木质素磺酸盐在界面上的动态吸附特性及调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲聚合物是指分子中同时存在对水相和油相具有亲和性链段的高分子化合物。因其兼具高分子和两亲分子结构的双重性能,在保护胶体、分散及絮凝作用等方面有独特的优势,被广泛应用于日用化工、涂料工业、医药、纺织印染、建筑业等多个领域。近年来,由于国内外日益重视化学品对环境和人体的危害,原料来自于可再生资源的木质素系两亲聚合物已经逐渐成为研究热点。但相对于结构规整的嵌段共聚物和接枝共聚物而言,针对木质素两亲无规聚合物的研究较为薄弱。
     目前,木质素两亲聚合物主要来自于两大造纸制浆副产品:一是传统的亚硫酸法制浆废液的木质素磺酸盐,由于在酸法制浆过程中引入了磺酸基,其具有较好的水溶性;二是烧碱法或硫酸盐化学制浆废液回收的碱木质素,因分子中的亲水性基团较少而仅溶于碱性溶液,但可通过磺化反应转化为水溶性良好的木质素磺酸盐。
     木质素两亲聚合物最大的用途之一是作为分散剂,其对固体颗粒的分散性能主要是依靠在颗粒表面上的吸附来实现的,因此,吸附特性和机理的阐明,尤其是吸附形态和吸附规律的研究,对木质素两亲聚合物的改性及表面物化性能的提高均有重要的指导意义。但由于木质素两亲聚合物分子结构和物理化学性质的不均一性给性能表征带来了很大困难,而且分布不均匀的亲水疏水链段也使得聚合物分子间、聚合物分子与溶剂分子间及聚合物分子与颗粒间的作用力更为复杂,对木质素系两亲无规聚合物的研究仍有大量基本理论问题没有得到解决。
     本论文以酸法制浆废液中回收的木质素磺酸钠为原料,研究了其在气/液界面上的动态吸附行为,不同pH条件下木质素磺酸钠在氧化铝颗粒上的吸附机理,吸附构型对氧化铝悬浮液体系的分散性能的影响,探索了直链醇对木质素磺酸钠在界面吸附性能的影响规律及对木质素磺酸盐分散的增效作用机理;以竹浆造纸制浆黑液中的碱木质素为原料,制备了高磺化度高分子量的接枝磺化碱木质素,考察了其对氧化铝颗粒在水溶液中的分散效能,揭示其吸附分散作用机理,研究结果可为木质素两亲聚合物的应用提供基础数据和理论指导。
     论文采用轴对称液滴形状测定法研究了不同浓度木质素磺酸钠溶液在气/液界面上的动态吸附行为。结果表明,木质素磺酸钠在气/液界面上的吸附是一个缓慢的过程,其吸附效率主要依赖于木质素磺酸钠聚集体在溶液中的解聚速率;由Langmuir、Frumkin、modified Frumkin及modified Flory-Huggins方程的模拟结果可知,木质素磺酸钠在界面上的吸附量较少且吸附构型疏松,吸附层中的分子与分子间的相互作用很弱以至于可忽略不计,进一步建立了估算其溶液动态表面张力的数学模型。
     通过Langmuir-Blodgett膜天平(LB膜天平)研究了木质素磺酸钠在气/液界面上的成膜特性。在合适的条件下(溶液浓度为10g/L,亚相为0.01mol/L CdCl_2,进样量为50μL,划障速率为10mm/min),可以将木质素磺酸钠Langmuir膜成功地转移沉积到亲水性石英基材上;而直链醇对木质素磺酸钠在界面上的吸附具有增效作用,促使更多的木质素磺酸钠分子被吸附于界面,使分子在界面上的排列更加有序。
     通过流变特性、吸附等温线、zeta电位、XPS等测试技术,研究了不同pH条件下木质素磺酸钠在Al_2O_3颗粒表面上的吸附特性,建立了相应的吸附模型,考察了木质素磺酸钠对高固含量悬浮液的分散降黏性能和作用机理。结果表明:当pH值较低时,随着浓度的增大,木质素磺酸钠以聚集体的形式吸附于Al_2O_3颗粒表面,吸附等温线符合Freundlich方程;而当pH值较高时,木质素磺酸钠趋向于以疏松的单分子吸附于颗粒表面,其吸附等温线符合Langmuir方程;在所研究的pH范围内,氢键对吸附没有贡献;木质素磺酸钠在Al_2O_3颗粒表面的吸附作用力与Al_2O_3颗粒的等电点pHIEP有关,当pH pHIEP时,Al3+-π作用是主要的吸附作用力;当pH pHIEP时,颗粒间的分散主要依靠静电排斥作用。
     通过zeta电位仪、表面电荷密度仪和TEM研究了直链醇对木质素磺酸钠聚集态的影响,得出直链醇的非极性端可插入到木质素磺酸钠分子的碳氢疏水核内,溶解于其分子中,有助于木质素磺酸钠聚集体在溶液中解聚,使包裹的带电基团裸露出来,提高了木质素磺酸钠分子表面的负电性。吸附等温线、zeta电位和XPS等测试结果表明,直链醇的掺入有效地增强了固体颗粒间的静电排斥作用,当溶液条件为酸性或中性时,直链醇的存在有利于木质素磺酸钠对Al_2O_3悬浮液的分散稳定;但当溶液条件为碱性时,直链醇的影响几乎可以忽略不计。
     以竹浆造纸黑液中的碱木质素为主要原料,通过磺化和缩聚反应制备了具有高磺化度高分子量的碱木质素改性产物SBAL,采用TEM、1H NMR、IR、GPC和自动电位滴定等测试技术对其结构和官能团的含量进行了表征,并研究了SBAL对Al_2O_3颗粒在水溶液中的分散机理和吸附特性。结果表明:SBAL的重均分子量达到了24880Da,是碱木质素的7.38倍,磺化度为2.70mmol/g;SBAL分子内部为木质素的疏水骨架,表面为带亲水性官能团的长侧链,亲水官能团随pH的增加而逐渐电离,使其在水溶液中由卷曲状态逐渐伸展;其在Al_2O_3颗粒表面的吸附特性与Al_2O_3颗粒的等电点pHIEP有关,当pH pHIEP时,静电吸附作用减弱,吸附质量减小,吸附层结构疏松,对颗粒表面的负电性影响程度降低;在所研究的pH范围内(pH=3~12),SBAL对Al_2O_3悬浮液有较好的分散效能,低用量时以静电排斥作用为主,高用量时以空间位阻为主。
Amphiphilic polymer refers to the macromolecular compound which has both thehydrophilic and hydrophobic properties in the molecular chain. The better dual performances(polymer and amphiphilic molecular structure) may play an important role in protectingcolloid, dispersing, flocculating and so on, and it has been widely used in various industrialprocesses such as domestic chemicals, coatings technology, medicines, textile and dyeingindustry, architecture, etc. Recently, as the domestic and overseas people increasing value theenvironmental pollution and hazards to human health caused by chemical products, ligninamphiphilic polymer has been attracted a lot of attention and become one of the hot topics inacademic areas for the characteristics of renewable and biodegradability.
     The lignin amphiphilic polymers are mainly from two kinds of byproducts in thepapermaking industry:(1) lignosulfonates, from the traditional sulphite-pulping method, is awater soluble polyelectrolyte owing to the introduced sulfonic group;(2) alkaline lignin,comes from the soda chemi-pulping or kraft pulping, is only dissolved in the alkaline solutionbut can be modified by the sulfonation reaction to improve the water solubility, reactiveactivity and dispersing performance.
     One of the largest applications of the lignin amphiphilic polymers is used as the dispersantin the suspension, and the dispersing performance mainly depends on the adsorptionbehaviors of lignin amphiphilic polymers on the surface of solid particles, thus research andenunciation of the adsorption characteristics and the adsorption mechanisms, especially forthe adsorption configuration and the adsorption law, has important instructive significanceand reference value on the modification of lignin amphiphilic polymers and the improvementof its surface physicochemical property. However, the heterogeneity of molecular structure oflignin amphiphilic polymers not only brings difficulties to characterization of property, butmakes the molecular interactions more complex, including the interaction between polymerand polymer, the interaction between of polymer and solvent molecule, and the interactionbetween polymer and solid surface. Therefore, until now, for the lignin amphiphilic polymers,there are still a lot of basic theoretical problems need to be resolved.
     In the thesis, sodium lignosulfonate (SL) was used as the material, the dynamic adsorptionbehavior of SL on the air-water interface was studied, and the adsorption driving force of SLon Al_2O_3particles surface at different pH values was explored, and the effect of molecularconfiguration on the dispersing performance of Al_2O_3suspension was analyzed. Based on the results, the influences of straight-chain alcohols on the dispersion performance and adsorptionproperty of SL on the Al_2O_3particles were studied. Moreover, a sulfonated lignin-basedmacromolecule polymer, SBAL, was prepared by chemical reaction using alkali lignin fromthe alkaline pulping spent liquor of bamboo as main material. The adsorption properties andthe dispersion efficiencies of SBAL on the Al_2O_3particles in aqueous solution wereinvestigated, and the research results can provide basic data and theoretical guides for theindustrial application of the lignin amphiphilic polymers.
     The dynamic adsorption behavior of SL aqueous solutions with different concentration atthe air-water interface was investigated using an axisymmetric drop shape analysis-profilemethod. The result showed that the adsorption of SL at the air-water interface was a slowprocess, and the adsorption efficiency depended largely on the depolymerization rate of SLaggregate in the aqueous solution. The data were analyzed by the Langmuir, Frumkin,modified Frumkin and modified Flory-Huggins equations, and the results indicated that theadsorption amount of SL at the interface was smaller, and the molecular configuration of SLwas looser, and the intermolecular force of SL in the adsorption layer was very weak whichcan be negligible. The expression for estimating the dynamic surface tension of SL aqueoussolution was also presented.
     The film-forming characteristic of SL at the air-water interface was investigated byLangmuir-Blodgett (LB) technique. The results showed that the Langmuir film of SL can betransferred successfully onto the hydrophilic quartz substrate under the proper experimentalconditions: the concentration of SL was10g/L, the subphase solution was the0.01mol/LCdCl_2, the sample volume was50μL and the compression speed was10mm/min. Besides, itwas confirmed that the straight-chain alcohols can improve the adsorption amount of SL at theair-water interface, the synergistic effect between SL molecules and straight-chain alcoholsmade rearrangement of the SL molecular structure at the interface more ordered.
     The adsorption behaviors and dispersion efficiencies of SL on Al_2O_3particles at differentpH values were investigated by UV-Vis spectroscopy, zeta potential, X-ray photoelectronspectroscopy (XPS) and rheological measurements. Results showed that at low pH values, asconcentration increased, SL adsorbed on the Al_2O_3particles in the form of aggregate and theadsorption isotherms belonged to the Freundlich equation; at high pH values, SL adsorbed inthe form of loose single-molecular configuration and the adsorption isotherms belonged to theLangmuir equation. At pH3~11, the adsorption was not affected through addition of urea,ruling out hydrogen bond as the controlling factor. The adsorption mechanism of SL on theAl_2O_3particles was related to the isoelectric point of Al_2O_3. The main driving force was considered as the synergistic effect of the electrostatic interaction and the Al3+-π interactionwhen pH pHIEP. The dispersing mechanism was mainly attributed to the steric hindrance (pH pHIEP) owing to the differences of adsorbedconfiguration.
     The effect of straight-chain alcohols on the aggregation of SL in the aqueous solution wasstudied by the zeta potential, surface charge density and transmission electron microscope(TEM). The results showed that nonpolar end-group of the straight-chain alcohols could insertinto the hydrophobic core of SL molecule or aggregates, the straight-chain alcohols helped theSL aggregation depolymerize in the aqueous solution, made the wrapped hydrophilic groupsexposed and improved the electronegativity of SL molecules. The adsorption isotherms, zetapotential and XPS results showed that the addition of straight-chain alcohols could increaseeffectively the electrostatic repulsive force between Al_2O_3particles. When suspensions werecarried on in the acidity or neutral solution, the straight-chain alcohols were favorable for theAl_2O_3particles dispersion in the aqueous solution, however, the effect of the straight-chainalcohols could be almost negligible when the suspension in the alkaline solution.
     SBAL, with higher sulfonation degree and higher molecular weight, was prepared by thesulfomethylation, etherification and polycondensation reactions. TEM and1H NMR resultsshowed that the structure of SBAL was loose spherical, the center of which was thehydrophobic skeletons of lignin, the long side chains with sulfonic and carboxyl groups weredistributed on its surface. GPC and potentiometric titration results showed that the MwofSBAL reached24880Da,7.38times of the alkali lignin, and the sulfonic group content was2.70mmol g1. The adsorption properties and the dispersion efficiencies of SBAL wereinvestigated by means of adsorption isotherms, XPS, zeta potential and rheologicalexperiments. At pH3~12, SBAL as the dispersant can remarkably reduce the viscosity ofAl_2O_3suspension. The sulfonic, carboxyl and phenolic hydroxyl group of SBAL were ionizedgradually as pH increasing, which made the SBAL molecule chain spread well in the alkalicondition. With the increase of pH, the adsorption amount of SBAL on the Al_2O_3particlesdecreased and the adsorption configuration from compact became loose. When pH pHIEP, non-static specific adsorption dominated the main force. Whenthe dosage of SBAL was less than the critical dosage (0.5%), SBAL generated an electrostaticrepulsion between particles by monolayer adsorption on Al_2O_3surface, however, when the dosage was more than the critical dosage, SBAL absorbed on Al_2O_3particles in the form ofaggregation to improve the steric hindrance.
引文
[1] Luo, Y.L., Zhang, L.L., Xu, F. Thermal-sensitive PBMA-b-PNIPAAm amphiphilicblock copolymers brushes and their assembling micelles[J]. Journal of Nanoscienceand Nanotechnology,2012,12(3):2332-2336
    [2] Ogata, Y., Iwano, M., Mogi, T., et al. Aggregation behavior of amphiphilic randomcopolymer of2-(acrylamido)-2-methylpropanesulfonic acid and tris (trimethylsiloxy)silylpropylmethacrylate in aqueous solution[J]. Journal of Polymer Science Part B:Polymer Physics,2011,49(23):1651-1659
    [3]黄宏度,曹洁,谢东海.聚合物对石油羧酸盐界面活性的影响[J].油田化学,2012,29(1):90-93
    [4] Reuter, S., Hofmann, A.M., Busse, K., et al. Langmuir and Langmuir-Blodgett filmsof multifunctional, amphiphilic polyethers with cholesterol moieties[J]. Langmuir,2010,27(5):1978-1989
    [5]阳建斌.高分子与小分子物质在空气/水界面上的混合单分子膜[D].成都:四川大学,2007
    [6] Chen, Y., Li, W., Zhang, X. Adsorption behavior of carboxymethyl starch on titaniumdioxide surfaces[J]. Colloid Journal,2011,73(2):267-274
    [7]刘付胜聪,肖汉宁,李玉平.聚丙烯酸在纳米TiO2表面吸附行为的研究[J].高等学校化学学报,2005,26(4):742-746
    [8] Zhang, R., Somasundaran, P. Advances in adsorption of surfactants and their mixturesat solid/solution interfaces[J]. Advances in Colloid and Interface Science,2006,123-126(16):213-229
    [9]邓书端,李向红,孙金. H2SO4中聚乙二醇20000在刚表面的吸附及缓蚀作用[J].清洗世界,2011,27(4):10-14
    [10]卢其明,孙克君,廖宗文.不同分子质量聚乙二醇在蒙脱石层间的吸附作用[J].矿物学报,2005,24(4):355-358
    [11] Wang, H.L., Chen, J.L., Zhang, Q.X. Adsorption of an amphoteric aromatic compound(p-aminobenzoic acid) onto different polymeric adsorbents[J]. Adsorption Science&Technology,2006,24(1):17-28
    [12] Wang, H.L., Fei, Z.H., Chen, J.L., et al. Adsorption thermodynamics and kineticinvestigation of aromatic amphoteric compounds onto different polymericadsorbents[J]. Journal of Environmental Sciences,2007,19(11):1298-1304
    [13] Weng, W.H., Hsu, K.C., Sheen, Y.N. A water-soluble amphoteric copolymer: synthesisand its dispersion properties on cement particles[J]. Journal of Applied PolymerScience,2010,118(3):1313-1319
    [14] Sato, T., Ruch, R.J.聚合物吸附对胶态分散稳定性的影响[M].江龙,李智敏,&耿燕.北京:科学出版社,1988:31-32
    [15]张延霖.木素磺酸盐用作水煤浆添加剂的性能及其分散稳定机理研究[D].广州:华南理工大学,2005
    [16]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005
    [17]张玉亭,吕彤.胶体与界面化学[M].北京:中国纺织出版社,2008
    [18] Wu, L., Huang, Y., Wang, Z., et al. Interaction and dispersion stability of aluminasuspension with PAA in N′, N-dimethylformamide[J]. Journal of the EuropeanCeramic Society,2010,30(6):1327-1333
    [19] Ramzi Ben Romdhane, M., Baklouti, S., Bouaziz, J., et al. Dispersion of Al2O3concentrated suspensions with new molecules able to act as binder[J]. Journal of theEuropean Ceramic Society,2004,24(9):2723-2731
    [20] Kamiya, H., Fukuda, Y., Suzuki, Y., et al. Effect of polymer dispersant structure onelectrosteric interaction and dense alumina suspension behavior[J]. Journal of theAmerican Ceramic Society,1999,82(12):3407-3412
    [21] Davies, J., Binner, J.G.P. The role of ammonium polyacrylate in dispersingconcentrated alumina suspensions[J]. Journal of the European Ceramic Society,2000,20(10):1539-1553
    [22] Wu, L., Huang, Y., Liu, L., et al. Interaction and stabilization of DMF-based aluminasuspensions with citric acid[J]. Powder Technology,2010,203(3):477-481
    [23] De Riccardis, M.F., Carbone, D., Rizzo, A. A novel method for preparing andcharacterizing alcoholic EPD suspensions[J]. Journal of colloid and interface science,2007,307(1):109-115
    [24] Liu, Y., Gao, L. Dispersion of aqueous alumina suspensions using copolymers withsynergistic functional groups[J]. Materials Chemistry and Physics,2003,82(2):362-369
    [25] Baklouti, S., Romdhane, M.R.B., Boufi, S., et al. Effect of copolymer dispersantstructure on the properties of alumina suspensions[J]. Journal of the EuropeanCeramic Society,2003,23(6):905-911
    [26] Xiao, B., Sun, X.F., Sun, R.C. Chemical, structural, and thermal characterizations ofalkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw,and rice straw[J]. Polymer Degradation and Stability,2001,74(2):307-319
    [27]蒋挺大.木质素[M].北京:化学工业出版社,2008
    [28]朱莉,罗学刚.脱磺对亚硫酸盐法制浆废液中木质素提取的影响[J].中华纸业,2008,29(2):33-35
    [29]王华,陈明强,张晔, et al.木质素分离研究进展[J].广州化工,2012,40(6):7-9
    [30] Rezanowich, A., Goring, D.A.I. Polyelectrolyte expansion of a lignin sulfonatemicrogel[J]. Journal of Colloid Science,1960,15(5):452-471
    [31] Rezanowich, A., Yean, W.Q., Goring, D.A.I. High resolution electron microscopy ofsodium lignin sulfonate[J]. Journal of Applied Polymer Science,1964,8(4):1801-1812
    [32] Luner, P., Kempf, U. Properties of lignin monolayers at the air-water interface[J].Tappi,1970,532069-2076
    [33] Goring, D.A.I., Vuong, R., Gancet, C., et al. The flatness of lignosulfonatemacromolecules as demonstrated by electron microscopy[J]. Journal of AppliedPolymer Science,1979,24(4):931-936
    [34] Gundersen, S.A., Sj blom, J. High-and low-molecular-weight lignosulfonates andKraft lignins as oil/water-emulsion stabilizers studied by means of electricalconductivity[J]. Colloid&Polymer Science,1999,277(5):462-468
    [35] Myrvold, B.O. The polyelectrolyte behavior of randomly branched lignosulfonates[J].Tappi,2007,6(11):10-14
    [36] Myrvold, B.O. A new model for the structure of lignosulphonates:: Part1. Behaviourin dilute solutions[J]. Industrial Crops and Products,2008,27(2):214-219
    [37] Kamoun, A., Jelidi, A., Chaabouni, M. Evaluation of the performance of sulfonatedesparto grass lignin as a plasticizer-water reducer for cement[J]. Cement and ConcreteResearch,2003,33(7):995-1003
    [38] Pei, M., Li, C., Wang, Z., et al. The synthesis of carboxyl calcium lignosulfonate andits applications as water reducer[J]. Journal of Dispersion Science and Technology,2008,29(4):530-534
    [39] Ansari, A., Pawlik, M. Floatability of chalcopyrite and molybdenite in the presence oflignosulfonates. Part I. Adsorption studies[J]. Minerals Engineering,2007,20(6):600-608
    [40] Ansari, A., Pawlik, M. Floatability of chalcopyrite and molybdenite in the presence oflignosulfonates. Part II. Hallimond tube flotation[J]. Minerals Engineering,2007,20(6):609-616
    [41] Yang, D., Qiu, X., Zhou, M., et al. Properties of sodium lignosulfonate as dispersant ofcoal water slurry[J]. Energy Conversion and Management,2007,48(9):2433-2438
    [42] Zhou, M., Qiu, X., Yang, D., et al. Properties of different molecular weight sodiumlignosulfonate fractions as dispersant of coal-water slurry[J]. Journal of DispersionScience and Technology,2006,27(6):851-856
    [43] Savitskii, D.P., Makarov, A.S., Zavgorodnii, V.A. Rheological properties of water-coalslurries based on brown coal in the presence of sodium lignosulfonates and alkali[J].Solid Fuel Chemistry,2009,43(5):328-332
    [44] Li, Z., Pang, Y., Ge, Y., et al. Evaluation of steric repulsive force in the aqueousdispersion system of dimethomorph powder with lignosulfonates via X-rayPhotoelectron Spectroscopy[J]. The Journal of Physical Chemistry C,2011,115(50):24865-24870
    [45] Byman-Fagerholm, H., Mikkola, P., Rosenholm, J.B., et al. The influence oflignosulphonate on the properties of single and mixed Si3N4and ZrO2suspensions[J].Journal of the European Ceramic Society,1999,19(1):41-48
    [46] Palmqvist, L., Lyckfeldt, O., Carlstrom, E., et al. Dispersion mechanisms in aqueousalumina suspensions at high solids loadings[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,274(1-3):100-109
    [47] Dilling, P., Huguenin, S.B. High activity sulfonated lignin dye dispersants. New Yorkpatent (1999).
    [48]吕晓静,杨军.木质素的高附加值应用新进展[J].化工进展,2001,20(5):10-14
    [49]储富强,洪建国.木质素在高分子领域中的应用[J].林产化学与工业,2003,23(3):88-92
    [50]周明松,邱学青,杨东杰, et al.麦草碱木质素制备水溶性接枝共聚物GCL3S[J].高分子材料科学与工程,2009,25(1):145-148
    [51] Zhou, M., Kong, Q., Pan, B., et al. Evaluation of treated black liquor used asdispersant of concentrated coal-water slurry[J]. Fuel,2010,89(3):716-723
    [52] Ouyang, X., Ke, L., Qiu, X., et al. Sulfonation of alkali lignin and its potential use indispersant for cement[J]. Journal of Dispersion Science and Technology,2009,30(1):1-6
    [53]陈啸,成有为,李希.甲醇降解碱木质素[J].化学反应工程与工艺,2012,28(2):129-137
    [54]张统明,徐广宇,周宇鹏, et al.改性碱木质素表面活性剂在三次采油中的应用研究[J].油气井测试,2004,13(1):12-14
    [55] Cerrutti, B.M., de Souza, C.S., Castellan, A., et al. Carboxymethyl lignin as stabilizingagent in aqueous ceramic suspensions[J]. Industrial Crops and Products,2012,36(1):108-115
    [56] Zhao, Y., Xu, Z., Li, Z., et al. Synthesis and interfacial tension behavior of heavy alkylbenzene sulfonates[J]. Petroleum Science and Technology,2006,24(7):821-827
    [57] Homma, H., Kubo, S., Yamada, T., et al. Conversion of technical lignins toamphiphilic derivatives with high surface activity[J]. Journal of Wood Chemistry andTechnology,2010,30(2):164-174
    [58] Yan, M., Yang, D., Deng, Y., et al. Influence of pH on the behavior of lignosulfonatemacromolecules in aqueous solution[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2010,371(1-3):50-58
    [59] Jiao, Y., Qiao, W., Li, Z., et al. A study on the modified lignosulfonate from lignin[J].Energy Sources,2004,26(4):409-414
    [60]李干佐,牟建海,隋华.表面活性剂溶液的动态表面张力与吸附动力学研究(待续)[J].日用化学工业信息,1999,(4):21-27
    [61]何平笙.二维状态下的聚合:单分子膜和Langmuir-Blodgett膜的聚合[M].合肥:中国科学技术大学出版社,2008:6-7
    [62] Constantino, C.J.L., Juliani, L.P., Botaro, V.R., et al. Langmuir-Blodgett films fromlignins[J]. Thin Solid Films,1996,284:191-194
    [63] Constantino, C.J.L., Dhanabalan, A., Curvelo, A.A.S., et al. Preparation andcharacterization of composite LB films of lignin and cadmium stearate[J]. Thin SolidFilms,1998,327:47-51
    [64] Constantino, C.J.L., Dhanabalan, A., Cotta, M.A., et al. Atomic force microscopy(AFM) investigation of Langmuir-Blodgett (LB) films of sugar cane bagasse lignin[J].Holzforschung,2005,54(1):55-60
    [65] Pasquini, D., Balogh, D.T., Antunes, P.A., et al. Surface morphology and molecularorganization of lignins in Langmuir-Blodgett films[J]. Langmuir,2002,18(17):6593-6596
    [66] Pereira, A.A., Martins, G.F., Antunes, P.A., et al. Lignin from sugar cane bagasse:extraction, fabrication of nanostructured films, and application[J]. Langmuir,2007,23(12):6652-6659
    [67]王一兵,吴卫红,芦菲, et al. TMB·TCNQ和硬脂酸混合LB膜的制备及表征[J].光谱学与光谱分析,2008,28(005):1140-1144
    [68]徐丽娜.富勒烯LB膜的研究进展[J].广东化工,2010,37(2):200-201
    [69]王文韵,侯士法.荧光标记十八胺LB膜的光谱研究[J].发光快报,1994,15(1):50-55
    [70]王科志,崔大付.四(α-噻吩甲酰三氟丙酮)合铕(Ⅲ)酸十六烷基吡啶LB膜的研究[J].高等学校化学学报,1993,14(2):150-153
    [71] Ratinac, K.R., Standard, O.C., Bryant, P.J. Lignosulfonate adsorption on andstabilization of lead zirconate titanate in aqueous suspension[J]. Journal of Colloid andInterface Science,2004,273(2):442-454
    [72] Fagerholm, H., Johansson, L.S., Graeffe, M., et al. Surface charge and viscosity ofmixed Si3N4-Y2O3suspensions containing lignosulphonate[J]. Journal of the EuropeanCeramic Society,1996,16(6):671-678
    [73]邱学青,吴渊,邓永红, et al.不同pH条件下木质素磺酸钠的静电逐层自组装研究[J].高分子学报,2010,(6):699-704
    [74] Heath, D., Tadros, T.F. Influence of molecular weight and electrolyte concentration onthe adsorption of lignosulphonates on polystyrene latex particles and the stability ofthe dispersion[J]. Colloid&Polymer Science,1983,261(1):49-57
    [75] Bai, B., Wu, Y., Grigg, R.B. Adsorption and desorption kinetics and equilibrium ofcalcium lignosulfonate on dolomite porous media[J]. The Journal of PhysicalChemistry C,2009,113(31):13772-13779
    [76] Tadros, T.F. Adsorption of lignosulphonates on polystyrene latex particles fromaqueous solution and flocculation of the dispersions by electrolytes[J]. Colloid&Polymer Science,1980,258(4):439-446
    [77] Ouyang, X., Deng, Y., Qian, Y., et al. Adsorption characteristics of lignosulfonates insalt-free and salt-added aqueous solutions[J]. Biomacromolecules,2011,(12):3313-3320
    [78] Qiu, X., Yan, M., Yang, D., et al. Effect of straight-chain alcohols on thephysicochemical properties of calcium lignosulfonate[J]. Journal of Colloid andInterface Science,2009,338(1):151-155
    [79] Wang, J., Somasundaran, P., Nagaraj, D.R. Adsorption mechanism of guar gum atsolid-liquid interfaces[J]. Minerals Engineering,2005,18(1):77-81
    [80] Holmberg, K., J nsson, B., Kronberg, B., et al. Surfactants and polymers in aqueoussolution[M]. Chichester: John Wiley&Sons, Ltd.,2002:410-414
    [81]张娜娜,杨东杰,楼宏铭, et al.木质素系高效分散剂对水煤浆制浆性能的影响[J].煤炭转化,2008,31(1):42-47
    [82]邱学青,易聪华,杨东杰, et al.不同分子质量木质素磺酸钙缓蚀性能研究[J].林产化学与工业,2005,25(4):100-104
    [83]邱学青,杨东杰,欧阳新平.木素磺酸盐在固体颗粒表面的吸附性能[J].化工学报,2003,54(8):1155-1159
    [84] Deng, Y., Zhang, W., Wu, Y., et al. Effect of molecular weight on the adsorptioncharacteristics of lignosulfonates[J]. The Journal of Physical Chemistry B,2011,115(49):14866-14873
    [85]敖先权.磺化改性木素在水煤浆中的分散作用研究[D].成都:四川大学,2002
    [86]李爱阳,唐有根.改性木质素磺酸盐混凝土减水剂的研究[J].中华纸业,2007,28(2):63-66
    [87]郑大锋.减水剂对盾构砂浆性能的影响及作用机理研究[D].广州:华南理工大学,2006
    [88]王哲,李忠正,高鸿海.改性木质素磺酸钠的混凝土减水性能及其结构特性[J].中华纸业,2008,28(11):63-65
    [1]邱学青,吴渊,邓永红, et al.不同pH条件下木质素磺酸钠的静电逐层自组装研究[J].高分子学报,2010,(6):699-704
    [2]严明芳,邱学青,杨东杰, et al.木质素磺酸盐的分离提纯[J].高等学校化学学报,2009,29(11):2312-2316
    [3] Shao, L., Qiu, J., Feng, H., et al. Structural investigation of lignosulfonate dopedpolyaniline[J]. Synthetic Metals,2009,159(17):1761-1766
    [4]韩冬,叶美玲,施良和.水溶性凝胶色谱中的非体积排除效应[J].色谱,1995,13(6):432-436
    [5]罗廉,吴伟志,李杰, et al.凝胶渗透色谱法测定水溶性木质素磺酸盐的分子量[J].色谱,1992,10(6):375-375
    [6]张树彪,乔卫红,李宗石.木质素分散剂相对分子质量分布的测定[J].色谱,2000,18(3):277-279
    [7] Yan, M., Yang, D., Deng, Y., et al. Influence of pH on the behavior of lignosulfonatemacromolecules in aqueous solution[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2010,371(1):50-58
    [8]周明松,黄恺,邱学青, et al.水相电位滴定法测定木质素的酚羟基和羧酸基含量[J].化工学报,2012,63(1):256-263
    [9]赖玉荣,张曾,黄干强, et al. FC法测定木素和纸浆中的酚羟基[J].中国造纸学报,2007,22(1):54-58
    [10]陈夫山,谢来苏.用胶体滴定法测定聚合物的电荷[J].中国造纸,2000,(2):30-34
    [11]吴宗华,田中浩雄.流动电位/胶体滴定法测定聚电解质电荷密度的研究[J].分析科学学报,2001,17(003):207-210
    [12]廖亚玲,刘佳霖,高鸿慈.高分子化合物的摩尔质量与特性粘度[J].数理医药学杂志,2010,23(5):595-597
    [13]项尚林,余人同,王庭慰, et al.粘度法测定高聚物分子量实验的改进[J].实验科学与技术,2009,7(5):37-38
    [14] Firooz, A., Chen, P. Effect of temperature on the surface tension of1-Hexanol aqueoussolutions[J]. Langmuir,2011,27(6):2446-2455
    [15] Prpich, A.M., Biswas, M.E., Chen, P. Adsorption kinetics of aqueous n-alcohols: anew kinetic equation for surfactant transfer[J]. The Journal of Physical Chemistry C,2008,112(7):2522-2528
    [16]赵国玺,朱瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003
    [17]周祖康,顾惕人,马季铭.胶体化学基础[M].北京:北京大学出版社,1987:36-46
    [18]何方,李瑞霞,吴大诚.高分子Langmuir-Blodgett膜的研究进展[J].高分子通报,2009,(9):1-9
    [19]丘纪华.煤粉在热分解过程中比表面积和孔隙结构的变化[J].燃料化学学报,1994,22(3):316-320
    [20]文美兰. X射线光电子能谱的应用介绍[J].化工时刊,2006,20(8):54-56
    [21]郭沁林. X射线光电子能谱[J].物理,2007,36(5):405-410
    [1]刘俊吉,王创业,徐凌.表面活性剂在气/液界面上的吸附动力学[J].化学工业与工程,2005,22(1):4-7
    [2] Yan, M., Yang, D., Deng, Y., et al. Influence of pH on the behavior of lignosulfonatemacromolecules in aqueous solution[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2010,371(1):50-58
    [3]严明芳.木质素磺酸盐的溶液行为及其在气/液和固/液界面上的吸附机理研究[D].广州:华南理工大学,2011
    [4] Homma, H., Kubo, S., Yamada, T., et al. Conversion of technical lignins toamphiphilic derivatives with high surface activity[J]. Journal of Wood Chemistry andTechnology,2010,30(2):164-174
    [5] Ott, J. B., Boerio-Goates, J. Chemical thermodynamics: advanced applications[M].UK and USA: Academic Pr,2000.
    [6]李本刚,陈正国.表面活性剂溶液动态表面张力及吸附动力学研究[J].化学进展,2005,17(2):233-241
    [7] Ouyang, X., Deng, Y., Qian, Y., et al. Adsorption characteristics of lignosulfonates insalt-free and salt-added aqueous solutions[J]. Biomacromolecules,2011,(12):3313-3320
    [8] Yan, M., Yang, D., Deng, Y., et al. Influence of pH on the behavior of lignosulfonatemacromolecules in aqueous solution[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2010,371(1-3):50-58
    [9]邱学青,吴渊,邓永红, et al.不同pH条件下木质素磺酸钠的静电逐层自组装研究[J].高分子学报,2010,(6):699-704
    [10] Contreras, S., Gaspar, A. R., Guerra, A., et al. Propensity of lignin to associate: lightscattering photometry study with native lignins[J]. Biomacromolecules,2008,9(12):3362-3369
    [11] Antunes, P. A., Constantino, C. J. L., Aroca, R. F. Langmuir and Langmuir-Blodgettfilms of perylene tetracarboxylic derivatives with varying alkyl chain length: filmpacking and surface-enhanced fluorescence studies[J]. Langmuir,2001,17(10):2958-2964
    [12]王一兵,吴卫红,芦菲, et al. TMB·TCNQ和硬脂酸混合LB膜的制备及表征[J].光谱学与光谱分析,2008,28(005):1140-1144
    [13] Constantino, C. J. L., Dhanabalan, A., Curvelo, A. A. S., et al. Preparation andcharacterization of composite LB films of lignin and cadmium stearate[J]. Thin SolidFilms,1998,327:47-51
    [14] Constantino, C. J. L., Juliani, L. P., Botaro, V. R., et al. Langmuir-Blodgett films fromlignins[J]. Thin Solid Films,1996,284:191-194
    [15] Qiu, X., Yan, M., Yang, D., et al. Effect of straight-chain alcohols on thephysicochemical properties of calcium lignosulfonate[J]. Journal of Colloid andInterface Science,2009,338(1):151-155
    [1]周明松.麦草碱木质素高效水煤浆分散剂GCL3S的研制及其分散降黏作用机理研究[D].广州:华南理工大学,2007
    [2] Bai, B., Wu, Y., Grigg, R.B. Adsorption and desorption kinetics and equilibrium ofcalcium lignosulfonate on dolomite porous media[J]. The Journal of PhysicalChemistry C,2009,113(31):13772-13779
    [3] Ramzi Ben Romdhane, M., Baklouti, S., Bouaziz, J., et al. Dispersion of Al2O3concentrated suspensions with new molecules able to act as binder[J]. Journal of theEuropean Ceramic Society,2004,24(9):2723-2731
    [4] Yan, M., Yang, D., Deng, Y., et al. Influence of pH on the behavior of lignosulfonatemacromolecules in aqueous solution[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2010,371(1-3):50-58
    [5]邱学青,吴渊,邓永红, et al.不同pH条件下木质素磺酸钠的静电逐层自组装研究[J].高分子学报,2010,(6):699-704
    [6] Wang, J., Somasundaran, P., Nagaraj, D.R. Adsorption mechanism of guar gum atsolid-liquid interfaces[J]. Minerals Engineering,2005,18(1):77-81
    [7] Holmberg, K., J nsson, B., Kronbery, B., et al. Surfactants and polymers in aqueoussolution[M]. England: John Wiley&Sons Ltd,2002:408-416
    [8] Goring, D., Vuong, R., Gancet, C., et al. The flatness of lignosulfonatemacromolecules as demonstrated by electron microscopy[J]. Journal of AppliedPolymer Science,1979,24(4):931-936
    [9] Plank, J., Sachsenhauser, B. Impact of molecular structure on zeta potential andadsorbed conformation of α-allyl-ω-methoxypolyethylene glycol-maleic anhydridesuperplasticizers[J]. Journal of Advanced Concrete Technology,2006,4(2):233-239
    [10] Li, Z., Pang, Y., Ge, Y., et al. Evaluation of steric repulsive force in the aqueousdispersion system of dimethomorph powder with lignosulfonates via X-rayPhotoelectron Spectroscopy[J]. The Journal of Physical Chemistry C,2011,115(50):24865-24870
    [11]郑大锋,邱学青,楼宏铭. XPS测定减水剂吸附层厚度[J].化工学报,2008,59(001):256-259
    [12]伍勇华,何廷树,梁国正, et al.萘系高效减水剂的吸附特性及吸附模型[J].硅酸盐学报,2010,38(4):652-658
    [13] Peng, J., Qu, J., Zhang, J., et al. Adsorption characteristics of water-reducing agents ongypsum surface and its effect on the rheology of gypsum plaster[J]. Cement andConcrete Research,2005,35(3):527-531
    [1]赵国玺,朱瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003
    [2]郑忠,胡纪华.表面活性剂的物理化学原理[M].广州:华南理工大学出版社,1995:166-188
    [3] Matsubara, H., Eguchi, T., Takumi, H., et al. Surface adsorption and aggregateformation of cationic gemini surfactant and long-chain alcohol mixtures[J]. TheJournal of Physical Chemistry B,2009,113(26):8847-8853
    [4]朱瑶.表面活性剂复配规律—极性有机物的规律[J].日用化学工业信息,1988,(3):43-47
    [5] Qiu, X., Yan, M., Yang, D., et al. Effect of straight-chain alcohols on thephysicochemical properties of calcium lignosulfonate[J]. Journal of Colloid andInterface Science,2009,338(1):151-155
    [6]陈夫山,谢来苏.用胶体滴定法测定聚合物的电荷[J].中国造纸,2000,(2):30-34
    [7] Yan, M., Yang, D., Deng, Y., et al. Influence of pH on the behavior of lignosulfonatemacromolecules in aqueous solution[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2010,371(1-3):50-58
    [8]吴渊.自组装法研究木质素磺酸盐吸附[D].广州:华南理工大学,2011
    [9] Ouyang, X., Deng, Y., Qian, Y., et al. Adsorption characteristics of lignosulfonates insalt-free and salt-added aqueous solutions[J]. Biomacromolecules,2011,(12):3313-3320
    [10]江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展,2004,22(12):1258-1264
    [1]国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理,2010,(1):1-8
    [2]万杰.发展浆用竹林,助推竹纸结合[J].林业经济,2008,(3):25-27
    [3] Ouyang, X., Ke, L., Qiu, X., et al. Sulfonation of alkali lignin and its potential use indispersant for cement[J]. Journal of Dispersion Science and Technology,2009,30(1):1-6
    [4] Zhou, M., Kong, Q., Pan, B., et al. Evaluation of treated black liquor used asdispersant of concentrated coal-water slurry[J]. Fuel,2010,89(3):716-723
    [5] Li, Z., Pang, Y., Lou, H., et al. Influence of lignosulfonates on the properties ofdimethomorph water-dispersible granules[J]. BioResources,2009,4(2):589-601
    [6] Cerrutti, B.M., de Souza, C.S., Castellan, A., et al. Carboxymethyl lignin as stabilizingagent in aqueous ceramic suspensions[J]. Industrial Crops and Products,2012,36(1):108-115
    [7] Tejado, A., Pena, C., Labidi, J., et al. Physico-chemical characterization of ligninsfrom different sources for use in phenol-formaldehyde resin synthesis[J]. BioresourceTechnology,2007,98(8):1655-1663
    [8] Kosikova, B., Gregorova, A. Sulfur-free lignin as reinforcing component ofstyrene-butadiene rubber[J]. Journal of Applied Polymer Science,2005,97(3):924-929