辣椒胞质雄性不育的分子生理机制及亲缘关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用胞质雄性不育系(CMS)做母本是辣椒杂种优势利用的重要途径。但辣椒CMS的基础理论研究十分薄弱。本研究以湖南省蔬菜研究所选育的辣椒CMS-9704A、保持系(M-9704B)、恢复系(R-9701)和Fl为试材,研究了辣椒CMS的分子生理机制。
     辣椒属包含有5个栽培种和20-30个野生种,对于该属种间的亲缘关系,系统学家的观点不一。本研究采用辣椒11个植物种为试材,探讨了辣椒属内种间的亲缘关系。结果如下:
     1.在花粉败育阶段,CMS-9704A花蕾的超氧阴离子(O2-),过氧化氢(H2O2)和丙二醛(MDA)的含量高于M-9704B。CMS-9704A花蕾的活性氧清除酶过氧化物酶(POD),超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性也高于M-9704B。Pod,Mn-Sod,Cat1,Cat2和Cat3基因的表达量与酶活性在两系之间的变化一致。因此,CMS-9704A的不育性可能与CMS的花蕾长期处于由活性氧异常积累引起的慢性过氧化有关。
     2.在花粉败育的高峰期(小孢子单核靠边期),CMS-9704A花蕾的抗坏血酸(ASA),谷胱甘肽(GSH)、总ASA含量低于M-9704B,ASA/ (ASA+DHA)的比值在两系之间差异不显著;CMS-9704AGSH,总GSH含量和GSH-(GSH+GSSG)比值低于M-9704B,氧化性谷胱甘肽(GSSH)含量高于M-9704B;CMS-9704A的抗坏血酸过氧化物酶(APX),谷胱甘肽过氧化物酶(GPX),谷胱甘肽还原酶(GR)酶活性和表达水平低于M-9704B。因此,CMS-9704A花蕾活性氧的异常积累与不育系非酶促抗氧化系统的异常有关。
     3.在小孢子败育过程中,CMS-9704A的苹果酸脱氢酶(Mdh),NAPD-苹果酸酶(NADP-Me),NADP-以柠檬酸脱氢酶(NADP-Icdh)和6-磷酸葡萄糖脱氢酶(G6pdh)的表达均出现下调,而Ndpk的变化不明显。因此,由于Mdh,NADP-Me,NADP-Icdh和G6pdh的表达受到抑制,使三酸循环和磷酸戊糖途径受阻,导致能量供应不足,与CMS-9704A雄性不育有一定关系。
     4.对CMS-9704A,M-9704B及R-9701线粒体DNA进行了RAPD分析,共使用500条随机引物,其中有67引物在“三系”之间都得到了扩增产物,19条引物扩增结果在“三系”之间表现出了遗传多样性。在CMS-9704A与M-9704B的线粒体DNA之间也发现了明显的差异,在CMS-9704A中获得特异片段9条。
     5.从CMS-9704A中扩增到ATP合成酶亚基6(Atp6)和细胞色素C氧化酶亚基2(CoxⅡ)两个基因的部分序列Atp6-706和CoxⅡ-708,生物信息学分析发现分离的Atp6-706和CoxⅡ-708片段与GenBank中的茄科作物线粒体CoxⅡ和Atp6基因的相似性高达95%以上;在M-9704B和R-9701中均未能扩增到任何序列,说明辣椒CMS-9704A的CoxⅡ和Atp6基因与M-9704B和R-9701在线粒体DNA水平上存在差异,这种结构上的变化暗示可能与辣椒CMS相关。
     6.从CMS-9704A叶片DNA中扩增到一个与已经报道的与辣椒CMS基因ORF456同源的基因ORF168, ORF168的DNA序列与ORF456相比在第150个密码子处产生了一个碱基“C”的缺失,形成编码168个氨基酸的新序列。ORF168在CMS-9704A中稳定表达;核恢复基因对ORF168在F1的表达无影响,推测核恢复基因可能通过转录后剪接或翻译/翻译后修饰的途径对ORF168的转录产生影响。
     7.辣椒(Capsicum annuum L.) 6个变种的花粉呈矩圆形、椭圆形或圆形;极面观均为三裂片圆形;具三萌发沟,沟长达两极,沟的末端在极面上不连接形成合沟;花粉外壁纹饰在扫描电子显微镜下以刺-颗粒状复合纹饰为主。变种间在花粉形状和外壁纹饰方面有一定差异。根据其特征可以对辣椒进行分类。
     8.在辣椒5个栽培种之间,其亲缘关系的远近为C.annuum, C. frutescens, C. chinese, C. baccatum, C. pubesens。中国云南南部与美洲的C.frutescens辣椒资源具有较大的差异。
     对5份中国辣椒资源研究发现:C. frutescens种质辣椒素和二氢辣椒素含量要高于C. annuum种质。不同的辣椒种质之间辣椒素和二氢辣椒素含量及其比值的遗传多样性丰富。
Producing Hybrid seeds using cytoplasmic male sterility (CMS) as female parent is a very important way to utilize heterosis in pepper. However, basic researches of cytoplasmic male sterility mechanism in pepper are still poor. In order to enrich the understanding of cytoplasmic male sterility, quicken the usefulness of CMS-9704A, the maintainer (M-9704B), restorer (R-9701) and F1 as experiment materials, the relationship of CMS-9704A with the metabolism of ROS was investigated, some molecular marks were established and a novel gene ORF168 associated with CMS was cloned and analyzed.
     Capsicum is a medium-sized genus with 5 cultivated spices and 20-30 wild spices. Different opinions on the circumscription of Capsicum and relationships among different species also occur. Studies on molecular phylogeny on Capsicum have not been reported until now. In this studyⅠfocus on Capsicum's molecular phylogeny based on palynology and DNA barcoding. It is really helpful for us to solve taxonomic problems of higher taxa in Capsicum, improve study level and technique in Capsicum. The followings were our experiment results.
     1. At the abortion stage (pollen mother cell meiosis stage), anthers of CMS-9704A had higher contents of O2-, H2O2 and MDA than those of the maintainer. Simultaneously, there were higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in scavenging ROS in the anthers of the CMS line than in the maintainer. Abundance of Pod, Mn-Sod, Cat1, Cat2 and Cat3 mRNA in anthers of CMS-9704A corresponded with the activities of these three genes. Therefore, it is possible that the sterility in CMS-9704A is related to the abortion of microspores, induced by chronic oxidative stress caused by an abnormal increase in ROS, and also by membrane lipid peroxidation in the mitochondria in the early stage of pollen development.
     2. At the abortion peak (uninucleate microspore stage), anthers of CMS-9704A had lower contents of ASA, DHA, Total ASA, GSH and Total GSH than those of the maintainer 9704B, except for that of GSSH. The ratio of ASA/(ASA+DHA) between the anthers of CMS-9704A and maintainer 9704B was litter, while the ratio of GSH/(GSH+GSSG) in anthers of CMS-9704A was lower than that of the maintainer. There were lower activities and e xpression level of APX, GPX, and GR in the anthers of the CMS line than in the maintainer. Therefore, the excessive ROS accumulation in the anthers of CMS-9704A is related with the lower contents of non enzymatic antioxidant system.
     3. The transcription of Mdh, NADP-Me, NADP-Icdh and G6pdh were remarkably down-regulated during the period of microspores abortion, except for that of Ndpk. Therefore, it was deduced that the reaction of tricarboxylic acid cycle and pentose phosphate pathway weakened due to the decreased transcription of Mdh, NADP-Me, NADP-Icdh and G6pdh genes, the energy was seriously in short supply during the course of pollen development, Hence insufficient energy production might cause male sterility of pollen in some extent.
     4. The mitochondrial DNA of cytoplasmic male sterility line, its maintainer line and restorer line of Pepper were studied by RAPD analysis. All of lines had obtained amplified products through 67 out of total 500 random primers. Hey emerged polymorphism in three lines through 19 primers. Some obvious differences in mitochondrial DNA were detected between CMS and its maintainer line, and 9 special bands in CMS line were found. The relationship of those different bands in CMS to cytoplasmic male sterility needs farther study.
     5. The CoxⅡand Atp6 gene fragments, CoxⅡ-708 and Atp6-706 (GenBank accession numbers:FJ986190 and FJ986191), associated with cytoplasmic male sterility (CMS) were cloned from the mitochondrial DNA of a pepper (Capsicum annuum L.) cytoplasmic male sterile line using PCR. These fragments did not have complete encoding region but showed the homology of 95% with CoxⅡand Atp6 genes from the referred Solanaceae in GenBank. No band was cloned from the mitochondrial DNA of maintainer and restorer lines. The result suggested a close relationship of pepper CMS with the variation in DNA sequence of CoxⅡand Atp6 gene in CMS line.
     6. A DNA, homologous to ORF456 verified associated with CMS in chili pepper, named ORF168, was cloned from leaves of pepper 9704A. Results revealed that the ORF168 had one nucleotide deleted in codon 150 (nt450delC) and consists of a 507-bp single-coding exon which encodes 168 amino acid compared with the original sequence data of ORF456. The RT-PCR results showed that the ORF168 gene was transcribed in buds and leaves at all developmental stage of 9704A (CMS) and hybrid F1, while no band was detected in the maintainer line. The nuclear restorer gene may restore the CMS fertility by post-transcriptional processing or translational/post-translational modification, but did not interfere with transcription of ORF168 genes directly.
     7. Morphological studies of pollen of 6 varieties of Capsicum annuum L. in China were reported in this paper. The result showed that the pollen shapes were rectangular, or elliptic, or suborbicular from the equatorial view and three-lobed in polar view; the aperture was three-colpate, which extended to polar area and no converaged; the ornamentation of the exine was spinule-granular under SEM. There were some differences in pollen shape and the ornamentation of the exine among different varieties. The pollen shape and the ornamentation of the exine used in this experiment could be classified. This classification was comparable to the traditional subspecies classification.
     8. The results from most parsimonious trees showed that the relationships of the 5 cultivated species are C. annuum, C. frutescens, C. chinese, C. baccatum, C.pubesens. Our results also showed that the C. frutescens from China and NGRL have great differences, which provided us with new evidence to the arguments that the south of Yunnan has an important role in the origin and development of pepper.
     Capsaicin and dihydrocapsaicin content in pericarp placenta and total fruit of 5 different varieties of China were detected. The results showed that the germplasm belonging to C. frutescens have the higher capsaicin and dihydrocapsaicin content than those in the germplasm belonging to C. annuum. There are higher genetic diversity of capsaicin and dihydrocapsaicin content and the ratio of capsaicin/dihydrocapsaicin among the different pepper varieties.
引文
常彩涛,孙振久,刘文明,等.辣椒雄性不育系及三系配套的研究.天津农业科学,2000,(2):6-7
    常彩涛,王春国,陈成彬,等.细胞质雄性不育辣椒育性恢复基因特异分子标记的筛选.实验生物学报,2005,38(3):227-232
    陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成、转运及其生物学功能.西北植物学报,2004,24(2):329-336
    陈玲,华香.辣椒残株一次结果经验谈.长江蔬菜,1990,(1):10-11
    陈培,张磊,邱丽娟,等.大豆质核互作雄性不育系W931A及其保持系的差异蛋白质组学比较分析.中国种业,2009,(10):45-48
    陈蕊红,叶景秀,张改生,等.小麦质核互作型雄性不育系及其保持系花药差异蛋白质组学分析.生物化学与生物物理进展,2009,36(4):431-440
    陈薇薇,何兴金,张雪梅,等.中国西南地区当归属植物花粉形态及其系统进化分析.西北植物学报,2007,27(7):1364-1372
    陈曦,周忠泽,曹景林.不同品种烟草花粉电子显微镜观察.西北植物学报,2004,24(1):43-49
    陈贤丰,粱承邺.水稻不育花药中H2O2的积累与膜脂过氧化的加剧.植物生理学报,1991,17:44-48
    陈贤丰,梁承邺.HPGMR不育花药能量代谢,H2O2的积累与雄性不育的关系.植物生理学通讯,1991,27(1):21-24
    陈晓斌,曹有龙,贾勇炯.白肋烟草雄性不育系的过氢化物酶同工酶和游离氨基酸分析.浙江农业学报,1999,11(2):76-79
    陈晓峰,侯喜林,刘金兵,等.甜椒细胞质雄性不育新种质花蕾败育与活性氧代谢关系研究.南京农业大学学报,2007,30(4):26-29
    陈学军,陈竹君,张耀洲,等.榨菜线粒体DNA的提取.浙江大学学报(农业与生物科学版),2000,26(3):321-324
    陈学军,陈竹君,张耀洲,等.榨菜线粒体DNA的提取.浙江大学学报(农业与生物科学版),2000,26(3):321-324
    陈学军,方荣,周坤华,等.辣椒种质亲缘关系的数量分类学研究.江西农业学报,2009,21(1):31-34
    陈璋,卢勤,朱秀英.辣椒过氧化物酶同工酶的研究.福建农学院学报,1990,19(2):167-172
    戴亮芳,罗向东,王述彬,等.辣椒细胞质雄性不育系和保持系过氧化物酶同工酶的比较分析.西北植物学报2005,25(10):1960-1964
    戴雄泽.干辣椒地方品种资源花粉形态研究.湖南农业大学学报(自然科学版)2001,27(2):107-109.
    戴雄泽,沈美娟.干辣椒地方品种的聚类分析.湖南农学院学报,1992,18(6):743-750
    戴祖云,徐继萍,祁家保,等.辣椒雄性不育三系配套.安徽农业科学,1996,24(2):173-174
    邓明华,邹学校,周群初,等.辣椒细胞质雄性不育系与保持系生化特性研究.湖南农业大学学报,2002,28(6):492-494
    邓明华,文锦芬,邹学校,等.辣椒核质互作雄性不育系与保持系呼吸速率研究.云南农业大学,2009,24(1):22-25
    段俊,粱承邺,张明永.玉米细胞质雄性不育与膜脂过氧化的关系.植物生理学通讯,1996,32:331-334
    范妍芹,刘云,郭景印.利用雄性不育系选育甜椒一代杂种冀研4号.中国蔬菜,1999,(5):26-27,31
    贺学勤,田自华.甜菜胞质雄性不育系及其保持系营养生长期末端氧化酶和ATP酶活性比较分析.西北植物学报,2008,28(8):1614-1618
    胡蕙露,杨景华,陈慧,等.若干科观赏植物花粉形态电镜观察与比较.安徽农业大学学报,2001,28(3):320-325
    胡峻,利容千,曾子中.我国辣椒属植物核型分类的探讨.全国植物细胞生物学学术讨论会论文摘要汇编,1987
    黄厚哲.植物生长素亏素与雄性不育的发生.厦门大学学报,1994,23(1):82-96
    黄晋铃,安泽伟,樊冬丽.棉花晋A胞质雄性不育系及其保持系的同工酶分析.山东农业大学学报,2001,21(3):233-235
    黄培堂.分子克隆实验指南(第3版)[M].北京:科学出版社,2002.96-105
    蒋梁材,刘启鑫.甘蓝型油莱雄性不育系与可育系花蕾的生理生化特性.中国油料,1994,16(1):11-14
    蒋培东,朱云国,王晓玲,等.棉花细胞质雄性不育花药的活性氧代谢.中国农业科学,2007,40(2):244-249
    蒋伟明.甜椒雄性不育两用系过氧化物酶同工酶研究.山西农业科学,1993,21(2):48-52
    耿三省,毛爱军,蒋健.辣椒雄性不育花药的生化特性.北京农业科学,1997,15(2):26-27
    李传友,伏健民.高等植物线粒体基因组研究进展.应用与环境生物技术学报,1998,4(2):200-207
    李大东,王斌.水稻线粒体atpA基因的克隆与细胞质雄性不育的关系.遗传,1990,12(4):1-4
    李光涛,梁涛.4种(变种)辣椒的核型研究.广西植物,1993,13(2):1 55-158
    李红霞,张龙雨;张改生,等.黏类小麦育性相关基因SSH文库的构建.作物学报,2008,34(6):965-971
    李林初,沈敏健,李愚学.辣椒的核型研究.园艺学报,1984,11(2):119-121
    刘卫,陈蕊红,张改生,等.小麦遗传型与生理型雄性不育花药蛋白质双向电泳分析.遗传,2008,30(8):1063-1068
    李维林,贺善安,顾姻,等.中国悬钩子属花粉形态观察.植物分类学报,2001,39(3):234-247
    李晓磊,沈向,孙凡雅,等.苹果属观赏海棠品种花粉形态及分类研究.园艺学报,2008,35(8):1175-1182
    李莹莹,魏佑营,张瑞华,等.辣椒雄性不育“三系”花蕾中3种同工酶活性的动态变化.中国农学通报,2005,21(4):226-229
    李莹莹,魏佑营,张瑞华,等.辣椒(Capsicum annuum L.)雄性不育小孢子发育过程中物质代谢研究.西北农业学报,2006,15(3):134-137
    李又华,罗志刚,关佩聪.青花菜雄性不育系与保持系花蕾同工酶分析.华南农业大学学报(自然科学版),2003,24(1)13-15
    刘光照,巩振辉,黄炜.辣椒不育系和保持系线粒体差异基因获得及SNP分析.中国农业大学学报,2010,15(5):19-24
    刘红,李佩华,周立端.茄属新种苦茄,辣椒新变种测辣和变型大树辣.园艺学报,1985,12(4):255-259
    刘金兵,侯喜林,陈晓峰,等.甜椒胞质雄性不育系及其保持系生化特性研究.园艺学报,2006,33(3):629-633
    刘金兵,侯喜林,王述彬,等.甜椒胞质雄性不育(CMS)系及其保持系花药中游离氨基酸含量.江苏农业学报,2006,22(1):68-70
    刘静,张鲁刚,王风敏,等,2008.萝卜花蕾败育过程中的组织细胞学特征观察.西北农业学报,17(5):272-276
    刘科伟,王述彬,刁卫平,等.辣椒细胞质雄性不育恢复基因的AFLP标记.江西农业学报,2010,22(6):58-60
    刘科伟,王述彬,刘金兵,等.辣椒细胞质雄性不育基因的AFLP分析.分子植物育种,2009,7(4):736-742
    刘善.萝卜雄性不育系和保持系花器官游离氨基酸成分的比较分析.中国蔬菜,1991,(5):12-15
    刘忠松,官春云.杀雄剂Ⅰ号诱导油菜雄性不育的生化研究.见:官春云主编.油菜生态与遗传育种研究.长沙:湖南科技出版社,1990.342-351
    龙洪进,刘发万.云南野生辣椒资源.云南农业科技,2004,3:38-39
    逯红栋,巩振辉,黄炜,等.9个辣椒雄性不育材料花蕾生理生化特性研究.西北植物学报,2006,26(4):0832-0835
    麦维军,王颖,梁承邺,等.谷胱甘肽在植物抗逆中的作用.广西植物,2005,25(6):570-575
    罗向东,戴亮芳,陈劲枫,等.辣椒细胞质雄性不育系及其保持系的AFLP分析.安徽农业科学,2010,38(10):4999-5001
    吕家龙.辣椒的分类系统品种和杂优利用(上).长江蔬菜,1991,(5):26-28
    马继鹏,巩振辉,黄炜.辣椒细胞质雄性不育相关线粒体基因片段的克隆及序列分析.西北农林科技大学学报(自然科学版),2008,36(2):124-128
    马小定,邢朝柱,郭立平,等.棉花细胞核雄性不育两用系差异表达基因分析.遗传学报,2007,34(6):536-543
    马艳青,刘志敏,邹学校.辣椒种质资源的RAPD分析.湖南农业大学学报(自然科学版),2003,29(2):120-123
    马艳青,周群初.我国辣椒育种进展与前景.长江蔬菜,1998,(3):1-4
    马勇,吴建勇,邢朝柱,等.哈克尼西棉细胞质雄性不育系和保持系差异表达基因分析.中国农业科学,2009,42(10):3706-3712
    孟德玉,周颂东,何兴金,等.四川前胡属的花粉形态及系统学意义.西北植物学报,2004,(24):2341-2345
    孟秋峰,汪炳良,皇甫伟国,等.芥菜花粉形态特征及分类初探.浙江大学学报(农业与生命科学版),2006,32(1):65-70
    孟祥红,王建波,利容千.光敏胞质不育小麦花药发育过程中ATP酶的定位研究.作物学报,2000,26(6):851-860
    苗锦山,杨文才,刘彩霞,等.葱胞质雄性不育花蕾生化物质含量和能量代谢酶活性的动态变化特征.西北植物学报,2010,30(6):1142-1148
    穆蕊,张祖新,张方东,等.玉米CMS-S小孢子败育过程中的细胞程序性死亡.作物学报,2006,32(5):666-670
    潘瑞炽主编.植物生理学(第六版).北京:科学出版社,2010
    彭永康,祁忠占,张福跃.高梁雄性不育与可育花药同工酶及游离组蛋白的比较研究.试验生物学报,1991,24(3):241-247
    石大兴,王米力.墨西哥辣椒的核型研究.四川农业大学学报,1995,13(3):292-294
    史红梅,胡德文,何之常,等.不同细胞质雄性不育小麦中谷胱甘肽过氧化物酶活性比较.武汉大学学报:理学版,2001,47(6):771-774
    沈火林,王志源.辣椒雄性不育系选育及遗传转化.北京农业大学学报,1994,20(1):25-30
    沈显生,鲁润龙,周忠泽.长梗苦草花粉粒的电镜观察.西北植物学报,2001,21(5):1022-1025
    宋国琦,胡银岗,林凡云,等.YS型小麦温敏不育系育性转换基因的cDNA-AFLP分析.西北植物学报,2006,26(4):661-666
    宋宪亮,孙学振,刘英欣.棉花ms5ms6核雄性不育花药中碳水化合物和游离氨基酸的变化.棉花学,2001报,13(6):334-336
    孙立全,霍治军,常彩涛,等.辣椒雄性不育系小孢子发育及脯氨酸等含量的研究.华北农学报,2003,18(4):39-41
    孙凌云,盖树鹏,樊治成,等.辣(甜)椒种质资源的RAPD分析.西北植物学报,2005,25(50):870-875
    唐冬英,邹学校,刘志敏.辣椒胞质雄性不育恢复基因的RAPD标记.湖南农业大学学报,2004,30(4):307-309
    王得元,王鸣,郑学勤.用RAPD分析辣椒细胞质雄性不育基因.核农学报,2005,19(2):99-102
    王兰兰.辣椒雄性不育系的选育研究.甘肃农业科技,1998,(1):24-25
    王玲,郑金贵,赖钟雄,等.辣椒遗传多样性的RAPD分析.福建农林大学学报(自然科学版),2003,32(2):213-216
    王开发,王宪曾.孢粉学手册[M].北京:北京大学出版社,1983
    王秋燕,王永昌.大白菜雄性不育株与可育株花蕾生理生化特性分析.辽宁农业科学,1998,(1):48-50
    王世刚,王宇,唐咏,等.辣椒CMS型雄性不育系与保持系花期叶片蛋白质组分析.中国蔬菜,2007,(2):13-16
    王述彬,罗向东,戴亮芳,等.辣椒细胞质雄性不育系与其保持系线粒体DNA的RAPD分析.江苏农业学报,2008,24(1):44-47
    王秀珍,滕晓月.玉米及高粱花药中三磷酸腺苷(ATP)含量与细胞质雄性不育的关系.作物学报,1986,12:177-181
    王学德.棉花胞质雄性不育花药的淀粉酶与碳水化合物.棉花学报,1999,11(3):113-116
    王亚玲,张寿洲,崔铁成.trnL内含子及trnL-trnF间隔区序列在木兰科系统发育研究中的应用.西北植物学报,2003,23(2):247-252
    汪祖华,周建涛.桃种质的亲缘演化关系研究--花粉形态分析.园艺学报,1990,17(3):161-168
    魏兵强,王兰兰,陈灵芝.辣椒胞质雄性不育基因的分子标记.西北农业学报,2010,19(10):166-168,173
    魏毓棠,张丽,粱守连.萝卜雄性不育小孢子发育过程中物质代谢的研究.辽宁农业科学,2001,(4):8-10
    位明明,王俊生,张改生,等.GAPDH基因表达与小麦生理型雄性不育花药败育的关系.分子植物育种,2009,7(4):679-684
    危文亮,王汉中,刘贵华.植物细胞质雄性不育性与育性恢复的分子生物学研究进展.遗传,2005,(4):651-658
    危文亮,王汉中,刘贵华.甘蓝型油菜NCa细胞质雄性不育系统花药败育前期的基因差异表达.作物学报,2007,33(10):1654-1661
    文李,刘盖,王坤,等.红莲型水稻细胞质雄性不育花粉总蛋白质初步比较分析.武汉植物学研究,2007,25(2):112-117
    吴峰,刘玉梅,孙德岭,等.辣椒胞质雄性不育系与保持系生化特性研究.天津农业科学,2008,14(2):50-52
    夏涛,刘纪麟.玉米细胞质雄性不育细胞色素氧化酶活性及ATP含量的研究.华北农学报,1994,9(4):33-37
    夏涛,刘纪麟.玉米细胞质雄性不育性与组织抗氰呼吸关系的研究.中国农业科学,1988,21(5):39-43
    谢冰,王志源,蒋健箴.辣椒核型雄性不育小孢子发育时期生化特性的初步研究.中国农业大学学报,1999,4(5):103-105
    谢学民,奚海福,黄建中,等.化学杀雄剂对水稻花药氨基酸含量与育性的影响.浙江农业学报,1994,(1):51-53
    杨娟,王雯,沈火林.辣椒恢复基因SSR标记定位及分子标记辅助选择育种.中国瓜菜,2010,23(5):1-5
    杨若林,孔俊,吴鑫,等.ISSR标记在辣椒资源遗传多态性分析中的初步应用.上海大学学报(自然科学版),2005,11(4):423-435
    杨世周.辣椒8021A雄性不育系的选育及三系配套.中国蔬菜,1984,(3):9-13
    杨雪,王红,龙春林.国产芋属花粉形态.云南植物研究,2003,25(5):603-608
    叶景秀,张改生,王书平,等.杀雄剂SQ-1诱导小麦雄性不育花粉粒差异蛋白质组学研究.中国生物化学与分子生物学报,2009,25(10):949-957
    尹晗琪,刘荣云,欧阳学智.AFLP法在辣椒胞质雄性不育恢复系选育中的应用.中山大学研究生学刊:自然科学与医学版,2005,26(1)::69-74
    伊岚,来航线,李殿荣.甘兰型油菜胞质雄性不育系陕2A和保持系陕2B的生化比较.西北农业学报,1997,6(2):39-41
    曾维英,杨守萍,盖钧镒,等.大豆质核互作雄性不育系NJCMSIA及其保持系的花药差异蛋白质组学研究.中国农业科学,2007,40(12):2679-2687
    曾维英,杨守萍,喻德跃,等.大豆质核互作雄性不育系NJCMS2A及其保持系的花药蛋白质组比较研究.作物学报,2007,33(10):1637-1643
    张宝玺,王立浩,黄三文,等.辣椒分子遗传图谱的构建和胞质雄性不育恢复性的QTL分析.中国农业科学,2003,36(7):818-82
    张方东.玉米S组CMS胞质育性相关基因的克隆与结构分析:[博士学位论文].武汉:华中农业大学,1999
    张丽,李霄燕,田爱民.萝卜雄性不育小孢子发育过程中物质代谢的研究.安徽农业科学,2002,30(3):326-327
    张琳碧,荣廷昭,潘光堂,等.太空诱变玉米核雄性不育材料的cDNA-AFLP分析.核农学报,2009,23(1):37-41
    张璐,杨若林,刘文轩,等.辣椒部分栽培种遗传相似性的RAPD分析.上海大学学报(自然科学版),2003,9(5):433-437
    张鲁刚,柯桂兰.大白菜胞质雄性不育系和保持系同工酶及可溶性蛋白质分析.西北植物学报,1999,8(4):67-70
    张建奎,宗学凤,王俊义.温光敏核雄性不育小麦花药中保护酶活性的变化.麦类作物学报,2001,21(4):26-30
    张文衡,陈之端,陈虎彪,等.从叶绿体DNA trnL-F序列论双参属的归属问题.植物分类学报,2001,39(4):337-344
    张龙雨,袁蕾,杨书玲,等.小麦雄性不育系中TaPDC-EIa及其调节酶基因的表达特征.作物学报,(优先发表),2011
    张明永,梁承邺,段俊,等.CMS水稻不同器官的膜脂过氧化水平.作物学报,1997,23(5):603-606
    张明永,梁承邺,段俊,等.油菜细胞质雄性不育系发育进程中活性氧的代谢.植物学报,1997,39(5):480-482
    张明永,梁承邺,黄毓文,等.水稻细胞质雄性不育系与保持系呼吸途径比较.植物生理学报,1998,24(1):55-58
    张明永,田长恩,梁承邺.细胞质雄性不育水稻幼穗和花药的呼吸酶活性研究.热带亚热带植物学报,1997,5(4):52-55
    张元明.中国柽柳科植物花粉形态特征聚类分析.西北植物学报,2004,24(9):1702-1707
    张子学,侯喜林.辣椒细胞质雄性不育与与活性氧代谢的关系.西北植物学报,2005,25(4):799-802
    张子学,隋益虎,崔广荣,等.辣椒雄性不育RAPD体系优化及标记的筛选.种子,2005,24(2):24-27
    张子学,王丽,王志杰.辣椒雄性不育系与保持系花药POD、SOD和EST同工酶表达差异研究.激光生物学报,2008,17(4):526-529
    赵华伦,丁犁平,孙波洁,等.辣(甜)椒雄性不育系21A、8A、17A的选育及鉴定.江苏农业科学,1995,(1):45-50
    赵会杰,刘华山,林学梧,等.小麦胞质不育系花药败育与活性氧代谢关系的研究.作物学报,1996,22:365-367
    中国科学院云南植物研究所.云南植物志.第二卷.北京:科学出版社,1979.561
    中国农业科学院蔬菜花卉研究所.中国蔬菜栽培学.北京:中国农业出版社,1987.649-652
    钟珍萍,林学建.不同辣椒变种的核型观察.福建农学院学报,1990,19(3):277-281
    庄灿然,吕金殿,梁粗琦.中国干制辣椒.北京:中国农业科技出版社,1995.1324
    邹乐敏,张西民,张志德,等.根据花粉形态探讨梨属植物的亲缘关系.园艺学报,1986,13(4):219-223
    邹学校.中国辣椒.北京:中国农业出版社,2002.22-31,78-86
    邹学校,马艳青,马艳青,等.我国辣椒杂交育种与杂交种子生产.园艺学报,2001(a),28(增):683-688
    邹学校,周群初,戴雄泽,等.辣椒核质互作雄性不育新品种“湘研14号”.园艺学报,2001(b),28(3):278
    Abad AR, Mehrtens BJ, Mackenzie SA. Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male sterile bean. Plant Cell,1995,7:271~285
    Akagi H, Sakamoto M, Shinjyo C. A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Theor Appl Genet,1994,25 (4): 52~58
    Akagi H. Genetic diagnosis of cytoplasmic male sterile cybrid plants of rice. Theor Appl Genet,1995,90:948~951
    Akagi H, Nakamura A, Yokozeki-Misono Y, et al. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria targeting PPR protein. Theor Appl Genet,2004,108 (8): 1449~1457
    Allander T, Emerson SU, Engle RE, et al. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci USA,2001,98:11609~11614
    Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004,55:373~99
    Arora A, Sairam RK, Srivastava GC. Oxidative stress and antioxidative system in plants. Current Science,2002,82 (10):1227~1238
    Asada K. Production and action of active oxygen species in photosynthetic tissues. In: Foyer C, Mullineaux P, eds. Casues of Photosidative Stress and Amelioration of Defense Systems in Plants. Boca Raton:CRC Press,1944:77~104
    Balk J, Leaver CJ. The PET1-CMS mitochondrial mutation sunflower is associated with premature programmed cell death and cytochrome c release. Plant. Cell, 2001,13:1803~1818
    Balk J, Leaver CJ, McCabe PF. Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat induced programmed cell death in cucumber plants. FEBS Lett,1999,463:151~154
    Bartoli CG, Pastori GM, Foyer CH. Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes Ⅲ and Ⅳ. Plant Physiol,2000, 123:335~344
    Bartosz G Oxidative stress in plants. Acta Physiol Plantarum,1997,19:47~64
    Bentolila S, Alfonso AA, Hanson MR. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci,2002,99 (16):10887~10892
    Bergman A, Gardestr'om P, Ericson I. Method to obtain a chlorophyll-free preparation of intact mitochondria from spinach leaves. Plant Physiol,1980,66:442~445
    Bonhomme S. Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol Gen Genet,1992,235:340~348
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem,1976,72:248~254
    Brown B, Emberson RM, Paterson AM. Mitochondrial COI and Ⅱ provide useful markers for Weiseana (Lepidoptera, Hepialidae) species identification. B Entomol Res,1999,89:287-294
    Brown GG, Formanova N, Jin H, et al. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J,2003,35 (2):262~272
    Budar F, Pelletier G. Male sterility in plants:occurrence, determinism, significance and use. C R Acad Sci Ⅲ,2001,324:543~550
    Capitani G, Hohenester E, Feng L, et al. Structure of 1-aminocyclopropane-l-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J Mol Biol,1999,294 (3):745~756
    Chase MW, Cowan RS, Hollingsworth PM, et al. A proposal for a standardised protocol to barcode all land plantsv. Taxon,2007,56:295~299
    Chen GX, Asada K. Ascorbate peroxidase in tea leaves occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol,1989,30:987~998
    Chen Z, Gaij WDR. The Aseorbic Add Redox State Controls Caaatd Cell and Stomatal Movement. The Plant Cell,2004,16:1143~1162
    Chew O, Whelan J, Mhlarah. Molecular definition of the ascorbate-glutathione cycle in arabidopsis mitochondria reveals dual targeting of antioxidant defemes in plants. J Biol,2003,278 (47):46869~46877
    Chen Z, Gaij WDR. The Aseorbic Add Redox State Controls Caaatd Cell and Stomatal Movement. The Plant Cell,2004,16:1143~1162
    Combet C, Blanchet C, Geourjon C. NPS:Network protein sequence analysis. Trends Biochem Sci,2000,25:147~150
    Connettm B, Hanson MR. Differential mitochondrial electron transport throungh the cyanidesensitive and cyanide-insensitive pathways in isonuclear lines of cytoplasmicmale sterile, male fertile, and restored petunia. Plant Physiol,1990, 93 (4):1634~1640
    Dacey MW, Montagu MV, at el. Plant L—ascorbic acid:chemistry, function. metabolism, bioavailability and effects of processing. J Sci Food Agr,2000,80: 825~860
    De Pinto MC, Francis D, De Gara L. The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma,1999,209:90~97
    Desloire S, Gherbi H, Laloui W, et al. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide repeat protein family. EMBO Reports,2003,4 (6):588~594
    Dewey RE, Levings CS Ⅲ, Timothy DH. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell,1986,44:439~449
    Dewey RE, Timothy DH, Levings Iii CS. Chimeric mitochondrial genes expressed in the C made-sterile cytoplasm of maize. Current Genetics,1991,20 (6):475~582
    Dixon DP, Skiixey M, Grundy NM. Stress-Induced Protein S-Glutathionylation in Ambidopsis. Plant Physiol,2005,138:2233~2244
    Doukakis P, Birstein VJ, Ruban GI, et al. Molecular genetic analysis among subspecies of two Eurasian sturgeon species, Acipenser baerii and A. stellatus. Mol Ecol,1999,8:117~127
    Dvey MW, Van Montagu, M. Inze D, et al. Plant-ascorbic acid:chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agr,2000,80: 825~860
    Edqbist J, Bergman E. Nulcear identity specifies transcriptional initiation in plant mitochondria. Plant Mol Biol,2002,49 (1):59~68
    Egawa Y, Tanaka M. Cytogenetic relationships among 3 spp. of chili peppers, Capsicum chinense, Capsicum frutescens and Capsicum baccatum. Japan J Breed,1984,34 (1):50~56
    Egawa Y, Tanaka M. Structural differentiation of chromosomes by reciprocal translocation in Capsicum annuum. Japan J Breed,1985,34:345~350
    Egawa Y, Tanaka M. Cytogenetical study of the interspecific hybrid between Capsicum annuum and C. baccatum. Japan J Breed,1986,36:16~21
    Elstner EF, Heupel A. Inhibition of nitrite formation from hydroxylamrnoniumchloride, a simple assay for superoxide dismutase. Anal Biochem,1976,70:616~620
    Erdtman G.孢粉学手册[M].北京:科学出版社.1978.
    Esposito LA, Melov S, Panov A, et al. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA,1999,96:4820~4825
    Fan M. Analysis of the genetic diversity of Capsicum ssp. (pepper) using RAPD analysis. J Agr Res China,2001,50 (4):29~42
    Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol,1984, 105:114~121
    Forsmark-Andree P, Lee CP, Dallner G, et al. Lipid peroxidation an d chan ges in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radical Bio Med,1997,22:391~400
    Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts:a proposed role in ascorbic acid metabolism. Planta,1976,133: 21~25
    Foyer CH, Noctor G. Oxygen processing in photosynthesis, regulation and signaling. New Phytol,2000,146:359~388
    Foyer CH, Noctor G. Redox homeostis and antioxidant signaling:a metabolic interface between stress perception and physiological responses, Plant Cell,2005, 17:1866~1875
    Giannopotics CN, Ries SK. Superoxide dismutase, I Occurrence in higher plants. Plant Physiol,1977,59:309~314
    Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch,2010,48:909~930
    Grelon M, Budar F, Bonhomme S, et al. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in malesterile Brassica cybrids. Mol Gen Genet,1994,243:540~547
    Griffith OW. Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Anal Biochem.1980,106:207~212
    Gueguen V, Macherel D, Jaquinod M, et al. Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. J Biol Chem,2000,275:5016~5025
    Gulyas G, Shin Y, Kim H, et al. Altered transcript reveals an Orf507 sterility-related gene in Chili pepper (Capsicum annuum L.). Plant Mol Biol Rep,2010,28 (4): 605~612
    Guo JX, Liu YG. The genetic and molecular basis of cytoplasmic male sterility and fertility restoration in rice. Chinese Sci Bull,2009,54:2404~2409
    Gutierres S, Sabar M, lelandis C, et al. Lack of mitochindrial and nuclear-encoded subunits of complexl and alteration of ther espiratory chain in Nicotiana sylvestris mitchondrial deletion mutants. Proc Natl Acad Sci USA,1997,94: 3436~3441
    Hajibabaei M, Janzen DH, Burns JM, et al. DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA,2006,103:968~971
    Hamels S, Gala JL, Dufour S. et al. Consensus PCR and microarray for diagnosis of the genus Staphylococcus, species, and methicillin resistance. Biotechniques, 2001,31:1364~1372
    Hanson MR. Plant mitochondrial mutations and male sterility. Annu Rev Genet,1991, 25:461~486
    Hanson MR, Bentolia S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell,2004,16 (Suppl):S154~S169
    Hauk WD, Parks CR, Chase MW. Phylogenetic studies of Ophioglossaceae:ecidence from rbcl and trnL-F Plastid DNA sequences and moorphology. Molphylogenet Evol,2003,28(1):131~151
    Hebert PDN, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes. Proc Biol Sci,2003,270:313~321
    Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life:cytochrome coxidase subunit 1 divergences among closely related species. Proc Biol Sci, 2003,270 (suppl.):96~99
    Hebert PDN, Penton EH, Burns JM, et al. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA,2004a,101:14812~14817
    Hebert PDN, Stoeckle MY, Zemlak TS, et al. Identification of birds through DNA barcodes. PLoS Biol,2004b,2:312
    Hems vazquez FJ, Jimenez JMC, Vico FR. RAPD fingerprinting of pepper(Capsicum annuum L.) breeding lines. Capsicum and Eggplant Newsletter,1996,15:37~40
    He S, Abad AR, Gelvin SB, et al. A cytoplasmic male sterility-associated mitocheondrial protein auses pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA,1996,93:11763~11768
    Hodges DM, Delong JM, Forney CF, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta,1999,207: 604~611
    Homn R, Koer RH, Zetsche K. A mitochondrial 16kDa protein is associated with cytoplasmic male sterility in sunflower. Plant Mol Biol,1991,17 (1):29~36
    Jackson RB, Moore LA, Hoffmann WA, et al. Ecosystem rooting depth determined with caves and DNA. Proc Natl Acad Sci USA,1999,96:11387~11392
    Jiang CY, Jin CD, Wu RL, Tao ZJ. Tool Enzyme Activity Measurement. Shanghai Science and Technology Press, Shanghai.1982,36~38
    Jiang P, Zhang X, Zhu Y, et al. Metabolism of reactive oxygen species in cotton cytoplasmic male sterility and its restoration. Plant Cell Rep,2007,26: 1627~1634
    Jimenez A, Hernandez JA, Pastori G, at el. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol, 1998,118:1327~1335
    Johns C, Lu M, Lyznik A, et al. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants. Plant Cell, 1992,4:435~449
    Kadowaki K, Harada K. Differential organization of mitochondrial genes in rice with normal and male sterile cytoplasm. Jpn J Breed,1989,39:179~186
    Kadowaki K, Suzuki T, Kazama S. A chimeric gene containing the 5'portion of atp6 is associated with cytoplasmic male-sterility of rice. Mol Gen Genet,1990,224 (1):10~16
    Kanzaki H, Takeda M, Kameya T. Sequence analysis of a mitochondrial DNA fragment isolated from cultured cells of carrot cytoplasmic male-sterile strain. Jpn J Genet,1991,66:719~724
    Kazama T, Toriyama K. A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett, 2003,544 (2):99~102
    Kim BD, Kim DH. Isolation and characterization of the cytoplasmic male sterility-association orf456 gene of chili pepper, plant Mol Biol,2007,63: 519~532
    Kim DH, Kang JG, Kim SJ, et al. Identification of cox2 and atp6 regions as associated to CMS in Capsicum annuum by using RFLP and long accurate PCR. J Kor Soc HorticSci,2001,42:121~127
    Kim DH, Kim BD. Development of SCAR markers for early identification of cytoplasmic male sterility genotype in chili pepper (Capsicum annuum L.). Mol Cells,2005,20:416~422
    Kim DH, Kim BD. The organization of mitochondrial atp6 gene region in male fertile and CMS lines of pepper (Capsicum annuum L.). Curr Genet,2006a,49:59~67
    Kim DS, Kim DH, Yoo JH, et al. Cleaved amplified polymorphic sequence and amplified fragment length polymorphism markers linked to the fertility restorer gene in chili pepper(Capsicum annuum L). Mol Cells,2006,21:135~140
    Kingston-Smith AH, Foyer CH. Over expression of Mnsuperoxide dismutase in maize leaves leads to increased monodehydroascorbate reducatase, dehydroascorbate reductase and glutathion reductase activities. J Exp Bot,2000,51:1867~1877
    Kochba J, Lave ES, Spiegel-Roy P. Differences in peroxidase activity and isoenzymes in embryogenic and nonembryogenic "Shamouti" orange ovular callus lines. Plant Cell Physiol,1977,18:463~467
    Komori T, Ohta S, Murai N, et al. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J,2004,37:315~325
    Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants:the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One, 2007,6:e508
    Kress WJ, Erickson DL. DNA barcodes:genes, genomics, and bioinformatics. Proc Natl Acad Sci USA,2008,105:2761~2762
    Kress WJ, Wurdack KJ, Zimmer EA, et al. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA,2005,102:8369~8374
    Lahaye R, Savolainen V, Duthoit S, et al. A test of psbK-psbl and atpF-atpH as potential plant DNA barcodes using the flora of the Kruger National Park (South Africa) as a model system. Available from Nature Precedings,2008a,1~21
    Lahaye R, van der Bank M, Bogarin D, et al. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA,2008b,105:2923~2928
    Landgren M, Zetterstrand M, Sunberg E, et al. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3' of the atp6 gene and a 32 kDa protein. Plant Mol Biol,1996,32 (5):879~890
    LeeYY, Kim SJ, Park EH, et al. Glutathione Content and the Activities of Glutathione-Synthesizing Enzymes in Fission Yeast are Modulated by Oxidative Stress. J Microbiol,2003,41:248~251
    Lefebvre V, Goffinet B, Chauvet C, et al. Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes:comparison of AFLP, RAPD and phenotypic data. Theor Appl Genet,2001,102:741~750
    Lefebvre V, Palloix A, Max R. Nuclear RFLP between pepper cultivars{Capsicum annuum L.). Euphytica,1993,71:189~199
    Lefebvre VG, Chauvet JC, Caromel B, et al. Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes:comparisonof AFLP, RAPD and Phenotypic data.Theor Apl Genet.2001,102 (5):741~750
    Levings Ⅲ CS, Pring DR. Restriction endonuclease analysisof mtDNA from normal and Texas male sterile maize. Science,1976,193 (4248):158~168
    Levings CS, Brown GG. Molecular biology of plant mitochondria. Cell,1989.56: 171~179
    Li CJ, Liang HG, Du LF, et al. Studies on the relationship between cyanide-resistant respiration and expression of alternative oxidase in mung bean using antibodies prepared by synthetic polypeptide. Sci Chi Ser C,2001,44 (1):66~72
    Linke B, Bo"rner T. Mitochondrial effects on flower and pollen development. Mitochondrion,2005,5:389~402
    Li SQ, Wan CX, Kong J, et al. Programmed cell death during microgenesis in a Honglian CMS line of rice is correlated with oxidative stress in mitochondria. Funct Plant Biol,2004,31:369~376
    Logacheva MD, Valiejo-Roman CM, Pimenov MG. ITS phylogeny of West Asian Heracleum species and related taxa of Umbelliferae-Tordylieae W.D.J.Koch, with notes on evolution of their psbA-trnH sequences. Plant Syst Evol,2008,270: 139~157
    Lurin C, Andres C, Aubourg S, et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell,2004,16:2089~2103
    Makaroff CA, Apel IJ, Palmer JD. Characterization of radish mitochondrial atpA-associated sequences and relationship with male sterility. Plant Mol Biol, 1990,15:735~746
    Mart CJ, Moneger E, Leaver CJ. Cell-specific regulation of gene expression in mitochondria dunng anther development in sunflower. The Plant Cell,1994,6 (6):811~825
    Martin JA, Grawforf IH. Sevreral types of sterility in Capsicum frutescens. Prot Am Soc Hort Sci,1951,57:335~338
    Mittler R. Oxidation stress, antioxidants and stress tolerance. Trends Plant Sci,2002, 7,405~410
    M(?)ller IM. Plant mitochondria and oxidative stress, electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol,2001,52:561~591
    Moneger R, Smart CJ, Leaver CJ. Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J,1994,13:8~17
    Moscone EA, Lambrou M, Hunziker AT. Giemsa C-banded karyotypes in Capsicum (Solanaceae). Plant Syst Evol,1993,186:213~229
    Musgrave ME, Antanov IJ, Siedow JN. Is male-sterility in plants relate to lack of cyanide-resistant resp iration in tissues?. Plant Sci,1986,44:7~11
    Nagalakshmi N, Prasad MNV. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci, 2001,160:291~299
    Nei M Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad,1979,76 (10):5269~5273
    Newmaster SG, Fazekas AJ, Ragupathy S. DNA barcoding in land plants:evaluation of rbcL in a multigene tiered approach. Can J Bot,2006,84:335~341
    Newmaster SG, Fazekas AJ, Steeves RAD, et al. Testing candidate plant barcode regions in the Myristicaceae. Mol Ecol Resour,2008,8:480~490
    Niesters HG, Goessens WH, Meis JF, et al. Rapid, polymerase chain reaction-based identification assays for Candida species. J Clin Microbiol,1993,31:904~910
    Nishfikaw T, Salomon B, KomatsudaT, et al. Molecular Phylogeny of the genus Hordeum using three chloroplast DNA sequences. Genome,2002,45 (6): 1157~1156
    Noctor G, Foyer CH. Ascorbate and glutathione:Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249~279
    Novak F, Betiacb J, Dubovsky J. Cytoplasmic male sterility in sweet pepper (Capsicum annuum L.). Biol Plant,1971,12:275~280
    Ohta Y. Karyotype analysis of Capsicum species. Seiken Ziho,1962,13:93~99
    Pace NR. A molecular view of microbial diversity and the biosphere. Science,1997, 276:734~740
    Paran I, Aftergoot E, Shifriss C. Variation in Capsicum annuum revealed by RAPD and AFLP markers. Euphytica,1998,99:167~174
    Pennisi E. Wanted:a barcode for plants. Science,2007,318:190~191
    Peterson PA. Cytoplasmically inherited male sterility in Capsicum. Am Nat,1958,92: 111~119
    Picksgill B. Cytogenetics and evolution of Capsicum L. In:T. Tsuchiya and P. K. Gupta (Eds).Chromosome Engineering in Plant:Genetics, Breeding, Evolution, Part B. Elsevier, Amsterdam,1991,139~160
    Pickersgill B. Genetic resources and breeding of Capsicum spp. Euphytica,1997,96: 129~133
    Pickersgill, B. Numerical taxonomic studies on variation and domestication in some species of Capsicum. In:J. G. Hawkes, R. N. Lester and A. D. Skelding (eds.). Academic press, newyork,1979
    Picksgill B. Relationships between weedy and cultivated forms in some species of chili peppers (genus Capsicum). Evolution,1971,25:683~391
    Pickersgill, B. Genetic resources of Capsicum for tropical regions. In:S.K. Green (Ed). Tomato and Pepper Production in the Tropics,1-9. Asian Vegetable Research and Development Center, Taipei,1989
    Pickersgill B, Heiser CB, McNeill J. Numerical taxonomic studies on variation and domestication in some species of Capsicum. In:Hawkes J G, Lester R N, Skelding A D, eds. The biology and taxonomy of the Solanaceae. New York: Academic Press Inc,1979,679~700
    Prince JP, Fernando LF, Tanksley SD. Restriction fragment length polymorphism and genetic distance among Mexican accessions of Capsicum. Genome,1992,35: 726~732
    Prince JP, Lackney VK, Angeles C, et al. A survey of DNA polymorphism within the genus Capsicum and the fingerprinting of pepper cultivars. Genome,1995,38: 224~231
    Pruitt KD, Hanson MR. Transcription of the petnnia mitochnodrial CMS-associated Pcflocus in male sterile and fertility-restored line. Mol Gen Genet,1991,227 (3): 348~355
    Ranket TA, Geiger JM, Kemnedy SC, et al. Molecular phylogenetics and devolution of the endemic Haiian genus Adenphorus (Gram mitidaceae). Mol Phylogenet Evol,2003,28(1):131~151
    Rebeille F, Macherel D, Mouillon JM, et al. Folate biosynthesis in higher plants, Purification and molecular cloning of bifunctional 6-hydroxymethyl-7, 8-dihydropterin pyrophosphokinase-7,8-dihydropteroate synthase localized in mitochondria. EMBO J,1997,16:947~957
    Rizhsky L, Hallak-Herr E, Van Breusegem F, et al. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J,2002,32: 329~342
    Rodriguez JM, Berke T, Engle L, et al. Variation among and within Capsicum species revealed by RAPD markers. Theor Appl Genet,1999,99:147~156
    Rudneva Ⅱ. Antioxidant system if Black Sea animals in early development. Comp Biochem Physiol C,1999,112:265~271
    Schnable PS, Wise RP. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci,1998,3:175~180
    Seelig GF, Meister A. y-Glutamylcysteine synthetase from erythrocytes. Methods Enzymol,1985,113:390~392
    Shaw J, Lickey EB, Beck JT, et al. The tortoise and the hare. Ⅱ. Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot, 2005,92:142~166
    Stewart CJ, Kang B, Mazourek M, et al. The Punl gene for pungency in pepper encodesa putative acyltransferase. Plant J,2005,42:675-688
    Stoeckle M, Waggoner P, Ausubel J. Identifying species by DNA barcoding life:ten reasons. Consortium for the Barcode of Life,2004,1~2
    Sweetlove LJ, Heazlewood JL, Herald V, et al. The impact of oxidative stress on Arabidopsis mitochondria. Plant J,2002,32:891~904
    Taberlet P, Gielly L, Pauton G, et al. Universal Primers for amplification of three nonconding regions of chloroplast DNA. PI Molec Biol,1991,17:1105~1109
    Tang HV, Chang R, Pring DR. Cosegregation of single genes associated with fertility restoration and transcrip processing of sorghum mitochnodrial orfJ07 and urf209. Genetics,1998,150 (1):383~391
    Tang HV, Pring DR, Shaw LC, et al. Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile Sorghum. Plant J,1996,10:123~133
    Taylor NL, Day DA, Millar AH. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J Biol Chem, 2002,277:42663~42668
    Tong Nankui. Genetic relationships among Capsicum species. PhD, New Mexico State University,1998
    Touzet P, Budar F. Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility. Trends Plant Sci,2004,9:568~570
    Vincent S, Vian JM, Carlotti MP. Partial sequencing of the cytochrome oxydase b subunit gene I:A tool for the identification of European species of blow flies for postmortem interval estimation. J Forensic Sci,2000,45:820~823
    Vischi M, Arzenton F, De Paoli E, et al. Identification of wild species of sun flower by a specific plastid DNA sequence. Helia,2006,29 (45):11~18
    Walbot V. RNA editing fixes problems in plant mitochondrial transcripts. Trends Genet,1991,7 (2):37~39
    Wan C, Li S, Wen L, Kong J, et al. Damage of oxidative stress on mitochondria during microspores development in Honglian CMS line of rice. Plant Cell Rep, 2007,26:373~382
    Wang JY, Fan MJ. Comparison on microsatellite DNA and RAPD markers for germplasm identification of Capsicum annuum. J Agr Res China,1998,47 (3): 267~282
    Wang JY, Fan MJ, Lo SF. Study on the molecular markers of Capsicum wild domesticated species using RAPD analysis. J Agr Res China,1996,45 (4): 370~381
    Wang LH, Zhang BX, Lefebvre V, et al. QTL analysis of fertility restoration in cytoplasmic male sterile pepper. Theor Appl Genet,2004,109:1058~1063
    Ward RD, Zemlak TS, Innes BH, et al. DNA barcoding Australia's fish species. Philos Trans R Soc Lond B Biol Sci,2005,360:1847~1857
    Wells JD, Pape T, Sperling FAH. DNA-based identification and molecular systematics of forensically important sarcophagidae (Diptera). J Forensic Sci,2001,46: 1098~1102
    Wells JD, Sperling FAH. DNA-based identification of forensically important Chrysomyinae (Diptera:Calliphoridae). Forensic Sci Int,2001,120:110~115
    Wintz H, Chen HC, Sutton CA, et al. Expression of the CMS-associated urf sequence in transgenic petunia and tobacco. Plant Mol Biol,1995,28:83~92
    Wise RP, Pring DR. Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants, Light at the end of the tunnel. Proc Natl Acad Sci USA, 2002,99(16):10240~10242
    Wodehouse RP. Pollen grains. New York:McGraw-Hil Book Co Inc,1935,323~340
    Yamaguchi H, Kakiuchi H. Electroporetic analysis of mitochondrial DNA from mormal and male-sterile cytoplasms in rice. Jpn J Genet,1983,58:607~611
    Young EG, Hanson MR. A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell,1987,50:41~49
    Yoo HS, Eah JY, Kim JS, et al. DNA barcoding Korean birds. Mol Cells,2006,22: 323~327
    Zabala G, Gabay-Laughnan S, Laughnan JR. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics,1997,147:847~860
    Zhang B, Huang S, Yang G et al. Two RAPD markers linked to a major fertility restorer gene in pepper. Euphytica,2000,113:155~161
    Zhang WH, Chen ZD, LI JH, et al. Phylogeny of the Dipsacales Si. Based on chloroplast trnL-F and TrnF sequences. Mol Phylogenet Evol,2003,26 (2): 176~189