊,樊美珍,等.虫草多糖体外对佐剂性关节炎大鼠免疫功能的影响.安徽医科大学学报,2000,35(1):20~21;
    [15]姚思宇,赵鹏,刘荣珍,等.虫草多糖降血脂作用的动物试验研究[J].中国热带医学,2004,4(2):197~198;
    [16]Pilmore HL, Yan Y, Eris JM, et al. Time Course of Upregulation of Fibrogenic Growth Factors and Cellular Infiltration in a Rodent Model of Chronic Renal Allograft Rejection[J]. Transpl Immunol,2002,20:245~249;
    [17]Nishida M, Fujinaka H, Matsusaka T, et al. Absence of Angiotensin II Type 1 Receptor in Bone Marrow-derived Cell is Detrimental in the Evolution of Renal Fibrosis [J]. Clin Invest,2002, 110:1859~1868;
    [18]Kondo S, Kagami S, Kido H, et al. Role of Mast Cell Tryptase in Renal Interstitial Fibrosis[J]. J Am Soc Nephrol,2001,12:1668~1676;
    [19]沈齐英.北虫草对正己烷所致肝损伤的保护作用[J].中国工业医学杂志,2002,15(5):284~285;
    [20]王伟铭,姚建,石蓉,等.转化生长因子对肾间质成纤维细胞胶原表达的影响[J].中华肾脏病杂志,1999,15:343~346;
    [21]刘东泽,陈伟,高新华,等.虫草菌素(3’-脱氧腺苷)研究进展[J].上海农业学报,2004,20(2):89;
    [22]吴洪臻,江伟,马德恩.虫草素对小鼠S180瘤抑制作用研究[J].时珍国医国药,200011(10);
    [23]汪洪.虫草研究开发中几个问题的探讨[J].农牧产品开发,1999,6:12;
    [24]Nakamura K, Yoshikawa N, Yamaguchi Y, et al. Antitumor Effect of Cordycep in (3'-deoxyadenosine) on Mouse Mela-noma and lung Car2 Cinoma Cells Involves AdenosineA3 Receptor Stimulation[J]. Anticancer Res,2006,26:43;
    [25]Toda N, Okunishi. Responses to Adenine Nueleotides and Related Eompounds of Isolated Dog Cerebral, Coronary and Mesenteric arteries[J]. Blood Vessel,1982:19(5):226~360;
    [26]陈威,沈洪.腺普对复苏兔心肌及脑组织超微结构的影响.中国全科医学,2007,10(5):379-382;
    [27]Mario, Marzilli, MD, et al. Beneficial Effects of Intracoronary Adenosine as an Adjunct to Primary Angioplasty in Acute Myocardial Infarction [J]. Circulation,2000,101:2154~2159;
    [28]Y.C. Kuo, S.C. Weng, C.J. Chou, et al. Activation and Proliferation Signals in Primary Human T Lymphocytes Inhibited by Ergosterol Peroxide Isolated from Cordyceps Cicadae [J]. British Journal of Pharmacology,2003,140:895~906;
    [29]Kyong S. N., Young Su Jo, Young H. K, et al. Cytotoxic Activities of Acetoxyscirpenediol and Ergosterol Peroxide from Paecilomyces Tenuipes[J]. Life Sciences,2001,69:229~237;
    [30]Ng TB, Wang HX. Pharmacological Actions of Cordyceps, a Prized Folk Medicine [J]. Journal of Pharmacy and Pharmacology,2005,57:1509~1519;
    [31]Shin K.H, Lim SS, Lee SH, et al. Antioxidant and Immunostimulating Activities of the Fruiting Bodies of Paecilomyces Japonica, a New Type of Cordyceps sp. [J]. Annals of New York Academy of Sciences,2001,928:261~273;
    [32]Parks LW, Casey WM. Physiological Implications of Sterol Biosynthesis in Yeast [J]. Annual Review of Microbiology,1995,49:95~116;
    [33]Arnezeder C, Hampel WA. Influence of Growth Rate on the Accumulation of Ergosterol in Yeast-cells [J]. Biotechnology Letters,1990,12:277-282;
    [34]Anja Teichmann, Paresh C, Dutta, et al. Sterol and Vitamin D2 Concentrations in Cultivated and Wild Grown Mushrooms:Effects of UV Irradiation[J]. LWT,2007,40:815~822;
    [35]Pirjo Mattila, Anna-Maija Lampi, Riitta Ronkainen, et al. Sterol and Vitamin D2 Contents in Some Wild and Cultivated Mushrooms[J]. Food Chemistry.2002,76:293~298;
    [36]R Chatterjee, KS Srinivasan, PC Maiti. Cordycepssinensis:Structure of Cordycepic Acid [J]. J Am Pharm Assoc,1957,46:114~117;
    [37]M Sprecher, DB Sprinson. Areinvestigation of the "Cordycepic Acid" [J]. J Org Chem,1996, 28(9):490~494;
    [38]杨薇.甘露醇的开发应用及发展前景[J].牙膏工业,2000,4:31-34;
    [39]詹天荣,宋金明.甘露醇药用研究进展[J].中国海洋药物,2003,3:57-61;
    [40]敬一兵,陆鲁生.虫草[M].云南科技出版社,1986,昆明;
    [41]陈桂宝,罗梅初,刘实晶.蛹虫草的药理作用研究[J].中草药,1997,28(7):415~417;
    [42]孙科峰,石伟,刘丽,等.蛹虫草子实体抗肿瘤作用的实验研究[J].辽宁中医杂志,2004,31(6):520~521;
    [43]Yoo, H.S., Shin, J.W., Cho, J.H., et al. Effects of Cordyceps Militaris Extract on Angiogenesis and Tumor Growth [J]. Acta Pharmacol Sin,2004,25(5):657~665;
    [44]Yoshikawa, N., Yamada, S., Takeuchi, C., et al. X Cordycepin (3'-deoxyadenosine) Inhibits the Growth of B16-BL6 Mouse Melanoma Cells Through the Stimulation of Adenosine A(3) Receptor Followed by Glycogen Synthase Kinase-3 Beta Activation and Cyclin D (1) Suppression[J]. Naunyn Schmiedebergs Arch Pharmacol,2007,10(4):234~239;
    [45]Lee, H., Kim, Y.J., Kim, H.W., et al. Induction of Apoptosis by Cordyceps Militaris Through Activation of Caspase-3 in Leukemia HL-60 cells [J]. Biol Pharm Bull,2009,29(4):670-674;
    [46]Sugar A. and Mccaffrey R. Antifungal Activity of 3'-Deoxyadenosine (Cordycepin)[J]. Antimicrobial Agents and Chemotherapy,1998,42(6):1424~1427;
    [47]孙月,卜宁,刘建华.蛹虫草虫草酸虫草素含量测定与分析[J].中国食用菌,1999,18(6):19~21;
    [48]Basith, M. and Madelin, M.E. Studies on the Production of Perithecial Stromata by Cordyceps Militaris in Artificial Culture. Canadian Journal of Botany,1968,46:473~480;
    [49]高新华,吴畏,钱国琛,等.非生物因子对北冬虫夏草主要菌株子实体分化的影响.上海农业学报,2000,16(增刊):93~98;
    [50]高晓梅,陈月仍.光照对人工培养蛹虫草子实体形成和生长的影响.广东农业科学,2006,(6):31~32;
    [51]雷捷.北冬虫夏草子实体最佳培养条件探索及其有效成分检测方法的优化:[硕士学位论文].长春:吉林大学,2004.35-45;
    [52]王菊凤.蛹虫草培养及其生理活性物质研究:[硕士学位论文].长沙:中南林学院,2006.65-78;
    [53]袁泰斗,陈月仍,吴坤林.影响蛹虫草子实体产量及质量的因素研究[J].广东农业科学,2006,10:22;
    [54]韦会平,叶小莉,张华英,等.用蛹虫草固体发酵法高效生产虫草素的研究[J].中国中药杂志,2008,33(19):2159~2162;
    [55]温鲁,夏敏,宋虎卫,等.固体培养蛹虫草核苷类次生代谢物的产率[J].食品科学,2005,26(11):65~68;
    [56]付鸣佳.蓝光对蛹虫草多糖含量的影响[J].食品科学,2009,30(03):239~242;
    [57]李春斌,佟晓冬,白静,等.蛹虫草子实体的人工培养研究.大连民族学学报,2004,6(5):29~31;
    [58]陈晋安,黄浩,郑忠辉,等.蛹虫草液体发酵条件的研究[J].集美大学学报(自然科学版),
    2001,6(3):219~223;
    [59]Kim H O. and Yun J W. A Comparative Study on the Production of Exopolysaccharides Between two Entomopathogenic Fungi Cordyceps Militaris and Cordyceps Sinensis in Submerged Mycelial Cultures[J]. Journal of Applied Microbiology,2005,99:728~738;
    [60]J S Kwon, J S Lee, W C Shin, et al. Optimization of Culture Conditions and Medium Components for the Production of Mycelial Biomass and Exo-polysaccharides with Cordyceps militaris in Liquid Culture[J]. Biotechnology and Bioprocess Engineering 2009,14:756~762;
    [61]S.-W. Kim, H.-J. Hwang, C.-P. Xu, et al. Optimization of Submerged Culture Process for the Production of Mycelial Biomass and Exo-polysaccharides by Cordyceps militaris C738 [J]. Journal of Applied Microbiology,2003,94,120-126;
    [62]王英臣.关于蛹虫草菌多糖发酵及培养基的研究[J].中国酿造,2005,10:29~31;
    [63]万涛,杜连祥.培养条件对蛹虫草液体培养生产虫草素的影响[J].现代食品科技,2007,23(9):1-3;
    [64]张绪璋.北冬虫夏草C-48生物学特性及栽培技术[J].食用菌(增刊),2003,12:23-25;
    [65]刘华晶,许修宏,高士刚.不同培养基对北虫草生长的影响[J].东北农业大学学报,2004,35(3):325~328;
    [66]Chandra P. Pokhrel, Shoji Ohga. Submerged Culture Conditions for Mycelial Yield and Polysaccharides Production by Lyophyllum Decastes [J]. Food Chemistry,2007,105:641~646;
    [67]Mina Masuda, Eriko Urabe, Akihiko Sakurai, et al. Production of Cordycepin by Surface Culture Using the Medicinal Mushroom Cordyceps Militaris [J]. Enzyme and Microbial Technology,2006,39:641~646;
    [68]Mao X B, Zhong J J. Hyperproduction of Cordycepin by Two-stage Dissolved Oxygen Control in Submerged Cultivation of Medicinal Mushroom Cordyceps Militaris in Bioreactors[J]. Biotechnol Prog,2004,20:1408~1413;
    [69]Xian-Bing Mao, Titiporn Eksriwong, Somchai Chauvatcharin, et al. Optimization of Carbon Ssource and Carbon/nitrogen Ratio for Cordycepin Production by Submerged Cultivation of Medicinal Mushroom Cordyceps Militari[J]. Process Biochemistry,2005,40:1667~1672;
    [70]Yu-Xiang Gu, Zun-Sheng Wang, Su-Xia Li, et al. Effect of Multiple Factors on Accumulation of Nucleosides and Bases in Cordyceps Militari[J]. Food Chemistry,2007,102:1304~1309;
    [71]Li Zhu, Liang Zongqi, Liu Aiying. Effect of Ferment on the Cordycepin [J]. Journal of Huazhong Agricultural University,2004,23(1):165~167;
    [72]Yamanaka, K. and Inatomi, S. Cultivation of Isaria Japonica Fruit Bodies on Mixed Plant/Insect Media. Food Reviews International,1997,13(3):455~460;
    [73]Yamanaka K, Inatomi S, Hanaoka M. Cultivation Characteristics of Isaria Japonica. Mycoscience,1998,39:43~48;
    [74]谷桓生,梁曼逸.人工培育蛹虫草的研究[J].药学情报通讯,1987,5(3):51-52;
    [75]朱明伟,温鲁,魏鹏,等.不同培养液对蛹虫草多糖及虫草酸含量的影响[J].安徽农业科学,2008,36(2):573~574,596;
    [76]Ing-Lung Shih, Kun-Lin Tsai, Chienyan Hsieh. Effects of Culture Conditions on the Mycelial Growth and Bioactive Metabolite Production in Submerged Culture of Cordyceps Militaris [J]. Biochemical Engineering Journal,2007,33:193~201;
    [77]Mao X B and Zhong J J. Significant Effect of NH4+on Cordycepin Production by Submerged Cultivation of Medicinal Mushroom Cordyceps Militaris[J]. Enzyme Microb Tech,2006,3: 343~350;
    [78]苏涛,李玉花,韩梅.北虫草高产菌株在改良人工培养基生长的研究[J].中国食用菌,2008,27(2):23~24;
    [79]Mina Masuda, Eriko Urabe, Hiromitsu Honda, et al. Enhanced Production of Cordycepin by Surface Culture Using the Medicinal Mushroom Cordyceps Militaris [J]. Enzyme and Microbial Technology,2007,40:1199~1205;
    [80]Park J.P., Kim S.W., Hwang H.J. et al. Optimization of Submerged Culture Conditions for the Mycelial Growth and Exo-biopolymer Production by Cordyceps Militaris [J]. Letters in Applied Microbiology,2001,33:76-81;
    [81]Wongsa, P., Tasanatai, K., Watts, P. and Hywel-Jones, N.. Isolation and in vitro cultivation of the insect pathogenic fungus Cordyceps unilaterali[J]. Mycological Research,2005,109(8): 936-940;
    [82]文庭池,康冀川,李光荣,等.固体培养条件对蛹虫草产子实体和虫草菌素的影响[J].贵州农业科学,2008,36(4):92~94;
    [83]葛飞,李春如,胡丰林,等.不同培养条件对中国被毛孢胞内核苷类组分的影响[J].细菌物学报,2007,26(2):234~242;
    [84]王春华.虫草真菌Fc-001产腺苷的研究:[硕士学位论文].福建:福建师范大学,2008,56-74;
    [85]Tsuyoshi Miyake, Akira Mori, Toshie Kii, et al. Light Effects on Cell Development and Secondary Metabolism in Monascus [J]. Ind Microbiol Biotechnol,2005,32:103~108;
    [86]Ana Otero, Massimo Vincenzini. Extracellular Polysaccharide Synthesis by Nostoc Strains as Affected by N Source and Light Intensity [J]. Journal of Biotechnology,2003,102:143:152;
    [87]王菊凤,杨道德,李鹄呜,等.蛹虫草的光温反应及生长发育特性[J].山地农业生物学报,2006,25(2):136~140;
    [88]Qiong Tang, Ye Li, Qi-Peng Yuan. Effects of an Ergosterol Synthesis Inhibitor on Gene Transcription of Terpenoid Biosynthesis in Blakeslea trispora [J]. Curr Microbiol,2008,57: 527~531;
    [89]赵英明,范文丽.光照强度对蒲公英叶片中维生素C及可溶性蛋白含量的影响[J].辽宁农业科学,2009,6:55~56;
    [90]朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用[J].植物生理与分子生物学报,2004,30(6):609~618;
    [91]Moore D. Fungal Morphogenesis. Cambridge:Cambridge Univ Press,1998;
    [92]付鸣佳,王小菁,黄文芳.蓝光诱导蛹虫草菌丝类胡萝卜素的积累[J].微生物学通报,2005, 32(5):24~27;
    [93]Boussiba S, Vonshak A. Astaxanthin Accumulation in the Green Alga Haematococcus Pluvialis [J]. Plant Cell Physiol,1991,32:1077-1082;
    [94]Ben-Amotz A. Effect of Lowtemperature on the Stereoisomer Composition of β-carotene in the Halotolerant Alga Dunaliella Bardawil (Chlorophyta)[J]. J Phycol,1996,32:272~275;
    [95]Tada M, Tsubouchi M, Matsuo K, et al. Mechanism of Photoregulated Carotenogenesis in Rhodotorula Minuta. VIII and Effect of Mevinolin on Photoinduced Carotenogenesis [J]. Plant Cell Physiol,1990,31:319~323;
    [96]Zhu JC, Wang XJ, Zhang G, et al. Glucoamylase Enhancement Regulated by Blue Light in Aspergillus Niger [J]. Acta Microbiologica Sinica,2006,46:734~739;
    [97]Miyake T, MoriA, Kii T, et al. Light Effects on Cell Development and Secondary Metabolism in Monascus [J]. J IndM icrobiolB iotechnol,2005,32:103~108;
    [98]Lilly V.G. and Barnett H.L. Physiology of the fungi. McGraw-Hill,1995, New York;
    [99]郑晴霞,彭菲,王凤翱.蛹虫草的人工培育及组织学研究[J].湖南农业大学学报,1995,21(6):581~583;
    [100]朱效刚,许赣荣,李颖茵,等.红曲霉固态发酵产麦角甾醇工艺条件的优化[J].食品研究与开发,2005,26(2):72~74;
    [101]Niklas von Weymarn, Mervi Hujanen, Matti Leisola. Production of D-mannitol by Heterofermentative Lactic Acid Bacteria [J]. Process Biochemistry,2002,37:1207~1213;
    [102]Soetaert W. Production of Mannitol with Leuconostoc Mesenteroides [J]. Med Fac Landbouwwet Rijksuniv Gent,1990,55:1549~1552;
    [103]Hayman EP, Yokoyama H, Chichester CO, et al. Carotenoid Biosynthesis in Rhodotorula Glutinis [J]. J Bacterioll,1974,20:1339~1343;
    [104]钟丽娟,赵新海,张庆华,等.不同固体培养基对虫草菌丝生长及其腺苷含量的影响[J].饲料工业,2009,30(10):35~37;
    [105]Ying Sun, Qi-Peng Yuan, Frank Vriesekoop. Effect of Two Ergosterol Biosynthesis Inhibitors on Lycopene Production by Blakeslea Trispora [J]. Process Biochemistry,2007,42:1460~1464;
    [106]Outi Niemenmaa, Sari Galkin, Annele Hatakka. Ergosterol Contents of Some Wood-rotting Basidiomycete Fungi Frown in Liquid and Solid Culture Conditions [J]. International Biodeterioration & Biodegradation,2008,62:125~134;
    [107]刘彦威,苏敬良,韩博,等.不同培养条件对冬虫夏草菌丝体甘露醇的影响[J].食品科学,2006,27(1):90~92;
    [108]毛慧玲,李思光,刘筱斌,等.金针菇菌丝生长量与可溶性蛋白含量变化比较研究[J].食用菌学报,1985,5(4):34~36;
    [109]江晓路,葛蓓蕾.北虫草菌Y3液体深层发酵条件的研究[J].食品与发酵工业,1997,23(6):31~35;
    [110]Bae J.T., Park J.P., Song C.H., et al. Effect of Carbon Source on the Mycelial Growth and Exobiopolymer Production by Submerged Culture of Paecilomyces Japonica[J]. Journal of
    Bioscience and Bioengineering,2001,91:522~524;
    [111]Kim, S.W., Hwang, H.J., Xu, C.P., et al. Influence of Nutritional Conditions on the Mycelial Growth and Exopolysaccharide Production in Paecilomyces Sinclairii [J]. Letters in Applied Microbiology,2002,34:389~393;
    [112]顾宇翔,王尊生,李素霞,等.培养基组分对蛹虫草生物量及核苷、碱基积累的影响[J].中国医药工业杂志,2006,37(10):661~664;
    [113]周礼红,蒋春玲.红曲霉与蛹虫草固体共发酵初步研究[J].食用菌,2008,3:40-41;
    [114]Zheng Wei-Fa, Xiang Xiao-Yan, Chen Cai-Fa, et al. Effects of Culture Media and Three Metal Ions on the Accumulation of Lanosterol and Ergosterol in Cultured Mycelia of Inonotus Obliquus[J]. Mycosystema,2008,27(1):126~139;
    [115]Zou X. Fed-batch Fermentation for Hyperproduction of Polysaccharide and Ergosterol by Medicinal Mushroom Agaricus Brasiliensis [J]. Process Biochemistry,2006,41:970~974;
    [116]J.R. Han, C.H. Ann and J.M. Yuan. Solid-state Fermentation of Cornmeal with the Basidiomycete Ganoderma Lucidum for Degrading Starch and Upgrading Nutritional Value [J]. Journal of Applied Microbiology,2005,99:910~915;
    [117]Wisselink HW, Weushuis RA, Eggink G, et al. Mannitol Production by Lactic Acid Bacteria: a Review [J]. Int. Dairy J,2002,12:151~161;
    [118]Hong Baek, Kyung-Hwa Song, Sang-Mi Park1, et al. Role of Glucose in the Bioconversion of Fructose into Mannitol by Candida Magnoliae [J]. Biotechnology Letters,2003,25:761~765;
    [119]徐军,崔丽霞,韩建荣.无机盐和碳氮源对青霉PT95类胡萝卜素产率的影响[J].微生物学通报,2003,30(4):77~79;
    [120]翟红梅,肖冬光,张坤生,等.粘红酵母发酵生产类胡萝卜素培养条件的优化[J]. 生物技术,2003,13(5):30~33;
    [121]Hung-Chang Huang, Yung-Chuan Liu. Enhancement of Polysaccharide Production by Optimization of Culture Conditions in Shake Flask Submerged Cultivation of Grifola Umbellate [J]. Journal of the Chinese Institute of Chemical Engineers,2008,39:307~311;
    [122]H.O. Kim, J.M. Lim, J.H. Joo, et al. Optimization of Submerged Culture Condition for the Production of Mycelial Biomass and Exopolysaccharides by Agrocybe cylindracea[J]. Bioresource Technology,2005,96:1175~1182;
    [123]Jian-hui Xiao, Dai-xiong Chen, Wei-hong Wan, et al. Enhanced Simultaneous Production of Mycelia and Intracellular Polysaccharide in Submerged Cultivation of Cordyceps jiangxiensis using Desirability Functions[J]. Process Biochemistry,2006,41:1887~1893;
    [124]J.H. Xiao, D.X. Chen, J.W. Liu, et al. Optimization of Submerged Culture Requirements for the Production of Mycelial Growth and Exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109[J]. Journal of Applied Microbiology,2004,96:1105~1116;
    [125]Leifa Fana, Andrea Thomaz Soccolb, Ashok Pandeyc, et al. Effect of nutritional and environmental conditions on the production of exo-polysaccharide of Agaricus brasiliensis by submerged fermentation and its antitumor activity[J]. LWT,2007,40:30~35;
    [126]Voelker F, Altaba S. Nitrogen Source Foverns the Patterns of Growth and Pristinamycin Production in Streptomyces Pristinaespiralis [J]. Microbiology,2001,147:2447~2459;
    [127]P.H. Leung and J. Y. Wu. Effects of Ammonium Feeding on the Production of Bioactive Metabolites (Cordycepin and Exopolysaccharides) in Mycelial Culture of a Cordyceps Sinensis Fungus [J]. Journal of Applied Microbiology,2007,103:1942~1949;
    [128]刘小莉,周剑忠,黄开红.影响蛹虫草生物量和腺苷含量的培养基关键因子的研究[J].江西农业大学学报,2009,3 1(6):1117~1120;
    [129]Fei Shang, Shaohong Wen, Xi Wang, et al. High-Cell-Density Fermentation for Ergosterol Production by Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering,2006, 101(1):38~41;
    [130]韩建荣,徐军.青霉PT95菌株固态发酵产生类胡萝卜素的研究[J].微生物学报,1999,39(2):149~153;
    [131]罗璇,王金华,王永泽,等.红酵母细胞壁中主要多糖含量和类胡萝卜素产量的相关性研究[J].化学与生物工程,2007,24(11):50~52;
    [132]Maria Dolores Navarro-Martinez, Juan Cabezas-Herrera, Jose Neptuno Rodriguez-Lopez. Connection between the Folic Acid Cycle and the Ergosterol Biosynthesis Pathway in Candida Albicans [J]. International Journal of Antimicrobial Agents,2006,28:560~567;
    [133]Ya-Jie Tang, Ling-Li Zhu, Rui-Sang Liu, et al. Quantitative Response of Cell Growth and Tuber Polysaccharides Biosynthesis by Medicinal Mushroom Chinese Truffle Tuber Sinense to Metal Ion in Culture Medium[J]. Bioresource Technology,2008,99:7606~7615;
    [134]V.W.柯克兰.真菌生理学[M].第1版.北京:科学出版社,1963,373-374;
    [135]Li Z., Liang Z.Q. and Ying L.A. Effect of the Component s of Medium on Increasing the Content of Cordycepin [J]. Journal of Fungal Research,2003,1(1):9-12;
    [136]Rottem S. and M.F. Baffle. Antimicrob. Agents Chemother,1976,9:301;
    [137]Michaeld. Greenspan, Robort C. Mackow, The Effect of Cerulenin on Sterol Biosynthesis in Saccharomyces Cerevisiae [J]. Lipids,1977,12(9):729~731;
    [138]Panda T, Amutha DV. Regulation and Degradation of HMG Co-A Reductase [J]. Applied Microbiology and Biotechnology,2004,66:143~152;
    [139]Zhao XJ, Sucoff E, Stadelmann EJ. Cu2+and Ca2+Alteration of Membrane Permeability of Quercus rubra Root Cortex Cells [J]. Plant Physiol,1987,83:159~162.
    [140]Kim TB, Oh DK. Xylitol Production by Candida Tropicalis in a Chemically Defined Medium [J]. Biotechnol Lett,2003,25:2085~2088;
    [141]Jung-Kul Lee, Deok-Kun Oh, Hee-Yeol Song, et al. Ca2+and Cu2+Supplementation Increases Mannitol Production by Candida Magnoliae [J]. Biotechnol Lett,2007,29:291~294;
    [142]唐燕玉,谢文玲,高亚辉,等.不同浓度NaCl和光照强度对杜氏藻体内β-胡萝卜素含量的影响[J].植物生理学通讯,2006,4(22):315~318;
    [143]张博润,何秀萍,铁翠娟,等.麦角固醇高产菌株的构建及其培养优化条件的研究[J].生物工程学报,1999,15(1):47~50;