基于大豆酯酶的有机磷和氨基甲酸酯类农药残留快速检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以酶检测法为出发点,寻找良好的植物酶源替代动物乙酰胆碱酯酶,系统研究了大豆植物酯酶的提取、分离和纯化,并进行了较为系统的酶学特性表征,研究和建立了多种形式的大豆酯酶农药残留快速检测方法和体系。主要研究结果如下:
     1.大豆酯酶水提取的最佳条件为:大豆种子粉碎,料液比1:5,振荡或搅拌处理30min左右,4℃冰箱静置过夜,过滤离心即得大豆酯酶粗酶液;大豆酯酶的磷酸盐缓冲液抽提和分离纯化条件为:大豆种子经拣选、粉碎,以1:5料液比加0.3moL/LpH 7.0PBS抽提,震荡或搅拌处理30min,4℃冰箱静置浸提过夜,纱布过滤,差速离心(6000rpm-1000rpm),60%硫酸铵盐析沉淀,透析,超滤浓缩得粗酶液,经DEAE-32离子交换层析,收集酶活性峰即得大豆酯酶纯酶制品,再经浓缩得浓缩酶液,或冷冻干燥得大豆酯酶冻干粉,-20℃低温冷冻保存。所得酶活力为62.48 U/mL,比活力为6.455 U/mg.pro.经各步纯化及浓缩后,对酶的提纯倍数可达90.92倍,酶的回收率为6.32%。
     2.研究了大豆酯酶的酶学特性:大豆酯酶的Km值为2.97μmoL/L;酶促反应的适宜温度为25℃-40℃,最适温度为30℃,酶促反应的适宜pH值范围为7.0-8.0,最适pH值为7.5;在50℃-60℃下1h后,活力降低50%左右,12h后,活力降低1/4;酸性环境下(pH≤6)酶易失活;缓冲液离子强度在0.2moL/L-0.3moL/L的体系中酯酶活力较大,最适缓冲液离子强度为2.5moL/L。大豆酯酶适宜在-20℃以下保存,-20℃保存2个月、4个月、6个月时,酶相对活力分别为87.4%、64.8%和42.6%。大豆酯酶由两种分子量不同的亚基组成,其分子量分别为44.67KD和69.18KD;对大豆酯酶酶促反应体系的显色稳定性研究表明,以a-乙酸萘酯为底物,固兰B盐为显色剂,10min内显色液较为稳定,酶的活性测定应在10min内完成。
     3.建立了基于大豆酯酶的酶抑制-光度法农药残留快速检测方法。结果表明,大豆酯酶对除倍硫磷外的其他24种有机磷农药和氨基甲酸酯类农药的敏感性均较好,最低检测限(LOD)都远远低于其MRL值,对18种有机磷农药的LOD在0.03125mg.kg~(-1)-0.0625 mg·kg~(-1)范围之间,其中,对毒死蜱、乐果和杀扑磷的LOD甚至达到了其MRL的1/32;对6种氨基甲酸酯类农药的LOD值为0.03125 mg·kg~(-1)-0.25 mg·kg~(-1)。完全可以满足除倍硫磷以外的其他24种有机磷和氨基甲酸酯类农药残留检测要求。对于苹果样品中5种有机磷类农药加标回收率在78.5%-102.1%,变异系数在3.1%-5.1%范围内,对3种氨基甲酸酯类农药加标回收率为87.4%-94.0%,变异系数在2.3%-3.8%范围内,与GC检测结果的符合率达100%。
     4.建立了基于大豆酯酶的酶抑制-电位法农药残留快速检测方法。用所建立的方法检测了水样中20种有机磷及8种氨基甲酸酯类农药的敏感性和最低检测限,结果表明,对有机磷农药的LOD可达0.000625 mg·kg~(-1)-0.0625 mg·kg~(-1),对氨基甲酸酯类农药的LOD为0.015 mg·kg~(-1)-0.3125 mg·kg~(-1)。经与国家规定的最大残留限量(MRL)相比较,除倍硫磷之外的27种农药的最低检测限均可达到MRL限值要求。27种农药在苹果样品中的回收率在82.5%-92.3%之间,变异系数在2.03%-5.22%之间。对果蔬样品的检测与GC检测结果的符合率达83%以上。
     5.获得了硝酸纤维(NC)膜固定化大豆酯酶的制备技术路线和工艺参数,进行了固定化酶特性和固定化效率研究,并测试了酶片检测性能。
     经60个批次的固定化酶片试验,各批次之间标准差为0.031,变异系数为4.36%,说明该固定化方法的重现性和精密度良好;所制备的NC膜固定化大豆酯酶片,酶活回收率为15.37%;经7次重复使用后仍有60%以上的活性,表明固定化酶反复使用的工作稳定性较好;固定化酶最适pH为8.0,比游离酶提高了0.5个pH单位,最适温度为35℃,比游离酶提高了5℃;固定化酶的保存稳定性比游离酶明显提高。
     对所制备的NC-大豆酯酶膜进行了超微结构和红外光谱表征及固定化机理探讨。扫描电镜观察表明,使用戊二醛交联剂可使大豆酯酶有效地固定化于NC膜,与单纯的NC膜上承载大豆酯酶比较,酶在膜上的分布较多且较均匀;对NC膜固定化大豆酯酶前后的红外谱图解析表明,NC膜上的氨基经戊二醛连接臂与酶分子中的氨基酸残基上的游离基团产生了共价交联而实现了酶在膜上的固定化;固定化前对NC膜的PBS浸泡处理可使膜表面孔径明显增大,膜表面游离基团充分暴露,有利于酶的固定化。
     建立了NC-大豆酯酶膜农药残留快速检测方法,并进行了对农药残留检测效果试验。用本研究所制备的大豆酯酶NC膜片,采用目测法对水样中29种有机磷和氨基甲酸酯类农药残留的最低检测限在0.4 mg·kg~(-1)-5 mg·kg~(-1)之间;比色法对水样中8种农药检测限为0.00625 mg·kg~(-1)-0.0625 mg·kg~(-1),远远低于其MRL值,相关系数为0.9584-0.9932;对苹果样品中8种农药的回收率在85.3%-91.8%之间,变异系数均小于5.21%,表明本方法具有较好的准确度和精密度。
     6.探索性研究了魔芋葡苷聚糖(KGM)膜固定化大豆酯酶方法,对所制备的KGM-大豆酯酶膜进行了超微结构和红外光谱表征及固定化机理探讨,并测试了KGM酶膜性能。KGM大豆酯酶膜制备的主要参数为,1%的KGM溶胶用Na_2CO_3调整pH为8进行改性,添加1%的甘油作增塑剂,再加入大豆酯酶,制膜。所制备的KGM大豆酯酶膜有良好的感官性能,如超薄、透明、柔韧、可塑性强等;对所制备的KGM-大豆酯酶膜性能试验表明,酶活回收率可达50%以上,与同一批游离酶活性测定表明,固定化酶比游离酶活性几乎没有损失,表明大豆酯酶在KGM膜中可高活性表达。
     环境扫描电镜观察表明,大豆酯酶被完整包埋于KGM膜中,并且在膜中有较均匀的分布;对KGM膜固定化大豆酯酶前后的红外谱图解析表明,酶分子中的氨基酸残基与KGM膜中的羰基以氢键方式或共轭效应方式结合,这种固定化方式较为温和,有利于维持酶的活力。
     由于KGM酶膜的上述良好特性,以及酶在膜中的高活性表达,有望成为生物传感器法检测农药残留的新型膜材料,同时,也可作为其他酶传感器膜材料制备的方法学参考。
The aim of this study is to explore the possibilities to gain the sensitive phyto-enzyme to organophosphate and carbamate pesticides in order to replace animal-origin acetycholinesterase (AChE). Therefore, a systemic study has been taken from the probe into the sensitive enzyme, which includes extraction, separation, purification and its properties, to establish the new methods for rapid detection the pesticide residues based on the soybean esterase.The main results are as follows:1. The optimal conditions and technical parameters of aqueous liquid extraction are as follows: the proportion of flour of soybean seed and water is 1:5, surge or mix round for 30 min, laying tranquilly under 4℃in refrigerator, and then, gained crude enzyme liquid by filtration and centrifugal. The extraction, separation and purification of soybean esterase by the optimizing experimentation based on the independency factor and multi-factors orthogonal design, the critical factors selected for the enzyme recovery ratio were pH value of PBS buffer, PBS mole intensity, and time in file, the optimum ranges of proportion of flour of soybean seed and PBS buffer, surge or mix round time, and laying time are 1:5, 7.0, 30min and laying overnight under the 4℃in refrigerator respectively, then to get the percolate by filtration using multilayer gauze. The supernatant fluid were separated from the percolate after centrifuging at 6000 rpm, 4000 rpm, 2000 rpm, 1000 rpm for 15-20 min in every stage from higher speed to lower speed ordinal. The incorporative supernatant fluid was salt out for the crude protease precipitation by slowly added ammonium sulfate at the concentration of 60%, then, dialysis and concentrated to gain the crude extraction liquid, followed by DEAE-32 cellulose column chromatographic fractionating to purification the crude enzyme to obtain the soybean esterase by monitoring the enzyme activities, collecting the enzyme activity phase, concentrated it or freeze-dry. The enzyme products should been storage under -20℃. The active unit, active unit per milligram protease, purification multiple and activity recovery of soybean esterase are 62.48 U/mL, 6.455 U/mg.pro, 90.92 times and 6.32% respectively.
     2. The characteristic of the soybean esterase are as follows: Km is 2.97μmoL/L. Adaptation temperature ranges of the enzyme catalysis reaction from 25℃to 40℃, and optimum temperature is 30℃. Adaptation pH ranges of the enzyme catalysis reaction between 7.0 and 8.0, and optimum pH is 7.5. The enzyme activities will losing around 50% under the temperature of 50℃-60℃for 1h, quarter activities will remain under this temperature for over 12h. The enzyme activities will lose quickly in the acidity condition below pH≤6. It will keep higher activities in the 0.2 moL/L-0.3 moL/L PBS buffer system, and the optimal hydronium intensity of PBS buffer is 2.5moL/L. The soybean esterase activity was less altered by freezer storage at -20℃, the relative activities will remain 87.4%, 64.8% and 42.6% respectively for about 60 d, 120 d and 180 d accordingly. The enzyme has a dimeric structure with molecular weights of 44.67KD and 69.18KD. The soybean esterase activity was assayed using a-Naphthyl acetate as substrate, fast blue B salt as color development reagent; the liquid colour should be measured by colorimetry in 10min.
     3. The rapid detection system for the organophosphate and carbamate pesticide residues based on the soybean esterase inhibition coupled with colorimetry has been established in this study. The evaluation test was showed that the soybean esterase represented well sensitivity to 24 organophosphate and carbamate pesticide except fenthion, and the limit of detection (LOD) low far from their maximal residue limit (MRL). The LOD ranges of 18 organophosphate pesticides were 0.03125 mg.kg~(-1) - 0.0625 mg.kg~(-1), and the LOD ranges of 6 carbemate pesticides were 0.03125 mg.kg~(-1) -0.25 mg.kg~(-1). Thereinto, the LOD of chlorpyrifos, dimethoate and methidathion can reach its 1/32 MRL. So, we can conclude that the methods established in this study can meet the twenty-four kinds of these pesticides demand of thier MRL compared with national specified. The recoveries of apple sample for five organophosphate pesticide residues were 78.5%-102.1% with C.V.≤5.1% and the recoveries of apple sample for three carbamate pesticide residues was 87.4%-94.0% with C.V.≤3.8%, it is completely in conformity to the results of gas chromatography determination.
     4. The rapid detection system for the organophosphate and carbamate pesticide residues based on the soybean esterase inhibition coupled with potentiometry has been established also in this study. The sensitivity of twenty kinds of organophosphate pesticides and eight kinds of carbemate pesticides were determined by this method. The result shows that the LOD of 19 organophosphate pesticides for the water sample were 0.000625 mg.kg~(-1)- 0.0625 mg.kg~(-1), and the LOD of 8 carbemate pesticides for the water sample were 0.015 mg/kg - 0.3125 mg/kg. The recoveries of apple sample for 27 organophosphate pesticide residues were 82.5%-92.3% with CV≤5.22%. So, twenty-seven kinds of these pesticides (except fenthion) can meet the demand of its MRL compared with national specified. Over 83% in conformity to the results of gas chromatography determination by detection the apples and some vegetables from market.
     5. Nitrocellulose membrane (NC) was used to immobilized soybean esterase, the optimal conditions and technical parameters of the immobilized soybean esterase, the characteristics of the immobilized enzyme, and the efficiency of the immobilization was studied in this paper.
     Six batch totalling sixty times of this immobilized enzyme membrane has tested shows it has well recurs performance in use. The enzyme activity recoveries of the NC immobilized enzyme are 15.37%, over 60% activities will remained after seven times use, and its optimal pH rise 0.5 pH unit compare with the dissociative enzyme, the optimum temperature is 35℃, rise the 5℃compare with the dissociative enzyme, and its stability has improved obviously.
     Ultrastructure and the chemical structure of the NC membrane and NC immobilized enzyme membrane was expressed by Quanta 200 Scanning Electron Microscope(SEM) and Fourier Transform Infrared Spectrometer to investigate the mechanism of immobilization. It shows that soybean esterase can immobilized on NC membrane effectively, and it is more and even distributed on the membrane compare with the enzyme simplely loaded on it by SEM observation. Infrared spectra photograph of NC membrane, before and after immobilized soybean esterase, indicated that amino on NC membrane was covalent bond with amino acide residues of the enzyme through glutaraldehyde interlinking arm crosslinked. PBS buffer treated on NC membrane can enlarge the hole on its surface, meanwhile, this treatment can make the dissociative group exposure fully, therefore it will advantage enzymatic immobilization.
     The rapid detection method has been established using the NC immobilized enzyme membrane. The application test was carded to investigate capabilities to detect the pesticides. The result shows that the LOD of twenty nine organophosphate and carbemate pesticides for the water sample was 0.4 mg.kg~(-1)-5 mg.kg~(-1) by eyeballing method, and the LOD of eight pesticides for the water sample was 0.00625 mg.kg~(-1)- 0.0625 mg.kg~(-1) by colorimetry method. The recoveries of apple sample for 8 pesticide residues were 85.3%-91.8% with CV≤5.21%. The result shows that this method is conformity with gas chromatography determination.
     6. The possibilities of KGM membrane immobilized enzyme (soybean esterase) was explored in this research, the optimal conditions and technical parameters were as follows: 1% KGM sol to adjust the pH to 8.0 by Na_2CO_3 solution to improve its property, and adding 1% glycerin to refine its plasticity, soybean esterase was added finaly, and then form the sol into membrane. The result indicates that the KGM enzyme membrane has some good properties such as superthin, transparency, fiexility and good plasticity as well as well capabilities which achieve 50% enzyme activities recoveries. The activities of KGM immobilized soybean esterase nearly have no loss compare with the same dissociative enzyme under the same condition, which indicate the soybean esterase can express activity highly in KGM membrane.
     The mechanism of KGM immobilized soybean esterase was investigated through the ultrastructure observation and the chemical functional group changing analysis by Quanta 200 SEM and Fourier Transform Infrared Spectrometer. It shows soybean esterase was well embedded and well-proportioned in the KGM membrane. Infrared spectra photograph of KGM membrane, before and after immobilized soybean esterase, indicated that carbonyl on KGM membrane was boned with amino acide residues of the enzyme by hydrogen bond or conjugated effect. This method of immobilization was more warmly to enzyme, and very advantages to maintain the acticities of the immobilized enzyme.
     KGM membrane as novel membranous material to immobilize enzyme has a good potential to be applied in biosensor for detection pesticides because of its above good properties, and meanwhile, it can be a reference for a methodology of making other enzyme biosensor membrane.
引文
[1] 梁桂梅,中国农药使用成就回顾与展望,植保技术与推广,2000,20 (3):32-33.
    [2] 韩熹莱主编,农药概论,北京农业大学出版社,2000,3-7.
    [3] 杨华,马光,冯泉,正确认识农药 科学使用农药,北方果树,2006,(2):34-35.
    [4] 张一宾,唐春风,农药工业的世纪回顾和展望,世界农药,2000,22 (2):1-8.
    [5] 李茹;赵桂东;熊战之;付佑胜;周玉梅;浅议化学农药,现代农业科技(下半月刊),2005,(09):51-52.
    [6] 于丽娜,汪东风,苏琳.食品中有机磷农药残留的快速检测方法.粮油食品科技,2005,13 (2):32-34.
    [7] 本刊编辑部,我国农药行业现状及未来发展建议,农业新技术,2006,(1):1-4.
    [8] 李艳霞,张保东.农药残留检测技术的研究.周口师范学院学报,2005,22 (5):79-82.
    [9] 彭志立,朱松涛,化学农药在农业有害生物控制中的作用及科学评价,安徽农学通报,2005,11 (3):34;39.
    [10] 弋峰,曹东风,李典谟,我国化学农药使用现状、问题及对策[A],俞晓平,中国无公害农业的发展策略和途径,北京,中国农业出版社,1998,39-45.
    [11] 滕葳;柳琪;郭栋梁;国内外农产食品生产过程中农药使用状况的比较,食品研究与开发,2003,24 (5):65-67.
    [12] 林玉锁,龚瑞忠,朱忠林.农药与生态环境保护.北京:化学工业出版社,2000.7-123.
    [13] 张忆华,杨家顺.食品中的农药残留及一些对策.食品与发酵工业,2001,27(7):68-70
    [14] 田素芬,顾晓军,二十一世纪农业仍然需要农药,西北农业学报 200,9 (2):132-134.
    [15] 林铮,黄金祥,全球农药中毒概况,中国工业医学杂志,2005,18 (6):376-378.
    [16] 2004年美国农药销售增长4%,中国农药,2005,(4):48.
    [17] 2004年美国农药使用情况,中国农药,2005,(2):45.
    [18] 2005年度住友化学公司农药销售增长7%,中国农药,2005,(3):47.
    [19] 2005年印度Rallis公司农药销售增长27%,中国农药,2005,(3):47.
    [20] 王竹,英国政府必须优先可持续的农药使用新农药,2005,(4):31.
    [21] 柏亚罗,2004年阿根廷农药市场恢复,山东农药信息,2005,(11):32.
    [22] 全球农化品市场持续增长,农药科学与管理,2005,(12):41.
    [23] http://www.snd-edu.cn/group/huaxue/huaxueyushehui/huaxueyuyiyao/nongyaoyuhuaxue.htm
    [24] 孙向东,蔬菜农药残留的危害、种类、超标原因及应对措施,贵州农业科2005,33 (6):99-100.
    [25] 曹坳程,郭美霞.21世纪中国农药工业的需求与发展.中国农业科技导报,2005,7(6):37-42.
    [26] 吴蓉,我国农药产量居世界第二,四川化工与腐蚀控制,2003,6 (6):38
    [27] 姚健仁,郑永权,董丰收,理性认识化学农药,农药科学与管理,2005,26 (1):1-5.
    [28] 刘坚,加强国际农药登记的协调与合作,农药科学与管理,2003,24 (12):1-2.
    [29] 2006年中国农药行业研究咨询报告,http://www.ccmnet.com,2006年3月10日.
    [30] CLC,农化新世纪,2005,(8):20.
    [31] 胡笑形,外刊报道:2004年中国农药市场增速高于全球农药市场增速,中国农药,2005,(2):29-30.
    [32] 赵为武.农产品农药残留问题及治理对策.植物医生,2001,14(3):10-13.
    [33] 杨晓泉.食品毒理学,中国轻工业出版社,1999,139.
    [34] 刘坚.在加强农药管理新闻发布会上的讲话,农药,2002,41(7):1-2.
    [35] 武中平,高巍,杨红.氨基甲酸酯类农药残留测定方法的研究进展.江苏化工,2004,32(5):24-27.
    [36] 张战利,陕西省2005年农药需求逾1. 8万吨,农化新世纪,2005,(8):20.
    [37] 湘侬,明年湖南农药需求逾2万吨,山东农药信息,2005,(1):25.
    [38] 鄂科,湖北省预计今年需农药4. 8万吨,农村实用技术与信息,2006,(2):
    [39] 江苏口岸农药出口大增,山东农药信息,2005,(1):25.
    [40] 2005年我国农药市场仍将保持持续增长势头,河南化工,2004,(12):52.
    [41] 部分地区近期农药需求概况,山东农药信息,2005,(10):20.
    [42] 中国农药应做大原药产品优势,山东农药信息,2005,(10):19.
    [43] 李建辉,今年农药出口仍将维持持续高速增长态势,新农药,2005,(10):48.
    [44] 顾晓军,田素芬,农药的负面效应:过去、现状及展望,福建农业大学学报 2001,30(1):80-83.
    [45] 宿鲁,张迅,刘淑艳,胡喜珍,齐宏业,陈凡,栾燕,符文华,沈阳市售蔬菜农药残留的调查分析,中国公共卫生,2004,20 (5):589.
    [46] 秦启发,孝感市农产品中有机磷农药残留量调查,公共卫生与预防医学,2005,(1):16-18.
    [47] 李继华,邱石生,李启贵,云南曲靖市9起有机磷食物中毒分析,预防医学情报杂志,2002,(4):385.
    [48] 李永玉,厦门海域有机磷农药污染现状与来源分析,环境科学学报,2005,(8):1071-1077.
    [49] 杨洁彬,王晶,王柏琴,陈小珍,韩纯儒 编著,食品安全性,北京,中国轻工业出版社, 1999,108-113.
    [50] 冯再平,李建科.甲胺磷毒性及其食品残留分析研究进展,中兽医医药杂志,Vol.22,No5.2003,40-42.
    [51] 史贤明主编,食品安全与卫生学,北京,中国农业出版社,2003,219-223.
    [52] 金征宇主编,食品安全导论,北京,化学工业出版社,2005,249-257.
    [53] 国家明令禁止使用的高毒农药品种清单,植物医生,2005,(1):23
    [54] 杨东鹏,张春荣,董民.用于检测蔬菜有机磷和氨基甲酸酯类农药残留的酶抑制分光光度法研究进展.中国农学通报,2004,20 (2):37-39.
    [55] 陈曙,王鸿飞,尹萸.我国农药中毒的流行特点和农药中毒报告的现状.中华劳动卫生职业病杂志,2005,23 (5):336-339.
    [56] 方坚,朱红,赵莹.浙江省蔬菜、水果农药残留检测结果分析.浙江预防医学,2005,17 (5):32-33.
    [57] 黄诚,周日东,古有婵.中山市上市蔬菜中有机磷农药残留调查.卫生研究,2004,34 (6):719-720.
    [58] 陈伟,郝玉锋.烟台市市售蔬菜有机磷农药残留检测分析.食品与药品,2005,7(6):55-56.
    [59] 王保成,李淑花.160份蔬菜中有机磷农药的检测分析.社区医学杂志,2005,3 (11):17-18.
    [60] 孙胜龙,李雪飞,刘歆瑜.长春市主要蔬菜中农药残留分析.生态环境,2005,14(2):214-217.
    [61] 张建新,杜双奎,杨小姣.陕西省主要蔬菜产区多菌灵农药残留分析与评价.安全与环境学报,2005,5 (6):78-80.
    [62] 段志敏,余晓萍,段毅宏.蔬菜中农药残留污染状况调查.职业与健康,2005,21 (7):1020-1021.
    [63] 白艳红,周玲,王江.陕西省部分地区蔬菜与水果中有机磷农药残留的调查报告.西安交通大学学报(医学版),2005,26 (1):86-88.
    [64] 何彩.深圳市蔬菜中有机磷农药残留情况调查.职业与健康,2005,21 (12):1966-1967.
    [65] 胡正生,丁园,魏洽.南昌市市售蔬菜有机磷农药残留调查及其原因分析.江西农业学报,2005,17(1):34-37.
    [66] 李莉,赵玉宏,刘华山.恩施市蔬菜中有机磷和氨基甲酸酯类农药残留的调查.湖北民族学院学报(自然科学版),2005,23 (2):150-153.
    [67] 刘钧,边贻海,董长波.蔬菜中有机磷、氨基甲酸酯、菊酯类农药含量调查研究.实用预防医学,2005,12 (1):164-165.
    [68] 顾雪明.一起食源性有机磷农药中毒的调查分析.职业与健康,2005,21 (5):705-706.
    [69] 许红霞.一起有机磷农药残留引起全家食物中毒的调查.江苏卫生保健,2005,7 (2):19.
    [70] 唐承国.对一起食用枸杞致有机磷农药中毒案的调查与思考.中国公共卫生管理,2005,21 (6):504-505.
    [71] 李大文,施海萍.蔬菜农药残留检测结果与发展对策.上海蔬菜,2005 (5):8-9.
    [72] 李钦云,赵玲玲.有机磷农药对食品的污染及防治.工业卫生与职业病,2005,31(4):260-263.
    [73] http://zhiminwu.51.net/hxyd/hxbk/hxyly/hxnyjx.htm
    [74] 吴春先,慕立义.我国农药残留分析技术发展概述.农药科学与管理,2002,23 (2):13-16.
    [75] 王军,朱鲁生,林爱军等.农药残留速测技术研究进展,环境污染治理技术与设备,2001,2(1):17-23.
    [76] 付颖,王常波,那红壮.农药残留物的检测方法,化学工程师,2000,80(5):46-47.
    [77] 戴廷灿,倪永年,卢普滨.我国农药残留检测技术现状.农药,2004,43 (9):389-393.
    [78] 张鑫,冯利青,刘岩.我国果蔬农药残留速测技术综述.郑州轻工业学院学报(自然科学版),2005,20 (4):19-22.
    [79] 井乐刚.食品中残留农药检测技术的新进展.食品科学,2002,23 (3):148-152.
    [80] 蔡建荣,张东升,赵晓联.食品中有机磷农药残留的几种检测方法比较,中国卫生检验杂志,2002,12(6):750-753.
    [81] 余建新,胡小钟,邵俊杰.大口径毛细管气相色谱法测定油脂、果蔬20种有机氯农药的残留量.色谱,2000,18 (4):346-349.
    [82] 庞艳华,丁永生,马旭.水果蔬菜中有机磷农药残留量的气相色谱测定方法研究.安全与环境学报,2005,5 (1):30-31.
    [83] 李锋格,窦辉,姚伟琴.出口番茄酱中30种有机磷农药残留量分析方法的研究.中国卫生检验杂志,2005,15 (11):1325-1326.
    [84] 吕燕柏,王锡宁,季萍.食品中多种有机磷农药残留的测定方法研究.中国卫生检验杂志,2003,13 (5):578-580.
    [85] 万益群,谢明勇.毛细管气相色谱法测定中药中有机磷农药残留量.分析科学学报,2005,21 (3):286-288.
    [86] 周兆亭,苑金鹏,于天华.气相色谱法分析蔬菜中残留农药.山东科学,2005,18 (4):22-25.
    [87] 杨勇,郭迎卫.气相色谱法测定蔬菜中残留有机磷农药.淮阴工学院学报,2005,14 (3):80-82.
    [88] 李继革,周凯,戚双祥.气相色谱法测定蔬菜中10种有机磷农药.中国卫生检验杂志,2005,15 (3):306-307.
    [89] 刘忠,谢克锦,王圣华.气相色谱法测定茶叶中多种有机磷农药残留.福建分析测试,2003,12 (1):1698-1707.
    [90] 林秋萍,贾斌,王铁良.气相色谱法测定蔬菜中多种农药残留.河南农业科学,2003,(10):44-46.
    [91] 李建科,乌日娜,胡秋辉.SPE-GC测定苹果及浓缩苹果汁中5种有机磷农药残留.陕西师范大学学报(自然科学版),2005,33 (4):86-89.
    [92] 李建科,胡秋辉,乌日娜.基质固相分散萃取气相色谱法检测苹果浓缩汁中5种有机磷农药的残留.南京农业大学学报,2005,28(2):111-115.
    [93] Aguilar, C1 et al 1 Solid-phase microextraction and gas chromatography with mass spectrometric detection for the determination of pesticides in aqueous samples. J. Chromatogr. A. 1998, 795 ( 1 ): 105-115.
    [94] Lopez-Avila, V. et al. Online determination of organophosphorus pesticides in water by solid-phase microextraction and gas chromatography with thermionic-selective detection. J. HighReslout. Chromatogr. 1997, 20 (9): 487-492.
    [95] Shirey, R. Fast screening for chlorinated pesticides using solid-phase microextraction and capillary GC. Supelco Rep. 1994, 14 (4): 4-5.
    [96] Morzycka. Simple method for the determination of trace levels of pesticides in honeybees using matrix solid-phase dispersion and gas chromatography. Journal of Chromatography A, 2002, 982: 267-273.
    [97] Fodor-Csorba, K. chromatographic methods for the determination of pesticides in food. Journal of Chromatography, 1992, 642: 353-367.
    [98] Perret, D., Gentili, A., Marchse, S., Sergi, M., D'Asceno, G. Validation of mehod for the determination of multiclass pesticide residues in fruit juices by liquid chromatography/tendem mass spectrometry after extraction by matrix solid-phase dispersion. Journal of AOAC international, 2002, 850): 724-730.
    [99] 胡滨,陈一资,胡惠民.高效液相色谱法在食品快速检测中的应用.肉类卫生,2005,(3):34-36.
    [100] 杨莉萍.氨基甲酸酯类农药残留分析方法的研究进展(二).甘肃农业科技,2005,(8):57-60.
    [101] AOAC公定分析方法(第15版).国家商检局译,中国科学技术出版社,1991:985.
    [102] Isabel Patricia Rivas, M. Esther Gil-Alegre, Ana Isabel Torres-Suarez. Development and validation of a fast high-performance liquid chromatography method for the determination of microencapsulated pyrethroid pesticides, Analytica Chimica Acta, 2006, 557( 1-2): 245-251
    [103] Giuseppe Caducci, Dorina Di Pasquale, Fabrizio Ruggieri, et al. Determination and validation of a simple high-performance liquid chromatographic method for simultaneous assay of iprodione and vinclozolin in human urine, Journal of Chromatography B, 2005, 828(1-2): 108-112
    [104] A. Sanchez-Ortega, M. C. Sampedro, N. Unceta, et al. Solid-phase microextraction coupled with high performance liquid chromatography using on-line diode-array and electrochemical detection for the determination of fenitrothion and its main metabolites in environmental water samples, Journal of Chromatography A, 2005, 1094(1-2): 70-76
    [105] C. Padron-Sanz, R. Halko, Z. Sosa-Ferrera, et al. Combination of microwave assisted micellar extraction and liquid chromatography for the determination of organophosphorous pesticides in soil samples, Journal of Chromatography A, 2005, 1078(1-2): 13-21
    [106] 包宏.高效液相色谱法测定西红柿中克线磷残留量,色谱,1994,12(3):213-214
    [107] 白吉洪.高效液相色谱法同时测定废水中的久效磷、甲基对硫磷、辛硫磷农药残留的研究,青岛化工学院学报,1995,16(1):14-18.
    [108] 陈珠灵,陈飞,陈红青.高效液相色谱法测定蔬菜中3种有机磷农药残留量.福州大学学报(自然科学版),2005,33 (1):98-100.
    [109] 刘晓颖,吴飞,吴杭.蔬菜中有机磷农药残留的高效液相色谱分析.生物学杂志,2004,21 (6):41-42.
    [110] 张洪兰.用固相提取和高效液相色谱法分离检测生物体液中7种氨基甲酸酯类农药,色谱,1997,15(5):442-447.
    [111] 李立平,郑宇,张莹.高效液相色谱测定水果中单甲脒农药的残留.食品科学,1998,19(5):48-50.
    [112] 段文仲,郝冬生.高效液相色谱法同时测定水果中多种农药残留量的方法研究.农药,1998,37 (8):20-22.
    [113] 孔祥虹,何学文,张妮华.高效液相色谱法测定浓缩苹果汁中的多菌灵残留量.化学分析计量,2003,12 (1):13-15.
    [114] 甘凤娟,陈砚朦,李月欢.高效液相色谱-柱后衍生荧光法检测氨基甲酸酯类农药残留量.中国卫生检验杂志,2005,15 (12):1460-1461.
    [115] 赵辉,闫实.黄瓜番茄中氨基甲酸酯类农药残留量的高效液相色谱测定.农业环境科学学报,2005,24(增刊):284-287.
    [116] 杨挺,皇甫伟国,王立君.蔬菜中氨基甲酸酯类农残的HPLC测定方法.现代科学仪器,2005,(5):74-75.
    [117] F. J. Arrebola, J. L. Mart'inez Vidal, M. Mateu-Sanchez, E J. Alvarez-Castellon. Determination of 81 multiclass pesticides in fresh foodstuffs by a single injection analysis using gas chromatography-chemical ionization and electron ionization tandem mass spectrometry. Analytica ChimicaActa 2003, 484: 167-180.
    [118] Darinka Stajnbaher. Multiresidue method for determination of 90 pesticides in freshfruits and vegetables using solid-phase extraction and gaschromatography-mass spectrometry. Journal of Chromatography A, 2003, 1015: 185-198.
    [119] E. Lacassie, M.-E Dreyfuss, J. L. Daguet, M. Vignaud, P. Marquet, G. Lachatre. Multiresidue determination of pesticides in apples and pears by gas chromatography-mass spectrometry. Journal of Chromatography A, 1998, 805: 319-326.
    [120] Sibel Topuz, Gul Ozhan, Buket, Alpertunga. Simultaneous determination of various pesticides in fruit juices by HPLC-DAD, Food Control, 2005, 16: 87-92.
    [121] Xiao-Gang Chu, Xiao-Zhong Hu, Hui-Yuan Yao. Determination of 266 pesticides in apple juice by matrix Solide-phase dispersion and gas chromatography-mass selective detection, Journal of Chromatography A, 2005, 1063: 201-210.
    [122] Fillion, J., Sauve, Selwyn, J. Multiresidue method for the determination of residues of 251 pesticides in fruits and vegetables by gas chromatography/mass spectrometry and liquid chromatography with fluorescence detection. Journal of AOAC international, 2000, 83(3): 698-713.
    [123] 景作亮,樊志,郁铭.农作物残留农药主要检测方法及其研究进展.安徽农业科学,2004,32(5):1024-1027.
    [124] 赵晓萌,于同泉,路苹.GC/MS分析方法在食品农残检测中的应用.中国农学通报,2004,20 (6):60-62.
    [125] 丁毅,倪小东,李飞红.气相色谱—质谱法测定蔬菜中有机磷农药的残留量.安徽大学学报(自然科学版),2005,29 (3):86-88.
    [126] 刘永波,张明霞,薛瑞芳.GC-MS法测定多种有机磷农药残留.环境监测管理与技术,2005,17 (5):23-26.
    [127] 王莹,牛森,王勇.气质联用快速检测蔬菜中农药多残留.农药,2005,44 (5):219-221.
    [128] 赵晓萌,于同泉,朱高群.气相色谱-质谱法检测蔬菜和水果中35种农药残留.色谱,2005,23 (3):328.
    [129] 张均媚,薛刚,刘伟娟.气相色谱—质谱法测定茶叶中12种农药残留的方法.食品研究与开发,2005,26 (3):157-159.
    [130] 王玉飞,于笑宇.有机磷农药残留物的GC/MS/MS分析.中国卫生检验杂志,2005,15(2):247-251.
    [131] 唐英章主编,现代食品安全检测技术,科学出版社,146-182.
    [132] 朱丽梅.生物检测方法在农药残留检测中的应用.南京农专学报,2003,19(3):42-46.
    [133] 侯明迪.植物酯酶法快速测定有机磷农药残留的研究.食品科学,2002,23(7):111-115.
    [134] 侯学文,何衍彪,徐汉虹.胆碱酯酶抑制法检测辛硫磷农药残留.河北师范大学学报(自然科学版),2003,27 (2):181-184.
    [135] 戴廷灿,卢普滨,倪永年.蔬菜中混合农药残留量快速测定条件优化的研究.江西农业学报,2003,15(4):36-41.
    [136] 汪世新,陆自强,陈丽芳.蔬菜农药残留速测方法中若干问题的探讨.农业环境与发展,2002,(2):43-44.
    [137] 张莉华,汪连洲,潘秋月,王彬.我国有机磷农药残留检验监测现状简述.大豆通报,2004,(4):25-26.
    [138] 钟树明,袁东星,金晓英.植物酶抑制技术用于检测蔬菜中有机磷及氨基甲酸酯类农药残留.环境化学,2002,21 (2):189-193.
    [139] 黄文风,蔡琪,林而立.酶催化动力学光度法快速测定蔬菜中的农药残留毒性.现代科学仪器,2000,(2):29-32.
    [140] 赵建庄,康国瑞.快速测定果蔬中农药残留量的方法研究.农业环境保护,2002,21 (1):70-71.
    [141] 杨小令,陈丽芳,田子华.蔬菜有机磷农药残留量检测的光电比色法.扬州大学学报(农业与生命科学版),2003,24 (3):64-67.
    [142] 陆贻通,周培,李振红.生物酶技术在农药残留快速检测中的应用进展.上海环境科学,2001,20 (10):467-473.
    [143] 张宁.两种酶快速检测有机磷农药残留条件优化研究,江苏农业科学,2006,1:135-137.
    [144] 宋茹,纪淑娟,李晶.蔬菜中有机磷及氨基甲酸酯类农药残留酶片快速检测法的评价.食品研究与开发,2004,25 (2):119-121.
    [145] 陈章发,罗赫荣,魏昌贵.果蔬中有机磷等化学农药残留的快速检测技术研究.湖南农业科学,2000,(2):31-32.
    [146] 韩承辉,王乃岩,王正萍.植物酯酶片快速测定蔬菜上有机磷农药.环境监测管理与技术,1999,11 (4):29-30.
    [147] 许学勤,徐斐,华泽钊.用于有机磷农药残留快速检测的固定化小麦酯酶研究.食品科学,2003,24 (5):122-126.
    [148] 许学勤,徐斐,吴燕雯.固定化对动植物酯酶性质的影响.食品与发酵工业,2004,30 (7):38-42.
    [149] 王继军,黄永春,李治祥.应用植物酯酶固化酶检测有机磷和氨基甲酸酯农药.环境科学学报,2004,24 (3):558-560.
    [150] 刘海霞,韩承辉.用植物酯酶片测定有机磷农药的显色剂研究.江苏广播电视大学学报,2003,14(3):40-42.
    [151] 王多加,胡祥娜,周向阳.蔬菜农药残留快速检测技术-胆碱酯酶速测卡法.食品科学,2003,24 (6):109-113.
    [152] 贺筱蓉,周华英.农残速测卡与气相色谱在检测蔬菜有机磷农药残留中的对比试验.中国卫生检验杂志,2003,13 (6):678-679.
    [153] 赵丽丽,陈宁,张克旭.果菜中常用有机磷农药快速检测方法的研究.食品科学,2001,22 (6):54-57.
    [154] 纪淑娟,赵丽丽,冯辉.蔬菜有机磷农药残留快速检测方法的评价.中国蔬菜,2001 (2):6-8.
    [156] 乌日娜,李建科.生物传感器在农药残留分析中的研究现状及展望.食品与机械,2005,21 (2):54-56.
    [157] 蒋雪松,应义斌,王剑平.生物传感器在农药残留检测中的应用.农业工程学报,2005,21 (4):118-122.
    [158] Noguer T, Leca B, Jeanty G, et al. Biosensors based on enzume inhibition: Detection of organophosphorus and carbamate insecticides and dithiocarbamate fungicides, Field Analytical Chemistry and technology, 1999, 3(3): 173-178.
    [159] Albareda-SirventM, VkrkociA, Alegret S. Pesticide determination in tap water and juice samples using disposable ampero metric biosensors made using thick filmtechnology. Anal Chim Acta, 2001, (442): 35-44.
    [160] Nunes G. S, Montesinos T, Vtirques P. B. O., etal. Acetylcholine enzyme sensor for determining methamidophos insecticide evaluation of some genetically modified acetylcholinestarases from drosophila melanogaster. Anal Chim Acta, 2001, (434): 1-8.
    [161] Ashok Mulchandani, Wilfred Chen, Priti Mulchandani, et al. Biosensors for direct determination of organophosphate pesticides, Biosensors & Bioelectronics, 2001, 16: 225-230.
    [162] Mulchandani P, Chen W, Mulchandani A, et al. Amperometricmicrobial biose-nsor for direct determination of organophosphatepesticides using recombinant microorganism with surface expressedorganophosphorus hydrolase, Biosensors & Bioelectronics, 2001, 16: 433-437.
    [163] Turdean G. L, Popescu I. C, Thevenot D R. Sensitive detection of organophospho-ms pesticides using a needle type amperometric acetylcholinesterase-based bioelectrode. Thiocholine electrochemistry and immobilized enzyme inhibition, Enzyme Inhibition and Medicinal Chemistry, 2002, 17(2): 107-115.
    [164] Lea Pogacnik, Mladen Franko. Detection of organophosphate and carbonate pesticides in vegetable samples by a photothermalbiosensor. Biosensor and Bioelectronics, 2003, (18): 1-9.
    [165] 吴瑛,吴燕雯,徐斐.快速检测食品中有机磷及氨基甲酸酯类农药的流动注射式酶传感器.食品科技,2005,(8):78-81.
    [166] 何奕,王琦琛,虞骥.快速检测毒死蜱残留量的酶膜生物传感器研究.上海环境科学,2003,22 (10):687-689.
    [167] 魏福祥,韩菊,刘庆洲.胆碱酯酶生物传感器测定有机磷农药敌敌畏.河北 科技大学学报, 2003,24 (4):92-94.
    [168] 李元光.有机磷农药现场快速检测仪的研制,医疗卫生装备,2001(2):19-20
    [169] Mulchandani A, Kaneva I, Chen W. Biosensor for direct determination of organophosphate never agents using recombinant E coli with surface expressed organophosphorus hydrolase fiberoptic microbial biosensor, Anal Chen, 1998, 70: 5042-5046.
    [170] Wan-Li Xing, Li-Ren Ma, Zhong-Hua Jiang, et al. Portable fiber-optic immunosensor for detection of methsulfuron methyl, Talanta, 2000, 52: 879-883.
    [171] 董文宾,徐颖,姜海英等.生物传感器及其在食品分析中的应用,陕西科技大学学报,2004,22(1):57-62
    [172] 朱江、陆贻通.现代生物技术在环境检测中的应用,上海环境科学,2003,22(10):718-722.
    [173] 朱培坤.免疫酶技术.山东科学技术出版社,1983.
    [174] A. abad. A, Montoya. Application of a monoclonal antibody-based ELISA to the determination of carbaryl in apple and grape juices. Analytical chimica Acta, 1995, 311: 365-370.
    [175] Josep V. Mercader, Angel Montoya. A monoclonal antibody-based ELISA for the analysis of azinphos-methyl in fruit juices. Analytica Chimica Acta, 1997, 347: 95-101
    [176] Antonio Abad. Determination of carbaryl, carbofuran and methiocarb in cucumber and strawberry by monoclonal enzyme immunoassays and highperformance liquid chromatography with fluorescence detection. An analytical comparison Journal of Chromatography A, 1999, 833: 3-12.
    [177] Jose Antonio Gabaldon, Jose Miguel Cascales, Angel Maquieira. Rapid trace analysis of alachlor in water and vegetable samples. Journal of Chromatography A, 2002, 963: 125-13.
    [178] 单国民,钱传范,郭琴媛.三氮苯类除草剂的酶联免疫吸附测定(ELISA)方法研究.中国农业大学学报,1996,1 (3):52-58.
    [179] 邓安平,Franek Milan,酶联免疫吸附分析法测定水样中的阿特拉津.分析化学,1998,26(1):29-33.
    [180] 董国伟、王沫、刘贤进.兔抗甲胺磷多克隆抗体的制备.华中农业大学学报,2001,20 (4):340-343.
    [181] 周洪斌,潘荣生,李平.进出口食品中甲霜灵残留量免疫学快速检测方法的研究.畜牧与兽医,2002,34(6):3-6.
    [182] 贾明宏,钱传范,韩丽君.甲基对硫磷人工抗原的合成与鉴定.农药学学报,2003,5 (2):22-32.
    [183] 郭剑平,刘云霞,高增林.对硫磷人工抗原合成及其鉴定.中国公共卫生,2003,19 (9):1069-1071.
    [184] Yoo Jung Kim, Young Ae Cho, Hye-Sung Lee. Synthesis of haptens for immunoassay of organophosphoms pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity. Analytica Chimica Acta, 2003, 475: 85-96.
    [185] Yoo Jung Kim, Young Ae Cho, Hye-Sung Lee. Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Analytica Chimica Acta, 2003, 494: 29-40.
    [186] 赵肃清,孙远明,张春艳.甲胺磷单克隆抗体制备及鉴定.免疫学杂志,2003,19(2):142-145.
    [187] 陈石根,周润琦.酶学,复旦大学出版社,1986:42.
    [188] 乔燕祥,高平平,李莹.不同类型大豆酯酶同工酶研究,华北农学报,1995,10 (4),65-70.
    [189] 董登峰,杨杰,江立庚,陈念平.大豆磷酸烯醇式丙酮酸磷酸酯酶研究Ⅲ、非专一性酸性磷酸酯酶的纯化与特性,广西植物,2005,25 (5) 472-476.
    [190] 刘润堂,贾炜珑,温琪汾,王石宝.栽培大豆、野生大豆和半野生大豆酯酶同工酶的研究,山西农业大学学报,1995,15(3),235-237.
    [191] 胡能书,万贤国.同功酶技术及其应用,湖南科学技术出版社,1985:3~10.
    [192] 江藤永总著,杨石先,张立言译.有机磷农药的有机化学和生物化学,北京,化学工业出版社,1981:108.
    [193] 黄文风,蔡琪,黄敏等.便携式农药残留毒性快速测试仪——水果和蔬菜农药残留动力学速测方法,分析测试学报,2000,19(6):87-89.
    [194] Digvijay Singh, Ajay Singh. The toxicity of four Indian plants: Effect on AchE and acid/alkaline phosphatase level in fish Channa marulius. Chemosphere, 2005, 60: 135-140.
    [195] Joelle Forget, Sandrine Livet, Francois Leboulenger. Partial purification and characterization of acetylchinesterase (AchE) from the estuarine copepod Eurytemora affinis (Poppe). Comparative Biochemistry and Physiology Part C, 2002, 132: 85-92.
    [196] Silvana Andreescu, Thierry Noguer, Vasile Magearu, Jean-Louis Marty. Screen-printed electrode based on AchE for the detection of pesticides in presence of organic solvents. Talanta, 2002, 57: 169-176.
    [197] Mulchandanip, Mulchandania, Kaneval, et. al, Biosensor for direct determination of organophosphate nerve agents: Potentionmetric enzyme electrode. Biosensor & Bioelectronics, 1999, 14: 77-85.
    [198] 江藤永总著,杨石先,张立言译.有机磷农药的有机化学和生物化学,化学工业出版社,1981:110-112.
    [199] 赵建庄,梁桂枝,柴丽娜等.乙酰胆碱酯酶分离纯化的方法,北京农学院学报,2003,18(4):249-251.
    [200] 佘孝颖.有机磷农药对不同生物来源的胆碱酯酶选择性抑制的研究.环境科学,1996,17(4): 41-43.
    [201] 张雪燕,邓吉生,翟留香.蔬菜中农药残留量的生物化学检测.西南农业学报,1996,9(2):62-66.
    [202] 王恒亮,张保民,王兰芝.酶活性抑制测定农药残毒技术研究.河南农业科学,1997,(1):25-26.
    [203] 张慧君,许学勤,徐斐.用于农药残留快速检测的两种酶的比较.分析化学,2004,32(11):1421-1425.
    [204] 何颖,张涛,康天放.蔬菜中有机磷农药残留的分光光度法快速检测.环境化学,2005,24 (6):711-713.
    [205] 余向阳,储瑞武,田子华.不同酶原及样品前处理方法对测定农药残毒的影响.江苏农业学报,2005,21(3):167-171.
    [206] 朱小山,孟范平,杨正先.5种海鱼脑乙酰胆碱酯酶对2种有机磷农药的敏感性比较,上海环境科学,2003,22(8);521-525.
    [207] 何东海,孟范平,朱小山.有机磷农药对海洋动物乙酰胆碱酯酶(AchE)的毒性效应研究进展,海洋学报,2003,22(6):71-78.
    [208] 孟范平,何东海,朱小山.固定化鲅鱼乙酰胆碱酯酶的制备及部分性质测定.中国海洋大学学报,2005,35(6):1067-1071.
    [209] Rama Heidari, Alan L Devonshire, Bronwyn E. Campbell, et al, Hydrolysis of pyrethroids by carboxylesterases from Luckil cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis, Insect Biochemistry and Molecular Biology, 2005, 35( 6): 597-609.
    [210] Midori Ono, Jeffrey J. Swanson, Linda M. Field. Amplification and methylation of an esterase gene associated with insecticide-resistance in greenbugs, Schizaphis graminum (Rondani) (Homoptera: Aphididae), Insect Biochemistry and Molecular Biology, 1999, 29( 12): 1065-1073.
    [211] Zhaojun Han, Graham D. Moores, Ian Denholm. Association between Biochemical Markers and Insecticide Resistance in the Cotton Aphid, Aphis gossypiiGlover, Pesticide Biochemistry and Physiology, 1998, 62(3): 164-171.
    [212] Zhu Kun Yah, Gao Jian-Rong, Sharon R. Starkey. Organophosphate Resistance Mediated by Alterations of Acetylcholinesterase in a Resistant Clone of the Greenbug, Schizaphis graminum (Homoptera: Aphididae), Pesticide Biochemistry and Physiology, 2000, 68( 3): 138-147.
    [213] Takeshi Nabeshima, Akio Mori, Toshinori Kozaki, et al, An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus, Biochemical and Biophysical Research Communications, 2004, 313(3): 794-801.
    [214] Takeshi Nabeshima, Toshinori Kozaki, Takashi Tomita, et al. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae, Biochemical and Biophysical Research Communications, 2003, 307( 1): 15-22.
    [215] Jian-Rong Gao, Kun Yan Zhu. Increased expression of an acetylcholinesterase gene may confer organophosphate resistance in the greenbug, Schizaphis graminum (Homoptera: Aphididae), Pesticide Biochemistry and Physiology, 2002, 73( 3): 164-173.
    [216] 彭宇,王荫长,韩召军等.二化螟体内乙酰胆碱酯酶的分布及纯化方法,昆虫学报,2002,45(2):209-214.
    [217] Nicola J, Hawkes, Robert W. Janes, Janet Hemingway. Detection of resistance-associated point mutations of organophosphate-insensitive acetylcholinesterase in the olive fruit fly, Bactrocera oleae (Gmelin), Pesticide Biochemistry and Physiology, 2005, 81(3): 154-163.
    [218] Charles Claudianos, Robyn J. Russell, John G. Oakeshott. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly, Insect Biochemistry and Molecular Biology, 1999, 29( 8): 675-686
    [219] 董杰,王开运.家蝇(Musca domestica Vicina L)头部乙酰胆碱酯酶检测农药残留最佳条件研究,农药学学报,2003,5(1):93-96.
    [220] 刘永杰,张金振,曹明章.酶抑制法快速检测农产品农药残留的研究与应用.现代农药,2004,3 (2):25-27.
    [221] 李治祥,翟延路.应用植物酯酶抑制技术测定蔬菜水果中农药残留量,环境科学学报,1987,12:472-478.
    [222] 钟树明,袁东星,李权龙等.植物水解酶法快速测定环境水样中有机磷及氨基甲酸酯类农药,厦门大学学报(自然科学版),2002,41(1):75-78.
    [223] 肖建军,华泽钊,陈儿同等.冷却与低温保存对小麦酯酶活力的影响,工程热物理学报,2003,7:682-684.
    [224] 黄志勇,袁园,吕禹泽.蔬菜中有机磷农药残留的两种酶抑制快速检测方法的比较研究,食品科学,2003,24(8):135-137.
    [225] 陈帆,陈欢林.植物酯酶速测毒死蜱残留量的研究,环境科学与技术,2005,1:48-50.
    [226] 张宁.果蔬中有机磷农药残留快速检测方法研究.安徽农业科学,2005,33(8):1471-1472.
    [227] 徐斐,张慧君,许学勤等.用于有机磷农药残留检测的植物酯酶筛选,上海理工大学学报,2003,25(2):109-111.
    [228] 黄保宏,姚垠.用于检测农药残留的植物酯酶的选择.安徽技术师范学院学报,2004,18(2):15—17.
    [229] 肖建军,华泽钊,徐斐.用于测量农药残留的小麦酯酶的选择.分析测试学报,2002,21(2): 11-14.
    [230] 肖建军,华泽钊,徐斐.植物酶浓度对检测乐果灵敏度的影响研究.环境科学学报,2002,22(5):653-657.
    [231] 董超,史延茂,张丽萍等.采用植物酯酶测定农药残留的研究,农药,2001,40(9):19-20.
    [232] Peerzada Kaiser, Chand Raina, Rajinder Parshad, et al. A novel esterase from Bacillus subtilis (RRL 1789): Purification and characterization of the enzyme, Protein Expression and Purification, 2006, 45( 2): 262-268.
    [233] Hyun-Dong Shin, Rachel Ruizhen Chen. Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517, Enzyme and Microbial Technology, 2006, 38( 3-4): 478-485.
    [234] Javier Fernandez, Angel F. Mohedano, Estrella Fernandez-Garcia, et al. Purification and characterization of an extracellular tributyrin esterase produced by a cheese isolate, Micrococcus sp. INIA 528, International Dairy Journal, 2004, 14(2): 135-142.
    [235] Yong-Hak Kim, Chang-Jun Cha, Carl E. Cerniglia. Purification and characterization of an erythromycin esterase from an erythromycin-resistant Pseudomonas sp, FEMS Microbiology Letters, 2002, 210(2): 239-244.
    [236] Kohsuke Honda, Michihiko Kataoka, Hiroko Ono, et al. Purification and characterization of a novel esterase promising for the production of useful compounds from Microbacterium sp. 7-1W, FEMS Microbiology Letters, 2002, 206(2): 221-227.
    [237] Shao-Quan Liu, Ross Holland, Vaughan L. Crow. Purification and properties of intracellular esterases from Streptococcus thermophilus, International Dairy Journal, 2001, 11(1-2): 27-35.
    [238] Marco Gobbetti, Emanuele Smacchi, Aldo Corsetti. Purification and characterization of a cell surface-associated esterase from Lactobacillus fermentum DT41, International Dairy Journal, 1997, 7(2): 13-21.
    [239] Yasuhiro Kashima, Masumi lijima, Akiko Okamoto, Yukimichi Koizumi, et al. Purification and characterization of intracellular esterases related to ethylacetate formation in Acetobacter pasteurianus, Journal of Fermentation and Bioengineering, 1998, 85(6): 584-588.
    [240] Eric Haubruge, Marcel Amichot B. Andre Cuany B, et al. Purification and characterization of a carboxylesterase involved in malathion-specific resistance from Tribolium castaneum(Coleoptera: Tenebrionidae), Insect Biochemistry and Molecular Biology, 2002, 32: 1181-1190.
    [241] Christiane Stuhlfelder, Friedrich Lottspeich, Martin J. Mueller. Purification and partial amino acid sequences of an esterase from tomato, Phytochemistry, 2002, 60(3): 233-240.
    [242] 纪淑娟,张爱玲,刘玲等.植物酯酶提取纯化方法的研究,食品研究与开发,2005,26(4): 70-72.
    [243] 韩承辉,谷巍,王乃岩.快速测定水中有机磷农药方法的研究.环境化学,2000,19(2):188.
    [244] 崔卉,林朝晖,张力彬.一种新的乙酰胆碱酯酶电极的研究报.分析科学学报,1995,11(4):7-10.
    [245] 魏福祥,韩菊,刘庆洲.胆碱酯酶生物传感器测定有机磷农药敌敌畏.河北 科技大学学报,2003,24 (4):92-94.
    [246] 孟范平,唐学玺,李桂芳.利用乙酰胆碱酯酶传感器监测海水久效磷.海洋环境科学,2003,22(4):63-67。
    [247] 郭胜清,曹树桂,马林.疏水载体固定化胆碱酯酶的研究.生物化学杂志,1994,10(4):439-442.
    [248] 何丽英,刘洁生,高炜锋.固相化乙酰胆碱酯酶片的制备与应用的研究,环境与健康杂志.1998,15(3):125-128.
    [249] F. Pariente, C. La Rosa, F. Galan. Enzyme support systems for biosensor applications based on gold-coated nylon meshes. Biosensors & Bioelectronics, 1996, 11(11): 1115-1128.
    [250] Jacqueline Luil, Michelle Tan, Cynthia Liang. Immobilized enzyme modulator microassay (IEMMA) for thedetection of pesticide in fresh produce. Analytica Chimica Acta, 1996, 329: 297-304.
    [251] Vu Khue Nguyen, L. Ehret-Sabatier, M. Goeldner. Stabilization of dry immobilized acetylcholinesterase on microtitration plates for calorimetric determination of its inhibitors in water and biological fluids. Enzyme and Microbial Technology, 1997, 20: 16-23.
    [252] 王继军,黄永春,李治祥.应用植物酯酶固化酶检测有机磷和氨基甲酸酯农药.环境科学学报,2004,24(3):558-560.
    [253] Lea Pogacnik, Mladen Franko. Determination of organophosphate and carbamate pesticides in spiked samples of tap water and fruit juices by a biosensor with photothermal detection. Biosensors & Bioelectronics, 1999, 14: 569-578.
    [254] 郭胜清,赵华月.两种CNBr活化Sepharose固定化胆碱酯酶方法的研究.生物化学杂志,1995,11(2):239-242.
    [255] Hye-Sung Lee, Young Ah Kim, Oung Ae Cho. Oxidation of organophosphorus pesticides tor the sensitive detection by a cholinesterase-based biosensor. Chemosphere, 2002, 46(4): 571-576.
    [256] 雷晨,陈贵春,余孝颖.胆碱酯酶场效应管传感器.分析化学,1996,24(5):521-524.
    [257] A. P. Soldatkin, D. V. Gorchkov, C. Martelet. New enzyme potentiometric sensor for hypochlorite species detection, Sensors and Actuators B, 1997, 43: 99-104.
    [258] 李元光,周永新,冯建林.丝网印刷胆碱酯酶电极测定神经性毒剂沙林、梭曼.分析化学,2000,28(1):95-98.
    [259] A. N. Ivanov, G. A. Evtugyn, R. E. Gyurcsany. Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination, Analytica Chimica Acta, 2000, 404: 55-56.
    [260] Miquel Albareda Sirvent, Arben Merkoci, Salvador Alegret. Pesticide determination in tap water and juice samples using disposable amperometric biosensors made using thick-film technology, Analytica Chimica Acta, 2001, 442: 35-44.
    [261] Silvana Andreescu, Thierry Noguer, Vasile Magearu. Screen-printed electrode based on AchE for the detection of pesticides in presence of organic solvents, Talanta, 2002, 57: 169-176.
    [262] 王芳芳,郑艺华,徐斐.阳离子交换树脂吸附交联固定鸡肝酯酶的实验研究.离子交换与吸附,2005,21(1):9~16.
    [263] 温艳霞,李建科,有机磷农药残留检测用植物酯酶研究,食品科学,2006,27 (4):123-26.
    [264] 苏拔贤主编,科学出版社,北京,1986,58-60.
    [265] J. E. Baker, J. A. Fabrick, K. Y. Zhu. Charaterization of esterases in malathion-resistant and susceptible strains of pteromalid parasitoid Anisopteromalus calandrae. Insect Biochemistry and Molecular Biology. 1998, 28: 1039-1050.
    [266] 杨建雄.生物化学和分子生物学实验技术教程,科学出版社,2002:153-155.
    [267] 余冰宾.生物化学实验指导,清华大学出版社,2004:151-156,157-159.
    [268] 郭尧君 编著.蛋白质电泳实验技术(第二版),北京,科学出版社,2005:92.
    [269] A. N. Ivanov, G A. Evtugyn, R. E. Gyurcsanyi. Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination, Analytica Chimica Acta. 2000, 404: 55-65.
    [270] Villatte Francois, Marcel Veronique. Estrade-Mondaca Sandino. Engineering sensitive acetylcholinesterase for detection of organophosphate and carbamate insecticides, Biosensors & Bioelectronics. 1998, 13: 157-164.
    [271] GB/T 5009.104—2003,植物性食品中氨基甲酸酯类农药残留量的测定.
    [272] 王林,王晶,张莹,杨大进,邓峰,蔬菜中有机磷和氨基甲酸酯类农药残留量的快速检测方法研究,中国食品卫生杂志,2003,15 (1):39-41.
    [273] 邹明强,杨蕊,赵丽丽,用手持式农药速测仪酶法现场测定蔬菜中有机磷和氨基甲酸酯农药残毒,高等学校化学学报,2003,24 (6):1016-1018.
    [274] 王富华,向甦州,农药残留监测技术现状分析,广东农业科学,2006,(1):78-80.
    [275] Eugenia Kadsoudas, Hossny H Abdelmesseh. Enzyme inhibition and enzyme-linked immunosorbent assay methods for carbamate pesticide residue ananlysis in fresh produce. Journal of food protection, 2002, 63(12): 1758-1760.
    [276] 张志洁,林清玉,我国食品安全检测主要应用技术的研究现状,食品工业科技,2003,24(12):89-92.
    [277] 张翼,宫国东,李登姿,新型快速农药残留检测剂——乙酰胆碱酯酶研制成功,2002,(12):42.
    [278] 程念政.农药残留快速检测——酶抑制法.安徽化工,2004 (5):49.
    [279] 李波,谢笔均,魔芋葡甘聚糖可食性膜材料的研究(Ⅰ),食品科学,2000,21 (1):19-20.
    [280] 李波,谢笔均,魔芋葡甘聚糖可食性膜材料的研究(Ⅱ),食品科学,2000,21 (2):24-26.
    [281] Xiao C, Gao S, Wang H, Zhang L. Blend films from Chitosan and Konjac Glucomannan solutions, J. of Applied Polymer Science, 2000, 76: 509.
    [282] 徐青海,魏忠环,壳聚糖-淀粉水不溶性可食膜的制备工艺研究,食品研究与开发,2001,22 (2):20-22.
    [283] 杨君,孙远明,吴青,谌国莲,可食性魔芋葡甘聚糖成膜特性研究,食品与发酵工业,2001,27 (9):21-24.
    [284] 张东华,汪庆平,杨学义,天然高分子魔芋葡甘聚糖的复配产物成膜研究,日用化学品工业,2000,30 (1):19-21.
    [285] Shinsaku Kobayashi, Shigetomo Tsujihata. Preparation and rheological characterization of carboxymethyl konjac glucomannan. Food Hydrocolloids, 2002, 16: 289-294.
    [286] Nishinari K. Williams P A, Phillips G O. Review of the physico-chemical characteristics and properties of konjac glucomannan. Food Hydrocolloids, 1992, (6): 199-222.
    [287] 魏福祥,韩菊,刘庆洲等.乙酰胆碱酯酶固定化方法的研究,化学世界,2005 (3):155-157.
    [288] 程念政.农药残留快速检测样品的前处理实验研究.安徽化工,2005 (4):58-59.
    [289] 陆兆新 主编,现代食品生物技术,北京,中国农业出版社,2002,200-203.
    [290] 罗贵民 主编,酶工程,北京,化学工业出版社,2002,38-47.
    [291] 赵瑶兴,孙祥玉 编著,有机分子结构光谱鉴定,北京,科学出版社,2004,31-39.