电流变液流变行为和结构演化的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电流变液作为一个新型的智能材料,通常为纳米或者微米级的具有高介电常数的介电颗粒与低介电常数的分散介质均匀混合而成的悬浮体系。该材料在外电场作用下表观粘度迅速增加,表现出类固体的性质。在电场下,电流变液的表观粘度迅速地变化,其原因是由于颗粒在两电极之间形成的桥联结构阻碍了结构进一步变化,表明流变性质的变化是由微观结构的变化引起的。电流变液的这种性质使其有广泛的应用前景,如减振器、阻尼器等。
     电流变液的许多应用都需要工作在动态剪切状态下,因此研究电流变液在动态剪切下的力学行为是一个重要的课题。电流变液在动态剪切下相比静态下更复杂的行为特征,比如在屈服后的非线性行为,电流变效应在高速剪切下的迅速降低等。这些力学行为背后的微观结构变化及机理解释到目前为止还没有得到很好的解决。为了解决这个问题,本文在考虑了动态剪切下存在的颗粒自旋和界面滑移等因素,建立了计算模型,通过模拟计算结合实验测试的方法研究了电流变液在动态剪切下的力学性质和流变行为。首先解释了电流变液的抖动型流变行为;接着建立了动态弛豫时间的理论计算模型;然后研究了颗粒自旋对电流变液流变行为的影响;最后研究了边界滑移对电流变液力学性质的影响。
     采用实验测试结合计算模拟的方法研究了电流变液的抖动型流变行为,并用提出的剪切滑移模型解释了产生该行为的原因。抖动型流变行为表现为,电流变液的剪切应力随剪切速率的增加有上下起伏的变化,这种特殊的流变行为反应了电流变液的微观结构变化。首先,制备了电流变液并测试其流变曲线,制备的材料表现出了抖动型的流变特征。然后建立了计算模型,根据实验测试的参数计算得出了流变曲线的模拟结果,模拟的曲线与实验曲线符合。最后用剪切滑移的边界模型解释了该特殊的流变行为。电流变液的抖动型流变曲线可以划分为四个区域,每个区域都能用提出的模型进行很好的解释。
     建立了动态弛豫时间的理论计算模型,提高了弛豫时间在动态剪切下的计算精确性。在对电流变液的弛豫行为计算中,目前仍然采用了以颗粒处于静态为基础计算的Maxwell-Wagner弛豫时间,这对电流变液在动态下的描述有很大误差。在Maxwell-Wagner模型的基础上,考虑各参数随颗粒自旋角速度的影响,计算了介电颗粒在旋转情况下的等效介电常数和等效的电导率,建立了动态弛豫时间的唯象模型。动态弛豫时间在动态剪切下更精确,符合实验测试的结果。
     采用实验测试结合计算模拟的方法研究了在不同弛豫时间下电流变液的流变行为,发现弛豫时间超过一定值后,电流变液的流变现象发生明显变化。制备了不同阳离子掺杂的二氧化钛电流变液,测试了掺杂对电流变液介电性质的影响,以及不同介电性质电流变液的流变行为。建立了颗粒介电弛豫的计算模型,计算了不同弛豫时间下的流变曲线并与实验结果作比较,发现当弛豫时间大于10-2秒量级后,电流变液的流变行为发现明显的变化。最后提出模型解释了介电弛豫对电流变液流变行为影响的原因。
     采用计算模拟的方法系统地研究了边界摩擦对电流变效应的影响。考虑到边界摩擦包括两个因素的影响,一个是边界摩擦系数,一个是法向应力。首先,定性和定量地计算了在准静态和动态情况下,剪切应力随边界摩擦因子的变化关系,变化的趋势与符合实验变化的趋势。然后讨论了在法向应力变化的情况下,剪切应力随边界摩擦因子变化关系的适用性。最后模拟了与应力变化相对应的结构演化情况,解释了微观结构演化对宏观力学性质的影响。
Electrorheologcal (ER) fluids, a typical smart material, are usually composed of nano-sized or micro-sized particles with high dielectric constant dispersed in a liquid with low dielectric constant. When an electric field is applied, the randomly dispersed particles are rearranged along the field direction and form complex column-like structures, which results in a dramatically change of the apparent viscosity. The remarkable increase of the viscosity of the ER fluid is caused by the formation of chains that bridge the two opposite electrodes, and the rheological properties are affected by the structure transformations. This property enable ER fluids a great possibility in applications, such as absorber, and damping devices.
     In many applications, ER fluids are worked in the dynamic shear state, and it makes the investigation on the mechanical properties of ER fluids in the dynamic shear state an important subject. The mechanical properties of ER fluids in the dynamic state are more complicate that in the static state. For example, the nonlinear flow behavior after yielding, and the dramatical decrease of shear stress under a high shear rate. These phenomena and the mechanism have not been understood clearly until now. In this dissertation, several factors such as the rotation of particles under shear, the slide between the chains and boundaries was studied to investigate the dynamic properties of the ER fluids under shear state. Based on the above analysis, a simulation model was further established. The mechanical properties and the flow behaviors of ER fluids under the dynamic shear were studied by using both the computer simulation and experiment testing method. Firstly, the trembling shear behavior of ER fluids was studied; secondly, to discuss the dielectric relaxation that existed in the dynamic shear state, a theory model was established to calculate the dynamic relaxation time; thirdly, it was found that the relaxation time had a great effect on the flow behavior; finally, the boundary effect that appeared obviously in the dynamic state was investigated, which played as an important factor in affecting the mechanical properties of ER fluids.
     Experiment testing and computer simulations were conducted to study the trembling shear behavior of ER fluids. The phenomena that the shear stress of ER fluids went decrease and increase with the shear rate was defined the trembling shear behavior, which was caused by rupture and reformation of structures. An experiment was firstly conducted to study the flow behavior of ER fluids, and then a following computer simulation was performed to investigate the rheological properties of ER fluids. The as-prepared material showed a typical trembling shear behavior, and a shear-slide boundary model was proposed to understand its mechanism. The boundary friction force was considered within our model, which played as an important factor in affecting the properties. The simulated shear curves matched the experiment results very well. Moreover, the trembling shear behavior was divided into four regions and each region could be explained by the proposed model.
     A theory model was established to calculate the dynamic relaxation time. Maxwell-Wagner relaxation time, which was calculated in the static state, was still used in the calculation of ER fluids. However, Maxwell-Wagner relaxation time made the calculation no longer accurate in the dynamic state. To develop the calculation of relaxation time, the efficient dielectric constant and the efficient conductivity were calculated in the dynamic state. Then a phenomenological theory was developed to calculate the dynamic relaxation time. The dynamic relaxation time was more accurate than the Maxwell-Wagner relaxation, and matched the experiment results very well in the dynamic state.
     Experiment testing and computer simulation were conducted to study the effect of the rotation of particles on the mechanical properties and flow behaviors of ER fluids. The particles of ER fluids rotated around their center under a shear flow. The rotation of particles would change the magnitude and direction of the dipole, with further affecting the structure formation. The TiO2ER fluids with different doping were prepared to study the effect of doping on the dielectric properties of ER fluids, and their flow behaviors. A computer simulation model was established in considering the dielectric relaxation. Then, the rheological properties of ER fluids with different relaxation time were calculated by using this model. It was found that the rheological properties changed dramatically with the variation of the relaxation time. The mechanism of this phenomenon was explained clearly.
     A computer simulation was conducted to systematically examine the boundary effect on the properties of ER fluids. We considered some elements of boundary effect, the boundary friction coefficient and the normal stress. First, the relations between the shear stress and the boundary friction coefficient were discussed qualitatively and quantitatively, and the tendency matched the previously reported experiment results. The optimum friction coefficient which could lead to the largest dynamic shear stress was obtained by this calculation. A compress load was exerted on the boundary to study the effect of normal stress. It was found that the calculation was still valid with the variation of normal stress. To further understand the mechanism of ER fluids in static and dynamic state, the structure transformations corresponding to the stress variation was discussed.
引文
[1]魏宸官.电流变技术—机理、材料、工程应用[M].北京:北京理工大学出版社,2000.
    [2]Bhadra S, Khastgir D, Singha N K, et al. Progress in preparation, processing and applications of polyaniline [J]. Progress in Polymer Science,2009,34(8): 783-810.
    [3]Hao T. Electrorheological fluids [J]. Advanced Materials,2001,13(24): 1847-1857.
    [4]Ma H R, Wen W J, Tam W Y, et al. Dielectric electrorheological fluids:Theory and experiment [J]. Advances in Physics,2003,52(4):343-383.
    [5]Parthasarathy M, Klingenberg D J. Electrorheology:Mechanisms and models [J]. Materials Science & Engineering R-Reports,1996,17(2):57-103.
    [6]See H. Advances in electro-rheological fluids:Materials, modelling and applications [J]. Journal of Industrial and Engineering Chemistry,2004,10(7): 1132-1145.
    [7]Wen W J, Huang X X, Sheng P. Electrorheological fluids:Structures and mechanisms [J]. Soft Matter,2008,4(2):200-210.
    [8]姜颖.电流变液的合成及应用[D]:[硕士].上海:上海交通大学,2006.
    [9]Sheng P, Wen W J. Electrorheology:Statics and dynamics [J]. Solid State Communications,150(21-22):1023-1039.
    [10]Winslow W M. Method and means for translating US:2417850 [P],1947.
    [11]Duff A W. The viscosity of polarized dielectrics [J]. Physical Review A,1896,4: 23-38.
    [12]Onsager L, Fuoss R M. Irreversible processes in electrolytes [J]. Journal of Physical Chemistry B,1932,36:2689-2778.
    [13]Sokolow P, Sosinski S. The question concerning movement of liquids in an electrical field [J]. Acta Physicochimica Urss,1936,5:433-450.
    [14]Winslow W M. Induced fabrication of suspension [J]. Journal of Applied Physics,1949,20:1137-1140.
    [15]Conrad H, Sprecher A F. Characteristics and mechanisms of electrorheological fluids [J]. Journal of Statistical Physics,1991,64:1073-1091.
    [16]Sprecher A F, Carlson J D, Conrad H. Electrorheology at small strains and strain rates of suspensions of silica particles in silicone oil [J]. Materials Science Engineering,1987,95:187-197.
    [17]Tao R, Sun J M. Ground state of electrorheological fluids from Monte Carlo simulations [J]. Physical Review A,1991,44:R6181-6184.
    [18]Tao R, Jiang Q. Simulation of structure formation in an electrorheological fluid [J]. Physical Review Letters,1994,73(1):205-208.
    [19]Chen T J, Zitter R N, Tao R. Laser diffraction determination of the crystalline-structure of an electrorheological fluid [J]. Physical Review Letters, 1992,68(16):2555-2558.
    [20]Stangroom J E. Electrorheological fluids [J]. Physics in Technology,1983,14: 290-296.
    [21]Bullough W A, Foxon M B. A proportionate coulomb and viscously damped isolation system [J]. Journal of Sound and Vibration,1978,56:35-44.
    [22]Block H, Kelly J P. Electrorheological fluids. US:4687589 [P],1986.
    [23]Carlson D. Electrorheological fluids. US:4772407 [P],1988.
    [24]Filisko F E, Radzilowski L H. An intrinsic mechanism for the activity of alumino-slicate based electrorheological materials [J]. Journal of Rheology,1990, 34:539-552.
    [25]Block H, Kelly J P, Qin A, et al. Materials and mechanisms in electrorheology[J]. Langmuir,1990,6(1):6-14.
    [26]Block H, Kelly J P. Electrorheology [J]. Journal of Physics D:Applied Physics, 1988,21:6-14.
    [27]Yin J B, Zhao X P. Preparation and electrorheological activity of mesoporous rare-earth-doped TiO2[J]. Chemistry of Materials,2002,14(11):4633-4640.
    [28]Yin J B, Zhao X P. Giant electrorheological activity of high surface area mesoporous cerium-doped TiO2 templated by block copolymer [J]. Chemical Physics Letters,2004,398(4-6):393-399.
    [29]Yin J B, Zhao X P. Enhanced electrorheological activity of mesoporous Cr-doped TiO2 from activated pore wall and high surface area [J]. Journal of Physical Chemistry B,2006,110(26):12916-12925.
    [30]Zhao X P, Duan X. In situ sol-gel preparation of polysaccharide/titanium oxide hybrid colloids and their electrorheological effect [J]. Journal of Colloid and Interface Science,2002,251(2):376-380.
    [31]Zhao X P, Yin J B. Preparation and electrorheological characteristics of rare-earth-doped TiO2 suspensions [J]. Chemistry of Materials,2002,14(5): 2258-2263.
    [32]Huang J P. New nonlinear dielectric materials:Linear electrorheological fluids under the influence of electrostriction [J]. Physical Review E,2004, 70(4):042501.
    [33]Huang J P, Yu K W. Interparticle force in electrorheological solids:Many-body dipole-induced dipole mode 1[J]. Physical Review E,2004,70(6):061401.
    [34]Wen W J, Huang X X, Yang S H, et al. The giant electrorheological effect in suspensions of nanoparticles [J]. Nature Materials,2003,2(11):727-730.
    [35]Wei J H, Peng S L, Zhao L H, et al. Electrorheological effects in urea-doped BaxSr1-xTiO3 suspensions [J]. Scripta Materialia,2006,55:671-673.
    [36]陆坤权,沈容,王学昭,等.极性分子型电流变液[J].中国物理学报,2007,36:742-749.
    [37]Stevens N G, Sproston J L, Stanway R. An experimental study of electrorheological transmission [J]. ASME Journal of Mechanical Transmission Automatic Design,1988,110:182-188
    [38]Choi S B, Cheong C C, Kim G W. Feedback control of tension in a moving tape using an er brake actuator [J]. Mechatronics,1997,7:53-66.
    [39]Williams S N, Peyman P. Externally guided ER damper. US:6318521 [P].2001.
    [40]Nicholas K P, Cleveland H. Cleveland heights, adjustable damper using electrorheological fluids. US:5259487 [P].1993.
    [41]Nicholas K P, Frederick P B. Method for controlling motion using an adjustable damper. US:5582385 [P].1996.
    [42]森下信,三井纯一,黑田洋司.电流变液在减振器上的应用[J].日本机械工程学会论文集(C编),1990,56(524):928-934.
    [43]Petek N K. An electronically controlled shock absorber using electrorheological fluid [C]. SAE paper:920275.
    [44]魏宸官,傅照.电流变液及其在汽车减振器上的应用[J].兵工学报(坦克装甲车与发动机分册),1993,3:33-38.
    [45]高晶敏,张少华,夏国栋,等.电流变减振器的研究[J].汽车工程,1999,21(5):318-321.
    [46]刘小英,黄得修,刘晓军,等.新型汽车电流变液体减振器的结构设计与分析[J].华中师范大学学报,2002,36:174-177.
    [47]陈吉安,冷劲松,王殿富,等.一种新型电流变减振器的原理设计与性能模拟[J].高技术通讯,1997,11:15-19.
    [48]李斌,杨智春.电流变阻尼器的动态特性实验研究[J].应用力学学报,2003,20:81-84.
    [49]郑玲.电流变材料及减振控制研究[D]:[博士].重庆:重庆大学,2005.
    [50]赵晓鹏,唐宏,刘曙,等.电流变液与压电陶瓷复合的自耦合阻尼器[J].力学与实践,2006,28:7-13.
    [51]姜红昭,贺尔铭,孙秦.电流变液在飞机起落架减振器中的应用研究[J].机械科学与技术,2006,25:761-763.
    [52]王茅华,于骏一,张永亮.电流变技术在机床颤振控制中的应用[J].机械工程报,2000,36:94-97.
    [53]杨道斌,王民,费仁元.利用电流变液阻尼器改变切削系统特性的研究[J].北京工业大学学报,2003,29:284-287.
    [54]吕海波,张春良.电流变技术应用于切削颤振控制的理论研究[J].噪声与振动制,2006,2:28-30.
    [55]曹天义,刘红军,滕军,等.利用电流变阻尼器的索振动控制实验研究[J].功能材料,2006,5:821-826.
    [56]陈亚英,朱煜,段广红.基于电流变阻尼超精密气浮工作台研究[J].润滑与密封,2007,32:7-12.
    [57]Agruelles J, Martin H R, Pick R. A theoretical model for steady electroviscous flow between parallel plates [J]. Journal of Mechanical Engineering Science, 1974,16:232-238.
    [58]覃爱明,朱石沙.电流变溢流阀的设计与理论分析[J].湘潭大学自然科学学报,1999,21:53-57.
    [59]Wei K X, Meng G, Zhu S S. Application of electrorhelogical fluids to fluid power control [J]. Journal of Functional Materials and Devices,2005,11: 97-102.
    [60]Niu X Z, Wen W J, Lee Y K. Electrorheological-fluid-based microvalves [J]. Applied Physics Letters,2005,87:243501.
    [61]Kuriyagawa T, Saeki M, Syoji K. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts [J]. Precision Engineering,2002,26: 370-380.
    [62]贺新升,张雷,杨赫然.电流变抛光微小非球面试验装置的研究[J].东北大学学报增刊,2008,6:293-295.
    [63]Kim W B, Min B K, Lee S J. Development of a padless ultraprecision polishing method using electrorheological fluid [J]. Journal of Materials Processing Technology,2004,156:1293-1299.
    [64]毕非凡.电流变辅助精细加工机理研究[D]:[硕士].广东:广东工业大学,2005.
    [65]冯建华.电流变效应微磨头研抛加工研究及电磁流变微细加工实验装置研制[D]:[硕士].广东:广东工业大学,2007.
    [66]柳文杰.电流变抛光光学玻璃的研究[D]:[硕士].吉林:吉林大学,2007.
    [67]Tada H, Saito Y, Hirata M, et al. A novel switchable glazing formed by electrically induced chains of suspensions [J]. Journal of Applied Physics,1993, 73(2):489-493.
    [68]Wen W J, Wang N, Ma H R, et al. Field induced structural transition in mesocrystallites [J]. Physical Review Letters,1999,82(21):4248-4251.
    [69]Taylor P M, Pollet D M, Hosseini-Sianaki A, et al. Advances in an electrorheological fluid based tactile array [J]. Displays,1998,18:135-141.
    [70]Wen X. Ink jet printing apparatus and method using timing control of electronic waveforms for variable gray scale printing without artifacts. US:6102513 [P], 2000.
    [71]Wang Y T, Zhao X P, Wang D W. Electrophoretic ink using urea-formaldehyde microspheres [J]. Journal of Microencapsulation,2006,23:762-768.
    [72]Bhadra D K, Thompson W B. Distributed anechoic system using electrically active fluid [J]. International Journal of Modern Physics B,1992,6:2749-2760.
    [73]Noras M A. Sound transmission loss control using electrorheological fluids [D]: [Ph. D.]. Carbondale:Southern Illinois University,2000.
    [74]Choi S B, Seo J W, Kim J H. An electrorheological fluid-based plate for noise reduction in a cabin:Experimental results [J]. Journal of Sound and Vibration, 2001,239(1):178-185.
    [75]Nakatsuka K, Atarashi T. Multilayer coated powder. EP:0913432 [P],1999.
    [76]Hao T. Dynamic-field-induced oscillatory dc current in colloidal crystallite [J]. Journal of Physical Chemistry B,1998,102(1):1-3.
    [77]Bohon K, Krause S. An electrorheological fluid and silosame gel based electromechanical actuator:working toward an artificial muscle [J]. Journal of Polymer Science B,1998,36:1091-1094.
    [78]Furusho J, Sakaguchi R. New actuators using ER fluid and their applications to force display devices in virtual reality and medical treatments [J]. International Journal of Modern Physics B,1999,13:2151-2159.
    [79]金德闻,王人成.电流变液智能下肢摆动相控制原理与方法[J].清华大学学报,1998,38:40-43.
    [80]Dekee D, Turcotte G. Viscosity of biomaterials [J]. Chemical Engineering Communications,1980,6(4-5):273-282.
    [81]Carreau P J, De Kee D, Chhaabra R P. Rheology of polymeric systems [M]. Munich:Carl Hanser Verlag,1997.
    [82]Goodwin J W, Markham G M, Vincent B. Studies on model electrorheological fluids [J]. Journal of Physical Chemistry B,1997,101(11):1961-1967.
    [83]Cho M S, Choi H J, Jhon M S. Shear stress analysis of a semiconducting polymer based electrorheological fluid system[J]. Polymer,2005,46(25):11484-11488.
    [84]Seo Y P, Choi H J, Seo Y. Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation[J]. Polymer,2011,52(25): 5695-5698.
    [85]Ko Y G, Choi U S, Chun Y J. Trembling shear behavior of a modified-chitosan dispersed suspension under an electric field and its model study [J]. Macromolecular Chemistry and Physics,2008,209(9):890-899.
    [86]Parmar K P S, Meheust Y, Schjelderupsen B, et al. Electrorheological suspensions of laponite in oil:Rheometry studies [J]. Langmuir,2008,24(5): 1814-1822.
    [87]Yanovsky Y G, Zgaevskii V E, Teplukhin A V, et al. Rheological properties of ER-fluids in term of multip article physical model and monte-carlo computer simulation [J]. International Journal of Modern Physics B,2005,19(7-9): 1184-1190.
    [88]Han Y M, Choi S B, Choi H J. Preisach model of ER fluids considering temperature variations [J]. International Journal of Modern Physics B,2005, 19(7-9):1325-1331.
    [89]Wang X, Gordanienejad F. Flow analysis of field controllable electro-rheological and magneto-rheological fluids using Herschel-Bulkley model [J]. Journal of Intelligent Material Systems and Structures,1999,10(8):601-608.
    [90]Noresson V, Ohlson N G. A critical study of the bingham model in squeeze-flow mode[J]. Materials & Design,2001,22(8):651-658.
    [91]Gamota D R, Filisko F E. High-frequency dynamic mechanical study of an aluminosilicate electrorheological material [J]. Journal of Rheology,1991, 35(7):1411-1425.
    [92]Luo C R, Tang H, Gao X Y, et al. The stress-strain relationship and the dynamic yield stress in electrorheologrcal fluid under a modified conduction model [J]. International Journal of Modern Physics B,2005,19(7-9):1456-1462.
    [93]Tian Y, Meng Y, Mao H, et al. Electrorheological fluid under elongation, compression, and shearing[J]. Physical Review E,2002,65(3):031507.
    [94]Tian Y, Meng Y G, Wen S Z. Dynamic responses of zeolite-based ER fluid sheared between two concentric cylinders [J]. Journal of Intelligent Material Systems and Structures,2004,15(8):621-626.
    [95]杨士普,任玲,朱克勤.平行圆盘间电流变液的挤压流研究[J].功能材料,2006,37(5):690-692.
    [96]Tian Y, Zhang M L, Jiang J L, et al. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields [J]. Physical Review E, 2011,83(1):011401.
    [97]Chen S M, Wei C G. Experimental study of the rheological behavior of electrorheological fluids [J]. Smart Materials & Structures,2006,15(2): 371-377.
    [98]刘晓梅,黄宜坚,王海霞,等.平盘—波纹盘间电流变液的剪切运动特性分析[J].功能材料,2006,37(6):983-985.
    [99]Halsey T C, Toor W, Structure of electrorheological fluids [J]. Physical Review Letters,1990,65(22):2820-2823.
    [100]Tao R, Sun J M.3-dimensional structure of induced electrorheological solid [J]. Physical Review Letters,1991,67(3):398-401.
    [101]Tang X, Li W H, Wang X J, et al. Structure evolution of electrorheological fluids under flow conditions [J]. International Journal of Modern Physics B, 1999,13(14-16):1806-1813.
    [102]Tang X L, Zhu K Q, Guan E, et al. Electric-field-induced phase separation in electrorheological fluids [J]. International Journal of Modern Physics B,1994, 8(20-21).
    [103]Henley S, Filisko F E. Lamellar structures induced by coupled electromagnetic and shear fields:A defining character of ER/MR activity [J]. International Journal of Modern Physics B,2002,16(17-18):2286-2292.
    [104]Vieira S L, Nakano M, Henley S, et al. Transient behavior of the microstructure of electrorheological fluids in shear flow mode [J]. International Journal of Modern Physics B,2001,15(6-7):695-703.
    [105]Cao J G, Huang J P, Zhou L W. Structure of electrorheological fluids under an electric field and a shear flow:experiment and computer simulation [J]. Journal of Physical Chemistry B,2006,110(24):11635-11639.
    [106]Klingenberg D J, Vanswol F, Zukoski C F. The small shear rate response of electrorheological suspensions.2. extension beyond the point-dipole limit [J]. Journal of Chemical Physics,1991,94(9):6170-6178.
    [107]Klingenberg D J, Zukoski C F. Studies on the steady-shear behavior of electrorheological suspensions [J]. Langmuir,1990,6(1):15-24.
    [108]Drouot R, Racineux G. A continuum modelling for the reversible behavior of electrorheological media [J]. International Journal of Applied Electromagnetics and Mechanics,2005,22(3-4):177-187.
    [109]von Pfeil K, Graham M D, Klingenberg D J, et al. Pattern formation in flowing electrorheological fluids [J]. Physical Review Letters,2002,88(18):188301.
    [110]Dassanayake U, Fraden S, Van Blaaderen A. Structure of electrorheological fluids[J]. Journal of Chemical Physics,2000,112(8):3851-3858.
    [111]Enomoto Y, Oba K. Simulation of structures and their rheological properties in electrorheological fluids [J]. Physica A,2002,309(1-2):15-25.
    [112]Gulley G L, Tao R. Structures of an electrorheological fluid [J]. Physical Review E,1997,56(4):4328-4336.
    [113]Guo H X, Mai Z H, Tian H H. Computer simulation of structures and rheological properties of electrorheological fluids [J]. Physical Review E,1996, 53(4):3823-3831.
    [114]Lapenta G, Maizza G, Palmieri A, et al. Phase transitions in electrorheological fluids using molecular dynamics simulations [J]. Physical Review E,1999, 60(4):4505-4510.
    [115]Martin J E, Odinek J, Halsey T C, et al. Structure and dynamics of electrorheological fluids [J]. Physical Review E,1998,57(1):756-775.
    [116]Sun J M, Tao R. Viscosity of a one-component polarizable fluid [J]. Physical Review E,1995,52(1):813-818.
    [117]Wang B, Liu Y L, Xiao Z M. Dynamical modelling of the chain structure formation in electrorheological fluids [J]. International Journal of Engineering Science,2001,39(4):453-475.
    [118]Klingenberg D J, Zukoski C F, Hill J C. Kinetics of structure formation in electrorheological suspensions [J]. Journal of Applied Physics,1993,73(9): 4644-4648.
    [119]Yang F, Gong X L, Xuan S H, et al. Simulation study on the trembling shear behavior of eletrorheological fluid [J]. Physical Review E,2011,84(1):011504
    [120]Gong X L, Yang F, Xuan S H, et al. Boundary effect in electrorheological fluids [J]. Physical Review E,2011,84(6):061505.
    [121]Klass D L, Martinek T W. Electroviscous fluids.Ⅰ.Rheological properties [J]. Journal of Applied Physics,1967,38:67-74.
    [122]龚秀清.氧化钛/钛酸钡纳米材料的制备、表征及其在电流变液中的应用[D]:[硕士].合肥:中国科学技术大学,2006.
    [123]Klingenberg D J, Vanswol F, Zukoski C F. The small shear rate response of electrorheological suspensions 1. simulation in the point-dipole limit [J]. Journal of Chemical Physics,1991,94(9):6160-6169.
    [124]Friedberg R. Energy of an electrorheological solid calculated with inclusion of higher multipoles [J]. Physical Review B,1992,46:6582-6585.
    [125]Foulc J N, Atten P, Felici N. Macroscopic model of interaction between particles in an electrorheological fluid [J]. Journal of Electrostatics,1994,33(1): 103-112.
    [126]Chen Y, Sprecher A F, Conrad H. Electrostatic particle-particle interactions in electrorheological fluids [J]. Journal of Applied Physics,1991,70(11): 6796-6803.
    [127]Anderson R A. Electrostatic forces in an ideal spherical-particle-particle electrorheological fluid [J]. Langmuir,1994,10:2917-2928.
    [128]Clercx H J H, Bossis G. Many-body electrostatic interactions in electrorheological fluids [J]. Physical Review E,1993,48(4):2721-2738.
    [129]Yu K W, Wan J T K. Interparticle force in polydisperse electrorheological fluids [J]. Computer Physics Communications,2000,129(1-3):177-184.
    [130]Anderson R A. Electrorheological fluids, mechanisms, properties, structure, technology, and applications [C]. Proceeding of the Third International Conference of Electrorheological fluids, Singapore:World Scientific,1992.
    [131]Davis L C. Finite-element analysis of particle-particle forces in electrorheological fluids [J]. Applied Physics Letters,1992,60(3):319-321.
    [132]Felici N, Foulc J N, Atten P. Tao,et al. Electrorheological fluids, mechanisms, properties, technology, and applications [C]. Proceedings of the Fourth International Conference on Electrorheological Fluids, Singapore:World Scientific,1994.
    [133]Atten P, Foulc J N, Felici N. A conduction model of the electrorheological effect[J]. International Journal of Modern Physics B,1994,8(20-21): 2731-2745.
    [134]Conrad H, Wu C W, Tang X. Conductivity in electrorheology [J]. International Journal of Modern Physics B,1997,13(14-16):1729-1738.
    [135]Gonon P, Foulc J N, Atten P. A conduction model describing particle-particle interaction in the case of surface conducting particles [J], International Journal of Modern Physics B,1999,15(6-7):704-713.
    [136]Hao T A, Xu Y Z. Conductive behaviors of polymer-based electrorheological fluid under zero and oscillatory mechanical fields [J]. Journal of Colloid and Interface Science,1996,181(2):581-588.
    [137]Ikazaki F, Kawai A, Uchida K, et al. Mechanisms of electrorheology:the effect of the dielectric property [J]. Journal of Physics D-Applied Physics,1998,31(3): 336-347.
    [138]Khusid B, Acrivos A. Effects of conductivity in electric-field-induced aggregation in electrorheological fluids [J]. Physical Review E,1995,52(2): 1669-1693.
    [139]Pannacci N, Lemaire E, Lobry L. DC conductivity of a suspension of insulating particles with internal rotation [J]. European Physical Journal E,2009,28(4): 411-417.
    [140]Tang X, Wu C, Conrad H. On the conductivity model for the electrorheological effect [J]. Journal of Rheology,1995,39(5):1059-1073.
    [141]Wu C W, Conrad H. A modified conduction model for the electrorheological effect [J]. Journal of Physics D-Applied Physics,1996,29(12):3147-3153.
    [142]Hao T. The role of the dielectric loss of dispersed material in the electrorheological effect [J]. Applied Physics Letters,1997,70(15): 1956-1958.
    [143]Hao T. Electrorheological suspensions [J]. Advances in Colloid and Interface Science,2002,97(1-3):1-35.
    [144]Hao T, Kawai A, Ikazaki F. Mechanism of the electrorheological effect: Evidence from the conductive, dielectric, and surface characteristics of water-free electrorheological fluids [J]. Langmuir,1998,14(5):1256-1262.
    [145]Hao T, Kawai A, Ikazaki F. Dielectric criteria for the electrorheological effect [J]. Langmuir,1999,15(4):918-921.
    [146]Hao T, Xu Z M, Xu Y Z. Correlation of the dielectric properties of dispersed particles with the electrorheological effect [J]. Journal of Colloid and Interface Science,1997,190(2):334-340.
    [147]Yu K W, Gu G Q, Huang J P, et al. Dynamic electrorheological effects of rotating particles:A brief review [J]. International Journal of Modern Physics B, 2005,19(7-9):1163-1169.
    [148]Xiao J J, Huang J P, Yu K W. Dynamic polarizability of rotating particles in electrorheological fluids [J]. Journal of Physical Chemistry B,2008,112(22): 6767-6771.
    [149]Wan J T K, Yu K W, Gu G Q. Relaxation of surface charge on rotating dielectric spheres:Implications on dynamic electrorheological effects [J]. Physical Review E,2001,64(6):060501.
    [150]Wan J T K, Yu K W, Gu G Q. Dynamic electrorheological effects and interparticle force between a pair of rotating spheres [J]. Physical Review E, 2000,62(5):6846-6850.
    [151]Wan J T K, Gu G Q, Yu K W. Nonlinear AC response of an electrorheological fluid [J]. Physical Review E,2001,63(5):052501.
    [152]Tian W J, Liu M K, Huang J P. Origin of the reduced attracting force between a rotating dielectric particle and a stationary one [J]. Physical Review E,2007, 75(2):021401.
    [153]Tao R, Lan Y C. Interactions between a rotating polarized sphere and a stationary one in an electric field [J]. Physical Review E,2005,72(4):041508.
    [154]Tan P, Tian W J, Zhou L W, et al. On the Lorentz local electric field in soft-matter systems [J]. Journal of Physical Chemistry B,2009,113(16): 5412-5417.
    [155]Ju Y, Huang J P. Dynamic effects on colloidal electric interactions [J]. Journal of Physical Chemistry B,2008,112(26):7865-7874.
    [156]Dassanayake U M, Offner S S R, Hu Y. Critical role of flow-modified permittivity in electrorheology:model and computer simulation[J]. Physical Review E,2004,69(2):021507.
    [157]Cao J G, Wang J, Zhou L W. Dielectric behavior of spinning ER particles under electric fields [J]. Chemical Physics Letters,2006,419(1-3):149-153.
    [158]Lemaire E, Bossis G. Yield stress and wall effects in magnetic colloidal suspensions [J]. Journal of Physics D-Applied Physics,1991,24(8): 1473-1477.
    [159]Lee C Y, Jwo K L. Experimental study on electro-rheological material with grooved electrode surfaces [J]. Materials & Design,2001,22(4):277-283.
    [160]Zhang X Z, Gong X L, Zhang P Q, et al. Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids [J]. Journal of Applied Physics,2004,96(4):2359-2364.
    [161]Wang X Z, Shen R, Wang D, et al. The electrode effect on polar molecule dominated electrorheological fluids [J]. Materials & Design,2009,30(10): 4521-4524.
    [162]Gartling D K, Phanthien N. A numerical-simulation of a plastic fluid in a parallel-plate plastometer [J]. Journal of Non-Newtonian Fluid Mechanics, 1984,14:347-360.
    [163]Williams E W, Rigby S G, Sproston J L, et al. Electrorheological fluids applied to an automotive engine mount[J]. Journal of Non-Newtonian Fluid Mechanics, 1993,47:221-238.
    [164]Sproston J L, Rigby S G, Williams E W, et al. A numerical-simulation of electrorheological fluids in oscillatory compressive squeeze-flow [J]. Journal of Physics D-Applied Physics,1994,27(2):338-343.
    [165]Gong H Q, King L M. Experimental investigations on tension and compression properties of an electro-rheological material [J]. Journal of Intelligent Material Systems and Structures,1996,7(1):89-96.
    [166]Chu S H, Lee S J, Ann K H. An experimental study on the squeezing flow of electrorheological suspensions [J]. Journal of Rheology,2000,44(1):105-120.
    [167]Vieira S L, Nakano M, Oke R, et al. Mechanical properties of an ER fluid in tensile, compression and oscillatory squeeze tests [J]. International Journal of Modern Physics B,2001,15(6-7):714-722.
    [168]Tao R, Lan Y C, Xu X. Structure-enhanced yield shear stress in electrorheological fluids [J]. International Journal of Modern Physics B,2002, 16(17-18):2622-2628.
    [169]Tian Y, Meng Y G, Mao H R, et al. Mechanical property of electrorheological fluid under step compression [J]. Journal of Applied Physics,2002,92(11): 6875-6879.
    [170]Tian Y, Meng Y G, Wen S Z. Shear-strain-governed transient compressive response of electrorheological fluid[J]. Applied Physics Letters,2006,88(9): 094106.
    [171]Tian Y, Wen S Z, Meng Y G. Compressions of electrorheological fluids under different initial gap distances [J]. Physical Review E,2003,67(5):051501.
    [172]Tian Y, Zhang M L, Meng Y G, et al. Transient response of compressed electrorheological fluid [J]. Journal of Colloid and Interface Science,2005, 290(1):289-297.
    [173]Tian Y, Zhang M L, Zhu X L, et al. The transient behavior of electrorheological fluid in tensile flow [J]. Smart Materials & Structures,2009,18(12):125021.
    [174]Tian Y, Zou Q. Normalized method for comparing tensile behaviors of electrorheological fluids [J]. Applied Physics Letters,2003,82(26): 4836-4838.
    [175]Tian Y, Zou Q, Meng Y G, et al. Tensile behavior of electrorheological fluids under direct current electric fields [J]. Journal of Applied Physics,2003,94(10): 6939-6944.
    [176]Yang F Q. Tension and compression of electrorheological fluid[J]. Journal of Colloid and Interface Science,1997,192(1):162-165.
    [177]Lukkarinen A, Kaski K. Computational studies of compressed and sheared electrorheological fluid [J]. Journal of Physics D-Applied Physics,1996,29(10): 2729-2732.
    [178]Lukkarinen A, Kaski K. Simulation studies of electrorheological fluids under shear, compression, and elongation loading [J]. Journal of Applied Physics, 1998,83(3):1717-1725.
    [179]朱克勤,葛蓉,席葆树.圆盘间的电流变液挤压流[J].清华大学学报,1999,39(8):80-83.
    [180]Ashkin A. Acceleration and trapping of particles by radiation pressure [J]. Physical Review Letters,1970,24(4):156-159.
    [181]Xu J, Dong X, Chen Z Y, et al. The interaction between electrorheological particles in AC electric field studied using optical tweezers [J]. International Journal of Modern Physics B,2002,16(17-18):2300-2306.
    [182]Furst E M, Gast A P. Micromechanics of dipolar chains using optical tweezers [J]. Physical Review Letters,1999,82(20):4130-4133.
    [183]Furst E M, Gast A P. Dynamics and lateral interactions of dipolar chains [J]. Physical Review E,2000,62(5):6916-6925.
    [184]Mittal M, Lele P P, Kaler E W, et al. Polarization and interactions of colloidal particles in AC electric fields [J]. Journal of Chemical Physics,2008,129(6): 064513.
    [185]Melrose J R. Brownian dynamics simulation of dipole suspensions under shear-the phase-diagram [J]. Molecular Physics,1992,76(3):635-660.
    [186]Ko Y G, Choi U S, Chun Y J. Influence of particle size on shear behavior of amine-group-immobilized polyacrylonitrile dispersed suspension under electric field [J]. Journal of Colloid and Interface Science,2009,335(2):183-188.
    [187]Yin J B, Xia X, Xiang L Q, et al. The electrorheological effect of polyaniline nanofiber, nanoparticle and microparticle suspensions [J]. Smart Materials & Structures,2009,18(9):095007.
    [188]Sun Z H, Wang X X, Soh A K, et al. On stress calculations in atomistic simulations [J]. Modelling and Simulation in Materials Science and Engineering,2006,14(3):423-431.
    [189]Cao J G, Shen M, Zhou L W. Preparation and electrorheological properties of triethanolamine-modified TiO2[J]. Journal of Solid State Chemistry,2006, 179(5):1565-1568.
    [190]Cheng Y C, Guo J J, Xu G J, et al. Electrorheological property and microstructure of acetamide-modified TiO2 nanoparticles [J]. Colloid and Polymer Science,2008,286(13):1493-1497.
    [191]Cho M S, Cho Y H, Choi H J, et al. Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: size effect [J]. Langmuir,2003,19(14):5875-5881.
    [192]Di K, Zhu Y H, Yang X L, et al. Electrorheological behavior of urea-doped mesoporous TiO2 suspensions [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2006,280(1-3):71-75.
    [193]Di K, Zhu Y H, Yang X L, et al. Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions [J]. Journal of Colloid and Interface Science,2006,294(2):499-503.
    [194]He W, Zhang X D, Li P, et al. Synthesis and characterization of nano-CeO2 TiO2 mesoporous composites [J]. Journal of Inorganic Materials,2005,20(2): 508-512.
    [195]Hong J Y, Choi M, Kim C, et al. Geometrical study of electrorheological activity with shape-controlled titania-coated silica nanomaterials [J]. Journal of Colloid and Interface Science,2010,347(2):177-182.
    [196]Huo L, Ma S Z, Shang Y L, et al. Preparation and electrorheological property of NaNO3-doped Y2O3 material [J]. Journal of Rare Earths,2006,24(1):39-43.
    [197]Liao F H, Zhang L, Li J R, et al. Preparation, crystal structure and electrorheological performance of nano-sized particle materials containing ZrO2 [J]. Journal of Solid State Chemistry,2003,176(1):273-278.
    [198]Liu Y, Liao F H, Li J R, et al. The electrorheological properties of nano-sized SiO2 particle materials doped with rare earths [J]. Scripta Materialia,2006, 54(2):125-130.
    [199]Ma S Z, Liao F H, Li S X, et al. Effect of microstructure, grain size, and rare earth doping on the electrorheological performance of nanosized particle materials [J]. Journal of Materials Chemistry,2003,13(12):3096-3102.
    [200]Mcintyre E C, Oh H J, Green P F. Electrorheological phenomena in polyhedral silsesquioxane cage structure/PDMS systems [J]. ACS Applied Materials & Interfaces,2010,2(4):965-968.
    [201]Ni N, Shang Y L, Li J R, et al. A new class of electrorheological material, preparation and electrorheological property of K2O-doped Y2O3 material [J]. Journal of Alloys and Compounds,2006,418(1-2):63-67.
    [202]Qiu Z Y, Shan F K, Zhou L W, et al. High AC voltage flow-modified permittivity and rheological properties of carbon-doped nano TiO2 ER fluids [J]. International Journal of Modern Physics B,2001,15(6-7):618-625.
    [203]Sung J H, Lee I, Choi H J, et al. Electrorheological response of polyaniline-TiO2 composite suspensions [J], International Journal of Modern Physics B, 2005,19(7-9):1128-1134.
    [204]Tang K, Shang Y L, Li J R, et al. Synthesis and electrorheological performance of particle materials of doped TiO2 with Er2O3 [J]. Journal of Alloys and Compounds,2006,418(1-2):111-115.
    [205]Trlica J, Saha P, Quadrat O, et al. Electrorheology of polyaniline-coated silica particles in silicone oil [J]. Journal of Physics D-Applied Physics,2000,33(15): 1773-1780.
    [206]Wang B X, Zhao X P, Zhao Y, et al. Titanium oxide nanoparticle modified with chromium ion and its giant electrorheological activity [J]. Composites Science and Technology,2007,67(14):3031-3038.
    [207]Wei C, Zhu Y H, Jin Y, et al. Fabrication and characterization of mesoporous TiO2/polypyrrole-based nanocomposite for electrorheological fluid [J]. Materials Research Bulletin,2008,43(12):3263-3269.
    [208]Wu Q, Zhao B Y, Chen L S, et al. Preparation and electrorheological property of alkaline earth metal compounds modified amorphous TiO2 electrorheological fluid [J]. Scripta Materialia,2004,50(5):635-639.
    [209]Yin J B, Zhao X P. Large enhancement in electrorheological activity of mesoporous cerium-doped TiO2 from high surface area and robust pore walls [J]. International Journal of Modern Physics B,2005,19(7-9):1071-1076.
    [210]Zheng L, Deng Z X, Li Y N, et al. Sol-gel preparation of graphite/TiO2 composite particles and their electrorheological effect [J]. Smart Materials for Engineering and Biomedical Applications, Proceedings,2004:380-385
    [211]Neto C, Evans D R, Bonaccurso E, et al. Boundary slip in newtonian liquids:a review of experimental studies [J]. Reports on Progress in Physics,2005, 68(12):2859-2897.