压电陶瓷驱动微位移平台的磁滞补偿控制理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科学和纳米技术的飞速发展,压电陶瓷驱动的微位移平台逐渐成为精密制造装备中实现微观操作和加工的核心部件。但是压电陶瓷驱动器存在复杂的非线性磁滞效应,会造成系统精度超差,易产生振荡,甚至闭环系统的不稳定。此外,压电陶瓷驱动微位移平台是含输入磁滞非线性的动力学系统,现有数学模型无法精确描述这种复杂动力学特性,造成基于精确数学模型的控制与优化策略难以直接应用。这给磁滞补偿控制器的设计带来了极大的挑战。
     本学位论文以压电陶瓷驱动微位移平台为对象,深入研究磁滞非线性补偿控制的理论与方法,旨在消除压电陶瓷驱动器的磁滞效应对驱动精度的影响,实现压电陶瓷驱动微位移平台的纳米精度运动控制,扩展压电陶瓷驱动器在精密制造装备中的应用。本论文从系统建模、控制器设计和实验验证三个层次展开,主要研究内容如下:
     提出了增强型Prandtl-Ishlinskii(P-I)磁滞模型和基于此模型的直接逆磁滞补偿方法。针对传统P-I模型只能描述对称磁滞特性的不足,将非线性输入函数引入到传统P-I磁滞建模中,提出一种既能表征对称磁滞特性也能表征非对称磁滞特性的增强型P-I模型,并验证了所提模型的消除属性和一致性属性。在此基础上,直接应用增强型P-I模型描述压电陶瓷驱动器的逆磁滞曲线,将辨识的增强型P-I模型串入到压电陶瓷微驱动平台实现逆磁滞补偿。实验结果验证了增强型P-I模型和基于此模型的直接逆磁滞补偿控制方法的有效性。
     从电路特性、磁滞效应、压电效应和机械振动等多场耦合特性分析入手,提出了完整表征压电陶瓷驱动微位移平台的综合机电动力学模型。为便于模型参数辨识,将综合动力学模型表征为含输入磁滞驱动的三阶线性系统,进而采用线性动力学部分与磁滞非线性部分分离的方法辨识模型参数。为验证模型的有效性,采用增强型P-I模型作为实例描述输入磁滞非线性。实验结果证明了所提的综合动力学模型很好的表征了压电陶瓷驱动微位移平台的动态特性和磁滞效应。为后续鲁棒控制器的设计提供了模型基础。
     设计了无需磁滞逆模型的鲁棒自适应控制器。在建立的系统综合机电动力学模型的基础上,给出了一种磁滞分解的方法表征磁滞非线性效应,将磁滞非线性描述成输入信号的线性函数和依赖于输入信号的有界非线性扰动。结合滑模控制和自适应控制的优点,设计了基于磁滞分解而无需磁滞逆模型的鲁棒自适应控制算法,其中,滑模控制器补偿有界扰动、未知非线性和未建模动态,自适应算法消除系统模型参数的不确定性或不精确性。利用Lyapunov函数法证明了闭环控制系统的全局稳定性,并通过实验证明了所设计的控制器实现了压电陶瓷驱动平台的快速纳米精度运动。
     设计了含估计逆磁滞模型补偿的鲁棒自适应控制器。针对一类含输入非对称Backlash磁滞非线性驱动的非线性系统,分析了非对称Backlash磁滞非线性的特性,构造了非对称Backlash的估计逆模型,给出了基于此估计逆模型的补偿误差的解析表达式,并将补偿误差分解成参数化的部分和非参数化的有界干扰。在此基础上,设计鲁棒自适应控制算法。所设计的控制器保证了整个闭环系统的稳定性和理想的跟踪精度。仿真实验证明了该控制方法的正确性和有效性。
Along with the rapid development of nanoscience and nanotechnology, piezoceramic actuated micro/nanopositioning stages are becoming a promising technique in many precision manufacturing equipments. However, piezoceramic actuators suffer from the inherent hysteresis effect because of loss phenomena taking place inside piezo-ceramic materials. The hysteresis effect exhibits complex nonlinear characteristics, which usually introduces undesirable inaccuracies or oscillations and even instability. Interest in studying piezoceramic actuated micro/nanopositioning stages with actuator hysteresis is also motivated by the fact that they are complex dynamic systems with un-known non-smooth nonlinearities for which traditional model-based control methods are insufficient and thus require the comprehensive dynamic model of the controlled stage. Development of control techniques to mitigate the effects of hysteresis is a quite challenging task and recently attracts significant attentions.
     To address such challenges, this dissertation presents a comprehensive model-ing, controller design and experimental evaluation for piezoceramic actuated micro/-nanopositioning stages with unknown hysteresis nonlinearity. With the emerging ap-plications of smart material based actuated systems, the results of the dissertation will enrich the theory and methodology of hysteresis compensation and control, and ad-vance the state of nanomanufacturing in both theoretic and practical aspects. The main research contents and achievements are listed as follows.
     A modified Prandtl-Ishlinskii(P-I) hysteresis model with a nonlinear input func-tion is developed to describe the symmetric as well as asymmetric hysteresis loops on the basis of the classical P-I hysteresis model. The essential wiping-out and con-gruency properties for the validity of the developed hysteresis model are addressed. With the modified P-I model, a new real-time inverse hysteresis compensation method is proposed. Different from the commonly design procedures for inverse hysteresis compensation, the proposed method directly utilizes the modified P-I model to cap-ture the inverse hysteresis effect of the piezoelectric actuators. Then, the identified hysteresis model is cascaded in the feedforward path for direct inverse hysteresis can-celation. Experimental results on a piezoceramic actuated positioning stage verify the effectiveness of the feedforward controller along with the modified P-I model.
     A general electromechanical model is proposed to characterize dynamic behaviors of the piezoceramic actuated micro/nanopositioning stage, including nonlinear elec-tric behavior, voltage-charge hysteresis, piezoelectric effect, and frequency response of the stage. To identify the parameters of the general model, the adopted approach is to express the general model into a third-order linear plant preceded by an input hys-teresis nonlinearity. Then, the linear parameters and the hysteresis term can be iden-tified separately. To validate the proposed model, the modified P-I model is adopted as an illustration to describe the hysteresis nonlinearity, which is also confirmed by experimental results.
     A robust adaptive control approach is developed for a reduced dynamic model of the piezoceramic actuated stage with unknown parameters and hysteresis nonlinearity. In-stead of constructing the inverse of the hysteresis model to cancel the hysteresis effect, the hysteresis decomposition approach is adopted in the control scheme to express the hysteresis effect as an approximate linear relationship with unknown but bounded nonlinear term. In the developed robust adaptive approach, a sliding mode controller is designed to remedy the unknown hysteresis nonlinearity and disturbances, while a discontinue projection-based adaptive control law is utilized to handle the parameters uncertainties of the dynamic plant. The global stability of the chosen control laws is established by the Lyapunov function method. Experimental tests on a prototype plat-form with different motion trajectories are conducted to validate the feasibility and effectiveness of the proposed robust control approach.
     With the estimated inverse hysteresis compensation, a robust adaptive controller is developed for a class of nonlinear systems with unknown asymmetric input backlash. Considering the characteristics of the asymmetric backlash nonlinearity, an analytical expression of the estimated inverse compensation error for asymmetric backlash is ob- tained, which can be expressed as a parametrizable part with a bounded unparametriz-able disturbance. With the analytical expression of the inverse compensation error, a corresponding controller is designed by using the robust adaptive control approach. The proposed controller ensures the boundedness of the closed-loop signals, and yields desired tracking precision. The simulation results demonstrate significantly enhanced tracking performance when the estimated inverse of the asymmetric Backlash model is considered in the closed-loop control system.
引文
[1]国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告(2011-2020)[M].北京:科学出版社,2010.
    [2]田中群,孙建军.微系统与电化学[J].电化学,2000,6(1):1-9.
    [3]HANSMA P K, SCHITTER G, FANTNER G E, et al. High-speed atomic force microscopy[J]. Science,2006,314(5799):601-602.
    [4]SHIBATA M, YAMASHITA H, UCHIHASHI T, et al. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteri-orhodopsin[J]. Nature Nanotechnology,2010,5(3):208-212.
    [5]王国彪.纳米制造前沿综述[M].北京:科学出版社,2009.
    [6]PARD G, BEMENT M T, HARTMAN D A, et al. The use of active materials for machining processes: A review[J]. International Journal of Machine Tools and Manufacture,2007,47(15):2189-2206.
    [7]DEVASIA S, ELEFTHERIOU E, MOHEIMANI S O R. A survey of control is-sues in nanopositioning[J]. IEEE Transactions on Control Systems Technology,2007,15(5):802-823.
    [8]HUBBARD N B, CULPEPPER M L, HOWELL L L. Actuators for microposition-ers and nanopositioners[J]. Applied Mechanics Reviews,2006,59(6):324-334.
    [9]贾振元,王福吉,郭东明.功能材料驱动的微执行器及其关键技术[J].机械工程学报,2003,39(11):61—67.
    [10]SALAPAKA S M, SALAPAKA M V. Scanning probe microscopy[J]. IEEE Control Systems Magazine,2008,28(2):65-83.
    [11]GOLDFARB M, CELANOVIC N. Modeling piezoelectric stack actuators for control of micromanipulation[J].IEEE Control Systems Magazine,1997,17(3):69-79.
    [12]CROFT D, DEVASIA S. Hysteresis and vibration compensation for piezoactua-tors[J]. Journal of Guidance, Control and Dynamics,1998,21(5):710-717.
    [13]ADRIAENS H, DE KONING W L, BANNING R. Modeling piezoelectric actua-tors[J]. IEEE/ASME Transactions on Mechatronics,2000,5(4):331-341.
    [14]TAN U X, WIN T L, ANG W T. Modeling piezoelectric actuator hysteresis with singularity free Prandtl-Ishlinskii model[J]. IEEE International Conference on Robotics and Biomimetics-ROBIO2006,2006:251-256.
    [15]JANAIDEH A M. Generalized Prandtl-Ishlinskii hysteresis model and its ana-lytical inverse for compensation of hysteresis in smart actuators[D]. Canada: Concordia University,2009.
    [16]G. T, LEWIS F L. Adaptive Control of Nonsmooth Dynamic Systems[M]. New York: Springer-Verlag,2001.
    [17]Ge P, JOUANEH M. Tracking control of a piezoceramic actuator[J]. IEEE Transactions on Control Systems Technology,1996,4(3):209-216.
    [18]MRAD R B, HU H. A model for voltage-to-displacement dynamics in piezoce-ramic actuators subject to dynamic-voltage excitations[J]. IEEE/ASME Trans-actions on Mechatronics,2002,7(4):479-489.
    [19]TAN X B. Control of smart Actuators[D]. USA: University of Maryland,2002.
    [20]SU C Y, WANG Q Q, CHEN X K, et al. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis[J]. IEEE Transactions on Automatic Control,2005,50(12):2069-2074.
    [21]LI Y, XU Q. Development and assessment of a novel decoupled XY paral-lel micropositioning platform[J]. IEEE/ASME Transactions on Mechatronics,2010,15(1):125-135.
    [22]POLIT S, DONG J. Development of a high-bandwidth XY nanopositioning stage for high-rate micro-/nanomanufacturing[J]. IEEE/ASME Transactions on Mechatronics,2011,16(4):724-733.
    [23]KENTON B J, LEANG K K. Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner[J]. IEEE/ASME Transactions on Mechatronics,2012,17(2):356-369.
    [24]LAI L J, GU G Y, LI P Z, et al. Design of a decoupled2-DOF translational par-allel micro-positioning stage[J]. Proceedings of IEEE International Conference on Robotics and Automation,2011:5070-5075.
    [25]SCHITTER G, ASTROM K J, DEMARTINI B E, et al. Design and modeling of a high-speed AFM-scanner[J]. IEEE Transactions on Control Systems Technol-ogy,2007,15(5):906-915.
    [26]YONG Y K, MOHEIMANI S O R. A compact XYZ scanner for fast Atomic Force Microscopy in constant force contact mode[J]. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2010:225-230.
    [27]JORDN T L, OUNAIES Z. Piezoelectric ceramics characterization[R]. Hamp-ton, Virginia: ICASE, NASA Langley Research Center,2001.
    [28]SHAN Y. Repetitive control for hysteretic systems: Theory and application in piezo-based nanopositioners[D]. USA: University of Nevada, Reno,2011.
    [29]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社,1996.
    [30]HU H. Compensation of hysteresis in piezoceramic actuators and control of nanopositioning system[D]. Canada: University of Toronto,2003.
    [31]KRASNOSEL'skii M, Pokrovskii P. Systems with hysteresis[M].Berlin Heidelberg: Springer,1989.
    [32]BROKATE M, SPREKELS J. Hysteresis and phase transaitions[M]. New York: Springer,1996.
    [33]MAYERGOYZ I. Mathematical models of hysteresis and their applications[M]. New York: Elsevier Academic Press,2003.
    [34]VISONE C. Hysteresis modelling and compensation for smart sensors and ac-tuators[J]. Journal of Physics: Conference Series,2008,138(l):012028.
    [35]于靖军,裴旭,毕树生,et al.柔性铰链机构设计方法的研究进展[J].机械工程学报,2010,46(13):2-13.
    [36]SUGIHARA K, MORI I, TOJO T, et al. Piezoelectrically driven XY6table for submicron lithography systems[J]. Review of Scientific Instruments,1989,60(9):3024-3029.
    [37]GAO P, SWEI S M, Yuan Z. A new piezodriven precision micropositioning stage utilizing flexure hinges[J]. Nanotechnology,1999,10(4):394-398.
    [38]AWTAR S, SLOCUM A H. Constraint-based design of parallel kinematic XY flexure mechanisms[J]. Journal of Mechanical Design,2007,129(8):814-830.
    [39]CHEN S C, CULPEPPER M L. Design of a six-axis micro-scale nanopositioner-μHexFlex[J]. Precision Engineering,2006,30(3):314-324.
    [40]YAO Q, DONG J, FERREIRA P M. Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage[J]. International Journal of Machine Tools and Manufature,2007,47(6):946-961.
    [41]YI B J, CHUNG G B, Na H Y, et al. Design and experiment of a3-DOF parallel micromechanism utilizing flexure hinges[J]. IEEE Transactions on Robotics and Automation,2003,19(4):814-830.
    [42]KANG D, KIM K, CHOI Y, et al. Design and control of flexure based XY θz stage[J]. Journal of Mechanical Science and Technology,2005,19(11):2157-2164.
    [43]GAO Y S, ZHANG D W, Yu C W. Dynamic modeling of a novel workpiece table for active surface grinding control[J]. International Journal of Machine Tools and Manufacture,2001,41(4):609-624.
    [44]LI Y M, XU Q S. A novel piezoactuated XY stage with parallel, decoupled and stacked flexure structure for micro/nano positioning[J]. IEEE Transactions on Industrial Electronics,2011,58(8):3601-3615.
    [45]CHU C L, FAN S H. A novel long-travel piezoelectric-driven linear nanoposi-tioning stage[J]. Precision Engineering,2006,30(l):85-95.
    [46]孙立宁,马立,荣伟彬,et al.一种纳米级二维微定位工作台的设计与分析[J].光学精密工程,2006,14(3):406-411.
    [47]刘品宽,曲东升,王莉,et al.新型二维压电驱动微动工作台的设计分析[J].压电与声光,2002,24(1):31-34.
    [48]张宪民,陈永健.多输入多输出柔顺机构拓扑优化及输出耦合的抑制[J].机械工程学报,2006,42(3):162-165.
    [49]纪华伟.压电陶瓷驱动的微位移工作台建模与控制技术研究[D].浙江,中国:浙江大学,2006.
    [50]李玉和,李庆祥,陈璐云,et al.单轴柔性铰链设计方法研究[J].清华大学学报,2002,42(2):172-174.
    [51]YONG Y K, APHALE S, MOHEIMANO S O R. Design, identification, and control of a flexure-Based XY Stage for fast nanoscale positioning[J]. IEEE Transactions on Nanotechnology,2009,8(l):46-54.
    [52]KUHNEN K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach[J]. European Journal of Control,2003,9(4):407-418.
    [53]JILES D C, ATHERTON D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials,1986,61(l-2):48-60.
    [54]Smith R, Ounaie Z. A domain wall model for hysteresis in piezoelectric materials[J]. Journal of Intelligent Material Systems and Structures,2000, ll(l):62-79.
    [55]Smith R C. Smart material systems: model development[M]. Philadelphia: SIAM,2005.
    [56]Machi J W, Nistri P, Zecca P. Mathematical models for hysteresis[J]. SIAM Review,1993,35(1):94-123.
    [57]Coleman B D, Hodgdon M L. On a class of constitutive relations for fer-romagnetic hysteresis[J]. Archive for Rational Mechanics and analysis,1987,99(4):375-396.
    [58]Wang Q Q. Robust adaptive controls of nonlinear systems with actuator hys-teresis represented by Prandtl-Ishlinskii models[D]. Canada: Concordia Uni-versity,2006.
    [59]Oh J, Bernstein D S. Semilinear Duhem Model for Rate-Independent and Rate-Dependent Hysteresis[J]. IEEE Transactions on Automatic Control,2005,50(5):631-645.
    [60]YI J, Chang S, Shen Y. Disturbance-observer-based hysteresis compensa-tion for piezoelectric actuators[J]. IEEE/ASME Transactions on Mechatronics,2009,14(4):456-464.
    [61]Su C Y, Stepanenko Y, Svoboda J, et al. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis[J]. IEEE Transac-tions on Automatic Control,2000,45(12):2427-2432.
    [62]Ekanayake D B, Iyer R V. Study of a play-like operator[J]. Physica B: Condensed Matter,2008,403(2-3):456-459.
    [63]Zhou J, Wen C, Zhang C. Adaptive backstepping control of a class of uncer-tain nonlinear systems with unknown Backlash-like hysteresis [J]. Automatica,2004,49(10):1751-1759.
    [64]WEN Y. Method for random vibration of hysteretic systems[J]. Journal of the Engineering Mechanics Division,1976,102(2):249-263.
    [65]LIN C J, YANG S R. Precise positioning of piezo-actuated stages using hysteresis-observer based control[J]. Mechatronics,2006,16(7):417-426.
    [66]LI Y, XU Q. Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator[J]. IEEE Transactions on Control Systems Technology,2010,18(4):798-810.
    [67]RAKOTONDRABE M, CLEVY C, Lutz P. Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[J]. IEEE Transactions on Automation Science and Engineering,2010,7(3):440-450.
    [68]CHUA L, BASS S. A generalized hysteresis model[J]. IEEE Transactions on Circuit Theory,2002,19(l):36-48.
    [69]KREJCI P, KUHNEN K. Inverse control of systems with hysteresis and creep[J]. IEE Proceedings of Control Theory and Applications,2001,148(3):185-192.
    [70]Kuhnen K, Janocha H. Inverse feedforward controller for complex hys-teretic nonlinearities in smart-material systems[J]. Control and Intelligent Sys-tems,2001,29(3):74-83.
    [71]TAN U X, LATT W T, Widjaja F, et al. Tracking control of hysteretic piezo-electric actuator using adaptive rate-dependent controller[J]. Sensors and Actu-ators A: Physical,2009,150(1):116-123.
    [72]JIANG H, JI H, QIU J, et al. A modified Prandtl-Ishlinskii model for model-ing asymmetric hysteresis of piezoelectric actuators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2010,57(5):1200-1210.
    [73]AL JANAIDEH M, RAKHEJA S, SU C Y. An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning con-trol[J]. IEEE/ASME Transactions on Mechatronics,2011,16(4):734-744.
    [74]GALINAITIS W S. Two methods for modeling scalar hysteresis and their use in controlling actuators with hysteresis[D]. USA: Virginia Polytechnic Institute and State University,1999.
    [75]BANKS H T, KURDILA A J, WEBB G. Identification of hysteretic control influence operators representing smart actuators Part I: Formulation[J]. Mathe-matical Problems in Engineering,1997,3(4):287-328.
    [76]BANKS H T, KURDILA A J, WEBB G. Identification of hysteretic control influence operators representing smart actuators Part II: Convergent approxi-mations[J]. Mathematical Problems in Engineering,1997,8(6):536-550.
    [77]MAYERGOYZ I. Preisach models of hysteresis[J]. IEEE Transactions on Mag-netics,1988,24(6):2925-2927.
    [78]YU Y H, XIAO Z C, NAGANATHAN N G, et al. Dynamic Preisach modeling of hysteresis for the piezoceramic actuator system[J]. Mechanism and Machine Theory,2002,37(l):75-89.
    [79]AL JANAIDEH M, RAKHEJA S, SU C Y. Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator[J]. Mecha-tronics,2009,19(5):656-670.
    [80]李春涛,谭永红.迟滞非线性系统的建模与控制[J].控制理论与应用,2005,22(2):281-287.
    [81]毛剑琴,丁海山.率相关迟滞非线性系统的智能化建模与控制[J].中国科学F:信息科学,2009,39(3):289—304.
    [82]LI P Z, GU G Y, LAI L J, et al. Hysteresis modeling of piezoelectric actu-ators using the fuzzy system[J].Lecture Notes in Computer Science,2010,6424/2010:114-124.
    [83]XU Q S, WONG P K. Hysteresis modeling and compensation of a piezostage using least squares support vector machines [J]. Mechatronics,2011,21(7):1239-1251.
    [84]CRUZ-HERNANDEZ J M, HAYWARD V. Phase control approach to hystere-sis reduction[J]. IEEE Transactions on Control Systems Technology,2001,9(1):17-26.
    [85]孙立宁,张涛,蔡鹤皋,et al.压电/电致伸缩陶瓷控制模型归一化的研究[J].哈尔滨工业大学学报,1998,30(5):4-7.
    [86]曲东升,荣伟彬,孙立宁,et al.压电陶瓷微位移器件控制模型的研究[J].光学精密工程,2002,10(6):4—7.
    [87]RU C H, SUN L N. Improving positioning accuracy of piezoelectric actu-ators by feedforward hysteresis compensation based on a new mathematical model[J]. Review of Scientific Instruments,2005,76(9):095111.
    [88]BASHASH S, JALILI N. A polynomial-based linear mapping strategy for feed-forward compensation of hysteresis in piezoelectric actuators [J].Journal of Dynamic Systems, Measurement and Control,2008,130(3):1-10.
    [89]GU G Y, ZHU L M. Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses [J]. Sensors and Actuators A: Physical,2011,165(2):202-209.
    [90]NEWCOMB C V, FLINN I. Improving the linearity of piezoelectric ceramic actuators[J]. Electronics Letters,1982,18(11):442-444.
    [91]FLEMING A J, MOHEIMANI S O R. A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners [J]. Review of Scientific In-struments,2005,76(7):073707.
    [92]CRPFT D, SHED G, DEVASIA S. Creep, hysteresis, and vibration compensa-tion for piezoactuators: atomic force microscopy application[J]. ASME Journal of Dynamic Systems, Measurement, and Control,2001,123(1):35-43.
    [93]CLAYTON G M, TIEN S, LEANG K K, et al. A review of feedforward control approaches in nanopositioning for high-speed SPM[J]. Journal of Dynamic Systems, Measurement, and Control,2009,131(6):061101(1-19).
    [94]RAKOTONDRABE M, CLEVY C, LUTZ P. Robust feedforward-feedback con-trol of a nonlinear and oscillating2-DOF piezocantilever[J]. IEEE Transactions on Automation Science and Engineering,2011,8(3):506-519.
    [95]SONG G, ZHAO J Q, ZHOU X Q, et al. Tracking control of a piezoce-ramic actuator with hysteresis compensation using inverse Preisach model[J]. IEEE/ASME Transactions on Mechatronics,2005,10(2):198-209.
    [96]LEANG K K, DEVASIA S. Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators[J]. IEEE Trans-actions on Control Systems Technology,2007,15(5):927-935.
    [97]LEANG K K, DEVASIA S. Iterative feedforward compensation of hysteresis in piezo positioners [J]. Proceeds of42nd IEEE Conference on Decision and Control,2003:2626-2631.
    [98]TAN X, BARAS J S. Adaptive identification and control of hysteresis in smart materials[J]. IEEE Transactions on Automatic Control,2005,50(6):827-839.
    [99]SHEN J C, JYWE W Y, LIU C H. Sliding-mode control of a three-degrees-of-freedom nanopositioner[J]. Asian Journal of Control,2008,10(3):267-276.
    [100]BASHASH S, JALILI N. Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems[J]. IEEE Transac-tions on Control Systems Technology,2007,15(5):867-878.
    [101]CHEN X K, HISAYAM T, SU C Y. Pseudo-inverse based adaptive control for uncertain discrete time systems preceded by hysteresis [J]. Automatica,2009,45(2):469-476.
    [102]TAO G, KOKOTOVIC P V. Adaptive control of plants with unknown hystere-sis[J]. IEEE Transactions on Automatic Control,1995,40(2):200-212.
    [103]RU C H, SUN L N. Hysteresis and creep compensation for piezoelectric actuator in open-loop operation[J]. Sensors and Actuators a-Physical,2005,122(1):124-130.
    [104]ZHAO X L, TAN Y H. Modeling hysteresis and its inverse model using neural networks based on expanded input space method[J]. IEEE Transactions on Control Systems Technology,2008,16(3):484-490.
    [105]Gu G Y, ZHU L M. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model[J]. Review of Scientific Instruments,2010,81(8):085104.
    [106]Xu H G, ESASHI M. Precise motion control of a nanopositioning PZT mi-crostage using integrated capacitive displacement sensors[J]. Journal of Mi-cromechanics and Microengineering,2006,16(12):2747-2754.
    [107]TAN K K, LEE T H, ZHOU H X. Micro-positioning of linearpiezoelectric mo-tors based on a learning nonlinear PID controller[J]. IEEE/ASME Transactions on Mechatronics,2001,6(4):428-436.
    [108]SALAPAKA S, SEBASTIAN A, CLEVELAND J P, et al. High bandwidth nano-positioner: a robust control approach[J]. Review of Scientific Instruments,2002,793(9):3232-3241.
    [109]SEBADTIAN A, SALAPAKA S. Design methodologies for robust nano-positioning[J]. IEEE Transactions on Control Systems Technology,2005,13(6):868-876.
    [110]TSAI M S, CHEN J S. Robust tracking control of a piezoactuator using a new approximate hysteresis model [J]. Journal of Dynamic Systems, Measurement, and Control,2003,125(1):97-102.
    [111]LIAW H C, SHIRINZADEH B, SMITH J. Enhanced sliding mode motion track-ing control of piezoelectric actuators[J]. Sensors and Actuators A: Physical,2007,138(1):194-202.
    [112]Xu J X, ABIDI K. Discrete-time output integral sliding-mode control for a piezomotor-driven linear motion stage[J]. IEEE Transactions on Industrial Electronics,2008,55(11):3917-1170.
    [113]CHEN X K, HISAYAM T. Adaptive sliding-mode position control for piezo-actuated stage[J]. IEEE Transactions on Industrial Electronics,2008,55(11):3927-3934.
    [114]ZHONG J H, YAO B. Adaptive robust precision motion control of a piezoelec-tric positioning stage[J]. IEEE Transactions on Control Systems Technology,2008,16(5):1039-1046.
    [115]BASHASH S, JALILI N. Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages [J]. IEEE/ASME Transactions on Mechatronics,2009,14(1):11-20.
    [116]WANG Q Q, SU C Y. Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations [J]. Automat-ica,2006,42(5):859-867.
    [117]RAKOTONDRABE M, HADDAB Y, LUTZ P. Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever [J]. IEEE Transactions on Control Systems Technology,2009,17(3):528-539.
    [118]JANOCHA H, KUHNEN K. Real-time compensation of hysteresis and creep in piezoelectric actuators[J]. Sensors and Actuators A: Physical,2000,79(2):83-89.
    [119]LIU S, Su C Y. A note on the properties of a generalized Prandtl-Ishlinskii model[J]. Smart Materials and Structures,2011,20(8):087003(6).
    [120]LI Q, CHEN W, WANG Y, et al. Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm opti-mization[J]. IEEE Transactions on Industrial Electronics,2011,58(6):2410-2419.
    [121]JUNG H, GWEON D G. Creep characteristics of piezoelectric actuators[J]. Re-view of Scientific Instruments,2000,71(4):1896-1900.
    [122]APHALE S S, DEVASIA S, MOHEIMANI S O R. High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties [J]. Nanotechnology,2008,19(12):125503.
    [123]SHEN J, JYWE W, CHIANG H, et al. Precision tracking control of a piezoelectric-actuated system[J]. Presicion Engineering,2008,32(2):71-78.
    [124]JORDAN S C. Recent advances in improving static and dynamic accuracy of piezo nanopositioning systems[R]. San Jose:Physik Instrumente,2006.
    [125]刘俊标,薛虹,顾文琪.微纳加工中的精密工件台技术[M].北京:北京工业大学出版社,2004.
    [126]GEORGIOU H M S, MRAD R B. Electromechanical modeling of piezoceramic actuators for dynamic loading applications[J]. Journal of Dynamic Systems, Measurement, and Control,2006,128(5):558-567.
    [127]QUANT M, ELIZALDE H, FLORES A, et al. A comprehensive model for piezo-ceramic actuators:modelling, validation and application[J]. Smart Materials and Structures,2009,18(12):125011.
    [128]GIRI F, ROCHDI Y, CHAOUI F Z, et al. Identification of Hammerstein sys-tems in presence of hysteresis-backlash and hysteresis-relay nonlinearities[J]. Automatica,2008,44(3):767-775.
    [129]LIN C J, CHEN S Y. Evolutionary algorithm based feedforward control for contouring of a biaxial piezo-actuated stage[J]. Mechatronics,2009,19(6):829-839.
    [130]Xu Q, LI Y. Dahl model-based hysteresis compensation and precise position-ing control of an XY parallel micromanipulator with piezoelectric actuation[J]. Journal of Dynamic Systems, Measurement, and Control,2010,132(4):041011.
    [131]Li J W, CHEN X B, ZHANG W J. Axiomatic-design-theory-based approach to modeling linear high order system dynamics[J]. IEEE/ASME Transactions on Mechatronics,2011(2):341-350.
    [132]IYER R V, TAN X B. Control of hysteretic systems through inverse compensa-tion[J]. IEEE Controls Systems Magazine,2009,29(1):83-99.
    [133]LIAW H C, SHIRINZADEH B. Robust adaptive constrained motion tracking control of piezo-actuated flexure-based mechanisms for micro/nano manipula-tion[J]. IEEE Transactions on Industrial Electronics,2011,58(4):1406-1415.
    [134]SLOTINE J J E, Li W. Applied Nonlinear Control[M]. Beijing:China Machine Press,2004.
    [135]YU X, KAYNAK O. Sliding-mode control with soft computing:A survey[J]. IEEE Transactions on Industrial Electronics,2009,56(9):3275-3285.
    [136]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [137]BESSA W M. Some remarks on the boundedness and convergence properties of smooth sliding mode controllers [J]. International Journal of Automation and Computing,2009,6(2):154-158.
    [138]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [139]冯颖.回滞非线性系统的鲁棒自适应控制[D].广州,中国:华南理工大学,2006.
    [140]SU C Y, STEPANENKO Y, LEUNG T P. Combined adaptive and variable struc-ture control for constrained robots[J]. Automatica,1995,31(2):483-488.
    [141]YAO B. High performance adaptive robust control of nonlinear systems:A general framework and new schemes[J]. Proceedings of the36Conference on Decision and Control,1997:2489-2494.
    [142]Li Y, BECHHOEFER J. Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope[J]. Review of Scientific Instru-ments,2007,78(1):013702.
    [143]KIM B K, CHUNG W K, OHBA K. Design and performance tuning of sliding-mode controller for high-speed and high-accuracy positioning systems in dis-turbance observer framework[J]. IEEE Transactions on Industrial Electronics,2009,56(10):3798-3809.
    [144]ANG K H, CHONG G, Li Y. PID control system analysis, design, and technol-ogy[J]. IEEE Transactions on Control Systems Technology,2005,13(4):559-576.
    [145]杨进,尹文生,朱煜,et al.超精密微动台控制器带宽优化研究[J].机械工程学报,2011,47(16):9-13.
    [146]LEANG K K, ZOU Q, DEVASIA S. Feedforward control of piezoactuators in atomic force microscope systems[J]. IEEE Control Systems Magazine,2009,29(1):70-82.
    [147]BHIKKAJI B, MOHEIMANI S O R. A new method for robust damping and tracking control of scanning probe microscope positioning stages [J]. IEEE Transactions on Nanotechnology,2010,9(4):438-448.
    [148]TAO G, KOKOTOVIC P V. Continuous-time adaptive control of systems with unknown backlash[J]. IEEE Transactions on Automatic Control,1995,40(6):1083-1087.
    [149]AHMAD N J, KHORRAMI F. Adaptive control of systems with backlash hysteresis at the input[J]. Proceedings of American Control Conference,1999:3018-3022.
    [150]ZHOU J, ZHANG C, WEN C. Robust adaptive output control of uncertain non-linear plants with unknown backlash nonlinearity[J]. IEEE Transactions on Automatic Control,2007,52(3):503-509.
    [151]SUN X, ZHANG W, JIN Y. Stable adaptive control of backlash nonlinear sys-tem with bounded disturbances[J]. Proceedings of the31st Conference on De-cision and Control,1992:274-275.
    [152]CORRADINI M L, ORLANDO G. Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator[J]. IEEE Transactions on Control Systems Technology,2002,10(1):158-166.
    [153]TAO G, KOKOTOVIC P V. Adaptive control of systems with backlash[J]. Au-tomatica,1993,29(2):323-335.
    [154]Hu C, YAO B, WANG Q. Performance-oriented adaptive robust control of a class of nonlinear systems preceded by unknown dead zone with compar-ative experimental results [J]. IEEE/ASME Transactions on Mechatronics, DOI:10.1109/TMECH.2011.2162633,2011.
    [155]FILIPPO A F. Differential equations with discontinuous right-hand side[J]. Amer. Math. Soc. Translations,1964,42:199-231.