基于伪型病毒的猪瘟中和抗体检测方法的初步建立及猪瘟病毒E2蛋白的细胞定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(Classical swine fever, CSF)是由猪瘟病毒(Classical swine fever virus, CSFV)引起猪群爆发的一种重要的烈性传染病,对养猪业危害极大。预防CSFV感染的有效方法是采用疫苗免疫,建立稳定而有效的中和抗体检测方法是评价疫苗免疫效果的重要手段。
     猪瘟伪型病毒(VSV△G*CSF),是指用表达绿色荧光蛋白(GFP)的报告基因代替水疱性口炎病毒(Vesicular stomatitis virus,VSV)基因组中编码囊膜蛋白G的基因,从而形成含有报告基因的复制缺陷型病毒(VSV△G*);当外源提供CSFV囊膜蛋白时,可与VSV△G*重新装配,整合成具有一过性感染力的VSV重组病毒VSV△G*CSF。该病毒拥有VSV的基因组,囊膜上整合有CSFV的囊膜蛋白,因此具有了CSFV的感染特征,这种基因型和表现型不一致的现象叫伪型,具有这种特征的病毒叫猪瘟伪型病毒。
     本研究通过构建表达CSFV全部囊膜蛋白的重组真核表达质粒pCAGG-E012顺式表达出CSFV囊膜蛋白Erns、E1和E2。结合已有对瘟病毒的报道,通过生物软件进行比对与分析后,推测位于CSFV囊膜蛋白E2基因跨膜区内的膜锚定序列是阻碍其表达在细胞表面的主要因素,对E2锚定序列进行部分缺失后发现:E2锚定序列的部分缺失会减少E2蛋白在细胞内的表达,说明锚定序列对E2的正确表达意义重大。只有表达全部CSFV囊膜蛋白,才能够研制出滴度相对较高的猪瘟伪型病毒VSV△G*CSF,其病毒的滴度为10~2~10~3 pfu·mL~(-1),且该病毒能够被抗CSFV的阳性血清所中和。
     传统检测猪瘟病毒中和抗体的ELISA以及间接免疫荧光方法普遍存在费时、繁琐、不够精确、特异性差等一系列缺陷,亟待改进。为了提高CSFV中和抗体检测的效率和生物安全性、研究CSFV的侵染机制,本研究制备出含有报告基因的复制缺陷型VSV/CSFV伪型病毒(VSV△G*CSF)作为代替野生型CSFV的感染模型进行中和试验,使检测过程更加安全、简单,结果评定更加直观、有效。经研究表明,200 pfu的VSV△G*CSFV可被150倍稀释的标准猪瘟阳性血清所中和,利用该方法检测10份现地待检样品,结果显示7份为阳性,3份为阴性,与商品化试剂盒检测结果的符合率为90%,表明该方法能够作为一种新型的检测工具,应用于猪瘟中和抗体检测。同时,本研究对传统利用重组VSV系统制备伪型病毒的方法进行改良,节省了制备的时间,减少了表达蛋白对细胞的损伤,提高了工作效率。
     关于CSFV致病机制的研究报道甚少,本研究用猪瘟伪型病毒VSV△G*CSF感染敏感细胞PK-15不同的时间后,利用激光共聚焦显微镜观测E2蛋白在被感染细胞中的存在情况。分别对感染后10、20、35和60 min的PK-15细胞中E2的定位进行观测,结果表明:在被CSFV感染的过程中,E2蛋白先吸附在被感染细胞的细胞表面,逐渐进入到细胞内部,主要存在于细胞质中,不会进入到细胞核内,揭示了E2在CSFV的吸附与进入的过程中发挥关键作用。本研究为进一步研究猪瘟病毒的致病机制奠定基础。
     虽然猪瘟伪型病毒研制成本较高,难以实现规模化大批量生产,同时VSV△G*CSF的病毒滴度较野生型CSFV低,但因为其生物安全性好,且携带有报告基因便于定性或定量检测,故可以作为中和试验中CSFV的替代品,成为新型检测工具应用于猪瘟中和抗体的测定,使CSFV的抗体检测更加安全,直观,快速。同时将猪瘟伪型病毒VSV△G*CSF作为引起主要保护性抗原E2基因的传递工具,用于研究被CSFV感染细胞中E2蛋白在病毒感染不同时间点的具体位置,动态的展现出E2蛋白从吸附到进入,以及感染剂量与感染时间的相互关系,为CSFV病毒感染细胞的研究提供参考。
Classical swine fever (CSF) caused by the Classical swine fever virus (CSFV) is an important contagious and fatal pig disease with widespread economic losses. Vaccination is of vital importance as an effective way to the prevention of CSFV infection, so it is essential to establish a stable and effective neutralizing antibody detection to test the CSF vaccine.
     Pseudotype CSFV (VSV△G*CSF) refers to the process in which the enveloped protein gene (G) was replaced by the green fluorescent protein (GFP) gene and VSV△G* was formed, containing a new reporter gene. CSFV envelope protein from external sources can reassemble with VSV△G* and integrate into a one-off infectious VSV (Vesicular Stomatitis Virus) recombinant virus: VSV△G*CSF. VSV△G*CSF contains the genetic material of VSV and the capsule membrane integrated with the character of the infection of CSFV envelope protein. This kind of the inconsistency between genotype and phenotype is called pseudo-type, with such features of CSFV is called pseudotype virus of CSFV.
     In this study, we constructed a recombinant eukaryotic expression plasmid pCAGG-E012 to express all of CSFV envelope proteins Erns, E1 and E2 by cis. According to the bovine viral diarrhea virus envelope glycoprotein E2 and to partially delete the different fragments by using the biology software to compare and analysis. The result of the expression indicted that after the cis expression of all CSFV envelope glycoproteins based on the recombinant eukaryotic expression plasmid pCAGG-E012, the titer of VSV△G*CSF is from 10~2 to 10~3·mL~(-1), and the infection can be neutralized with the positive serum anti CSFV.
     The traditional methods for detecting CSF antibody like ELISA and indirect immunofluorescence assay have a series of flaws in urgent need of improvement, such as time-consuming, imprecise and low specificity. In order to improve the efficiency of neutralizing antibody detection and biological safety, and then to study the mechanism of CSFV infection, this study developed a replication-defective VSV/CSFV pseudovirus (VSV△G*CSF), as a model of CSFV infection to replace the wild-type CSFV virus as a novel neutralization assay to make the neutralization antibody detection process more convenient and accurate. The study shows that 200 pfu of VSV△G*CSFV could be neutralized by the standard positive CSF serum which is diluted 150 times. Using this method to test 10 serum samples, 7 were divided into positive and 3 were divided into negative, which have case detection rate of 90% compliance with that of commercial kit. Therefore, the method can be used as a new method in CSF antibody detection and has good application prospects.
     Few reports are known for pathogenic mechanism of CSFV, some specific factors could significantly affect the results of CSFV infection, such as amino acid mutations in CSFV structural protein and changes of the major antigens E2 glycosylation site affect the virulence of CSFV and the combination of virus and target cells. The interaction of virus and cell is poorly understood, especially on the CSFV infection leading to host cell protein expression and biological function.
     In this study, E2 protein locations on CSFV infected cells at different time point were discussed. CSFV infected PK-15 cells were detected by laser positioning confocal microscopy at 10, 20, 35 and 60 min, indicating that during the process of infected CSFV, E2 protein was attached to the cell surface of the infected cells, then entered the cell gradually, stayed in the cytoplasm, E2 do not enter the nucleus, so we can draw a conclusion that E2 protein played an important role in CSFV attachment and entry. This study provides a technical support for further study of CSFV infection mechanism.
     Although the preparation of pseudo-type virus costs enormously, and it is difficult to achieve large-scale production at the same time, the titer of VSV△G*CSFV virus is lower than that of the wild type CSFV, it can be used as an alternative to the wild-type CSFV in neutralizing antibody detection, making the detection of CSFV antibodies more rapid, direct-viewing and secure, just because of its good bio-security and its ease of carrying the reporter gene for qualitative or quantitative analysis. On the other hand, pseudo-type virus VSV△G*CSFV can be used as a delivery tool of E2 gene to study the specific location of E2 protein in CSF infected cells at different time points, which can dynamically show the process that E2 protein from the adsorption to entry and the relationship between the infection dose and infection time. This result may be helpful for elucidating the CSFV infection mechanism.
引文
1.殷震,刘景华主编。《动物病毒学》(第二版)[M].科学出版社, 1997, 652-664。
    2. Elber A R, Stegeman A, Moser H, et al. The classical swine fever epidemic 1997-1998 in The Netherlands: descriptive epidemiology [J]. Preventive Veterinary Medicine, 1999, Vol.42(2): 157-184.
    3.周泰冲,用兔化猪瘟弱毒疫苗消灭猪瘟[J].农业科学通讯, 1956, 11:569-571.
    4.万遂如,对猪瘟危害的再认识与防控对策[J].养猪, 2008 (1):41-44.
    5.刘九生,猪瘟的危害与防制[J].疫病防控, 2009(1):28-34.
    6.杜念兴.猪瘟的回顾与展望[J].中国畜禽传染病, 1998, 20(9) :317-319.
    7. Becher P, Orlich M, Thiel HJ. Mutations in the 5’-nontranslated region of bovine viral diarrhea virus result in altered growth characteristics [J]. J Virol, 2000, 74(17):7884–94.
    8. Becher P, Orlich M, Thiel HJ. RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease [J]. J Virol, 2001, 75(14):6256–64.
    9. Stegeman A, Elbers A, Smit H, et al. The 1997-1998 epidemic of classical swine fever in the Netherlands [J]. Vet Microbiol, 2000, 73(2-3): 183-96.
    10. Moennig V. The hog cholera virus [J]. Comp Immunol Microbiol Infect Dis, 1992, 15(3):189-201
    11. Lowings JP, Paton DJ, Sands JJ, et al. Classical swine fever: genetic detection and analysis of differences between virus isolates [J]. J Gen Virol, 1994, 75 (12): 3461-8.
    12.韩雪清,刘湘涛,赵启祖,等.猪瘟病毒遗传发生关系分析[J].中国兽医科技1999, 6(29):3-7
    13.吕宗吉,李红卫,涂长春,等.我国部分地区猪瘟病毒流行株的基因差异[J].中国兽医学报, 4(20):313-316
    14. Meyers G, Thiel HJ. and Rumenapf T. Classical swine fever virus: recovery of infectious viruses from cDNA constuts and generation of recombinant cytopathogenic defective interfering particles [J]. J Virol, 1996, (70): 1588–1595.
    15. Moormann RJ, van Gennip HG, Miedema GK, et al. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus [J]. J Virol, 1996, 70(2):763–70
    16. Ruggli N, Tratschin JD, Mittelholzer C, et al. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full–length cDNA [J]. J Virol, 1996, 70, 3478–3487.
    17. Deng R. and Brock KV. 5′and 3′untranslated regions of pestivirus genome: primary and secondary structure analyses [J]. Nucleic Acids Res. 1993. (21), 1949–1957
    18. Poole TL, Wang C, Popp RA. Pestivirus translation occurs by internal ribosome entry [J]. Virology, 1995. 206, 750– 754
    19. Pestova TV, Shatsky IN, Fletcher SP, et al. A prokaryotic–like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs [J]. Genes Dev, 1998, 12:67–83
    20.王毅,猪瘟病毒兔化弱毒疫苗株(HCLV)减毒的分子机制研究[博士学位论文].武汉:武汉大学.
    21. Moenning V. Pestiviruses: a review [J]. Vet. Microbiol, 1990, 23, 35–54.
    22. Meyers G, Rumenapf T, Thiel HJ. Molecular cloning and nucleotide sequence of the genome of hog cholera virus [J]. Virology, 1989, 171, 555–567
    23. Moormann RJ, Warmerdam PA, van der Meer B, et al. Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein E1 [J]. Virology, 1990, 177, 184–198.
    24.刘大飞,孙元,仇华吉.反向遗传学技术在猪瘟病毒研究中的应用[J].生物工程学报, 2009, 25(10): 1441-1448
    25. Rumenapf T, Unger G, Strauss JH,et al. Processing of the envelope glycoproteins of pestiviruses [J]. J Virol, 1993, 67, 3288–3294.
    26. Rümenapf T, Stark R, Meyers G, et al. Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity [J]. J Virol, 1991, 65 (2):589-97
    27. Weiland E, Stark R, Haas B, et a1. Pestivirus glycoprotein which induces neutralising antibodies forms part of a dissulfide-linked heterodimer [J]. J Virol, 1990, 64(8): 3563-3569
    28. Thiel HJ, Stark R, Weiland E, et al. Hog cholera virus: molecular composition of virions from a pestivirus [J]. J Viro1, 1991, 65:4705-4712
    29. Elers K, Tautz P, Becher D, et al. Processing in the pestivirus E2-NS2 region: identification of protein p7 and E2p7 [J]. J Virol, 1996, 70:4131- 4135
    30. Marusawa H, Hijikata M, Chiba T, et al. Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated apoptosis via NF-kappaB activation [J]. J Vriol, 1999, 73, 4713-4720.
    31. Weiland F, Weiland E, Unger G, et al. Localization of pestiviral envelope proteinsE(rns) and E2 at the cell surface and on isolated particles [J]. J Gen Virol, 1999, 80(5):1157-1165
    32. Bruschke CJ, Hulst MM, Moormann RJ, et al. Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species [J]. J Virol, 1997, 71(9): 6692-6696.
    33. Hulst MM, Panoto FE, Hoekman A. Inactivation of the RNase activity of glycoprotein Erns of classical swine fever virus results in a cytopathogenic virus [J]. J Vriol, 199872, 151- 157
    34.金扩世,涂长春,殷震,等.猪瘟病毒保护性囊膜糖蛋白E1基因的研究进展[J].病毒学报, 1996, 12(3): 287-290
    35. Wensvoort G, Boonstra J, Bodzinga BG, et al. Immuroaffinity purification of characterization of envelope glycoprotein E1 of hog cholera virus [J]. J Gen Virol, 1990, 71(3): 531-540
    36. Stark R, Meyers G, Rumenapf T, et al. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus [J]. J Virol, 1993. 67, 7088-7095
    37. Van Rijn PA, Miedema GK, Wensvoort G, et a1. Antigenic structure of envelope glycoprotein E1 of hog cholera virus [J]. J Virol, 1994, 68, 3934-3942
    38. Weiland E, Stark R, Haas B, et a1. Pestivirus glycoprotein which induces neutralising antibodies forms part of a dissulfide-linked heterodimer [J]. J Virol, 1990, 64(8): 3563-3569.
    39. Wang Z, Nie Y, Wan P, et al. Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry [J]. Virology, 2004, 330(1): 332-341
    40. Risatti GR, Holinka LG, Lu Z, et a1. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine.[J]. Virology, 2005, 343, 116–27.
    41. Moormann RJ, Warmerdam PA, van der Meer B, et al. Nucleotide sequence of hog cholera virus RNA: properties of the polyprotein encoded by the open reading frame spanning the viral genomic RNA [J]. Vet Microbiol, 1990, 23 (1-4): 185-91
    42. van Rijn PA, van Gennip HG, de Meijer EJ, et al. Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia [J]. J Gen Virol, 1993, 74 (10): 2053-60.
    43. Elber AR, Tautz N, Becher P,. et al. Processing in the pestivirus E2-NS2 region: identifyication of proteins p7 and E2-p7 [J]. J Virol, 1996 70, 4131-4135
    44. van Rijn PA, Bossers A, Wensvoort, G, et al. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigsfrom lethal CSFV challenge [J]. J Gen Virol, 1996, 77(Pt 11), 2737-2745.
    45. van Rijn PA, Van DJ, Moormann RJ, et al. Subdivision of the envelope glycoprotein E2. Virology, 1997, 237, 337-348
    46.刘湘涛,赵启祖,李忠润,等.猪瘟病毒和猪瘟的防制[A].谢庆阁,翟中和主编.畜禽重大疫病免疫研究进展[M].北京:中国农业科技出版社, 1996, 321-338.
    47. Roberto Burioni, Yoshiharu Matsuura, Nicasio Mancini, et al.Diverging Effects of Human Recombinant Anti-Hepatitis C Virus (HCV) Antibody Fragments Derived from a Single Patient on the Infectivity of a Vesicular Stomatitis Virus/HCV Pseudotype [J]. J Virol, 2002, 79(22): 11775-11779
    48. Ceppi M, de Bruin MG, Seuberlich T, et al. Identification of classical swine fever virus protein E2 as a target for cytotoxic T cells by using mRNA-transfected antigen-presenting cells [J]. J Gen Virol, 2005, 86(9): 2525-34
    49. Risatti GR, Borca MV, Kutish GF, et al. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine [J]. J Virol, 2005, 79(6): 3787–96
    50. Risatti GR, Holinka LG, Lu Z, et al. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine [J]. Virology, 2005, 343:116–27
    51. Risatti G, Holinka L, Lu Z, et al. Chimeric classical swine fever virus containing the E2 gene from a vaccine strain in the genetic background of strain Brescia induces solid early protection in swine. In: Abstracts of the sixth pestivirus symposium [C]. Thun, Switzerland, 2005, page 87, P5-10.
    52. Hulst MM, Moormann RJM. Inhibition of pestivirus infection in cell culture by envelope proteins Erns and E2 of classical fever virus: Erns and E2 interact with different receptors [J]. J Gen Virol, 1997, 78:2779-2787
    53. Lin M, Lin F, Mallory M, et al. Deletions of structural glycoprotein E2 of classical swine fever virus strain Alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum [J]. J Virol, 2000, 74(24):11619-25
    54. Yu M, Wang LF, Shiell BT, et al. Fine mapping of a C-terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to gp54) of different pestivirus [J]. Virololgy,1996,222:289–292
    55. Thiel HJ, Stark R, Weiland E, et al. Hog cholera virus: molecular composition of virions from a pestivirus [J]. J Viro1, 1991, 65:4705-4712
    56. Rumenapf T, Unger G, Strauss JH, et al. Processing of the envelope glycoproteins of pestiviruses [J]. J Virol, 1993, 67(6): 3288-94
    57. Ruggli N, Tratschin JD, Mittelholzer C, et al. Nucleotide Sequence of ClassicalSwine Fever Virus Strain Alfort/187 and Transcription of Infectious RNA from Stably Cloned Full–Length cDNA [J]. JVirol, 1996, 70, 3478–3487.
    58. Tratschin JD, Moser C, Ruggli N, et al. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture [J]. Virology, 1998, 72(9): 7681-7684
    59. Rumenapf T, Stark R, Heimann M, et al. N-terminal protease of pestiviruses: identification of putative catalytic residues by site-directed muta- genesis [J]. J Vriol, 1998, 72, 2544-2547
    60. Mayer D, Hofmann MA, Tratschin JD. Attenuation of classical swine fever virus by deletion of the viral N (pro) gene [J]. Vaccine, 2004, 22(3-4): 317-28.
    61. Harada T, Tautz N. and Thiel H.J, E2-P7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies [J]. J Virol, 2000, 74; 9498-9506
    62. Moenning, V, Pestiviruses: a review [J]. Vet .Microbiol, 1990, 23, 35–54
    63. Meyers G, Thiel HJ, Cytopathogenicity of classical swine fever virus caused by defective interfereing particles [J]. J Virol, 1995, 69, 3683-3689.
    64. Moser C, Tratschin JD, Hofmann M. A recombinant classical swine fever virus stably expresses a marker gene [J]. J Virol, 1998, 72 (6): 5318-5322
    65. Kummerer BM, Meyers G. Correlation between point mutations in NS2 and the viability and cytopathogenicity of Bovine viral diarrhea virus strain Oregon analyzed with an infectious cDNA clone [J]. J Virol, 2000, 74, 390-400
    66. Tautz N, Meyers G, Thiel HJ. Related Pathogenesis of mucosal disease, a deadly disease of cattle caused by a pestivirus [J]. Clin Diagn Virol, 1998, 10(2-3): 121-127.
    67. Xu J, Mendez E, Caron PR, et al. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication [J]. J Virol, 1997, 71(7): 5312–22
    68. Grassmann, C. W, Isken, O, Behrens, S. E, Assignment of the multifunctional NS3 protein of bovine viral diarrhea virus during RNA replication: an in vivo and in vitro study [J]. J Virol, 1999, 73, 9196-9205
    69. Pauly T, Elbers K, Konig M, et al. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope [J]. J Gen Virol, 1995, 76 (12):3039-49
    70. Tautz N, Kaiser A, Thiel HJ. NS3 serine protease of bovine viral diarrhea virus: characterization of active site residues, NS4A cofactor domain, and protease-cofactor interaction [J].Virology, 2000, 273, 351-363
    71. Ishido S, Fujita T, and Hotta H. Complex formation of NS5B with NS3 and NS4A proteins of hepatitis C virus.[J].Biochem Biophy Res Commun 1998. 244, 35-40
    72. Qu L, McMullan LK, Rice CM. Isolation and characterization of noncytopathic pestivirus mutants reveals a role for nonstructural protein NS4B in viral cytopathogenicity [J]. J Virol, 2001, 75, 10651-10662
    73. MacCarthy JE, Modulation of the hepatitis C virus RNA-dependent RNA polymerase activity by the non-structural 3 helicase and the NS4B membrane protein [J]. J Bioll Chem, 2002, 277, 45670-45679
    74. Reed KE, Gorbalenya AE, Rice CM. The NS5A/NS5 proteins of viruses from three genera of the family flaviviridae are phosphorylated by associated serine/threonine kinases [J]. J Virol, 1998, 72, 6199-6206.
    75. Grassmann CW, Isken O, Tautz N, et al. Genetic analysis of the pestivirus nonstructural coding region: defects in the NS5A unit can be complemented in trans [J]. J Virol, 2001, 75, 7791-7802
    76. Yi GH, Zhang CY, Cao S, et al. De novo RNA synthesis by a recombinant classical swine fever virus RNA-dependent RNA polymerase [J]. Eur J Biochem, 2003, 270, 4952-4961.
    77. Steffens S, Thiel HJ, Behrens SE. The RNA-dependent RNA polymerases of different members of the family Flaviviridae exhibit similar properties in vitro [J]. J Gen Virol, 1999, 80, 2583-2590
    78. LohmannV, Overton H, Bartenschlager R. Selective stimulation of hepatitis C virus and pestivirus NS5B RNA polymerase activity by GTP [J]. J Biol Chem, 1999, 274, 10807-10815.
    79. Xiao M, Gao J, Wang W, et al. Specific interaction between the classical swine fever virus NS5B protein and the viral genome [J]. Eur J Biochem, 2004, 271, 3888–96.
    80. Huslt MM, Westra DF, Wenvoort G, et al. Glycoprotein E2 of hog cholera virus expressed in insect cells protects swine from hog cholera [J]. J Virol, 1993, 67(9): 5435-5442.
    81. Delputte PL, Costers S, Nauwynck HJ. Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization: distinctive roles for heparan sulphate and sialoadhesin [J]. J Gen Virol. 2005, 86: 1441-1445.
    82. Dimitrov DS. Cell biology of virus entry [J]. Cell, 2000, 101: 697-702
    83. Mettenleiter C. Brief overview on cellular virus receptors [J].Virus Res, 2002,82: 3-8.
    84. Hulst MM, van Gennip HG, Moormann RJ, et al. Passage of classical swine fever virusin cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein Erns [J]. J Virol, 2000, 74: 9553-9561.
    85. Hulst MM, van Gennip HG, Vlot AC, et al. Interaction of classical swine fever virus with membrane-associated heparan sulfate: role for virus replication in vivo and virulence.[J]. J Virol, 2001, 75: 9585~9595.
    86. Hofer F, Gruenberger M, Kowalski H, et al. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus.[J].Proc Natl Acad Sci U S A, 1994, 91:1839~1842.
    87. Agnello V, Abel G, Elfahal M, et al. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor [J]. Proc Natl Acad Sci U S A, 1999, 96: 12766~12771.
    88. Liebert UG and Finke D. Measles virus infections in rodents [J]. Curr Top Microbiol Immunol, 1995, 191: 149-166
    89. Dorig R,Marcel A,Chopra A,et al. The human CD46 molecule is a receptor for measles virus [J].Cell,1993;75:295~305.
    90. Schelp C, Greiser-Wilke I, Wolf G, Beer M, et al. Identification of cell membrane proteins linked to susceptibility to bovine viral diarrhea virus infection [J]. Arch Virol, 1995, 140: 1997~2009
    91. Maurer K, Krey T, Moennig V, et al. CD46 is a cellular receptor for bovine viral diarrhea virus.[J].J Virol, 2004, 78: 1792~1799.
    92. Krey T, Himmelreich A, Heimann M, et al. Function of bovine CD46 as a cellular receptor for bovine viral diarrhea virus is determined by complement control protein 1 [J]. J Virol, 2006. 80: 3912~3922
    93. Huslt MM, Westra DF, Wenvoort G, et al. Glycoprotein E2 of hog cholera virus expressed in insect cells protects swine from hog cholera [J]. J Virol, 1993, 67(9): 5435-5442
    94. Ruggli N, Bird B H, Liu L et al. Npro of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction [J]. Virology, 2005, 340(13):265-276.
    95. Meyers G, Saalmuller A, Buttner M. Mutations abrogating the RNase activity in glycoprotein E(rns) of the pestivirus classical swine fever virus lead to virus attenuation [J]. Virology, 1999, (12):10224-35.
    96. van Gennip HG, Vlot AC, Hulst MM. et al. Determinants of Virulence of Classical Swine Fever Virus Strain Brescia [J]. J Virol, 2004, 78, 8812–8823
    97. Dewulf J, Laevens H, Koenen K, et al. An experimental infection with classical swine fever in E2 subunit marker-vaccine vaccinated and in non-vaccinated pigs [J]. Vaccine, 2004, 19: 475-482
    98.贺番,郝永清,仇华吉,部分缺失猪瘟病毒囊膜蛋白E2的锚定序列对其在细胞内表达的影响, [J].中国预防兽医学报, 2010,5, 293-301
    99. Greiser-Wilke I, Blome S, Moennig V. Diagnostic methods for detection of Classical swine fever virus—Status quo and new developments [J]. Vaccine, 2007, 25:5524-5530.
    100. Grummer B, Fischer S, Depner K, et al.Replication of classical swine fever virus strains and isolates in different porcine cell lines[J]. Dtsch Tierarztl Wochenschr, 2006, 113(4): 138-142.
    101. Emi N, Friedmann T, Yee JK. Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus [J]. J Virol, 1991, 65(3): 1202-1207.
    102. Fukushi S, Mizutani T, Saijo M, et al. Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein [J]. J Gen Virol, 2005, 86(8): 2269-2274
    103. Ge J, Wen Z, Wang X, et al. Generating vesicular stomatitis virus pseudotype bearing the severe acute respiratory syndrome coronavirus spike envelope glycoprotein for rapid and safe neutralization test or cell-entry assay [J]. Ann N Y Acad Sci, 2006, 1081(1): 246-248
    104. Schwegmann-Wessels C, Glende J, Ren X, et al. Comparison of vesicular stomatitis virus pseudotyped with the S proteins from a porcine and a human coronavirus [J]. J Gen Virol, 2009, 90(7):1724-1729.
    105. Lagging LM, Meyer K, Owens RJ, et al. Functional Role of Hepatitis C Virus Chimeric Glycoproteins in the Infectivity of Pseudotyped Virus [J]. J Virol. 1998, 72(5): 3539-3546
    106. Ogino M, Ebihara H, Lee BH, et al. Use of Vesicular Stomatitis Virus Pseudotypes Bearing Hantaan or Seoul Virus Envelope Proteins in a Rapid and Safe Neutralization Test [J]. Clin Diagn Lab Immunol. 2003, 10(1): 154-160
    107. Giroglou T, Cinatl J Jr, Rabenau H, et al. Retroviral Vectors Pseudotyped with Severe Acute Respiratory Syndrome Coronavirus S Protein [J].J Virol,2004, 78(17): 9007-9015
    108.卢五迅,程通,李少伟,等.人乳头瘤病毒16型假病毒中和实验的建立和初步应用[J].生物工程学报, 2006,(06)
    109.刘华雷, Lijun Rong,魏建超,等.整合禽流感病毒血凝素糖蛋白的假型鼠白血病病毒[J].中国病毒学,2005,(02)
    110.张柯,谭文杰,邓瑶,等.三种丙型肝炎包膜感染性假病毒颗粒的制备及初步应用研究[J].病毒学报, 2008, (04):????.
    111.黄睿,凌世淦.假病毒在丙型肝炎病毒研究中的应用[J].军事医学科学院院刊,2006,(04)
    112.闫克夏,阮力,谭文杰,等SARS-CoV假病毒中和试验技术的建立及评价[[J]病毒学报, 2007, 24( 6) : 248-255.
    113. de Smit AJ, Bouma A, de Kluijver EP, et al. Prevention of transplacental transmission of moderate-virulent classical swine fever virus after single or double vaccination with an E2 subunit vaccine [J]. Vet Q, 2000a, 22 (3): 150-3
    114. de Smit AJ, van Gennip HG, Miedema GK, et al. Recombinant classical swine fever (CSF) viruses derived from the Chinese vaccine strain (C-strain) of CSF virus retain their avirulent and immunogenic characteristics [J].Vaccine, 2000b, 18 (22): 2351-2358.
    115. de Smit AJ. Laboratory diagnosis, epizootiology, and efficacy of marker vaccines in classical swine fever: a review [J]. Vet Q, 2000c, 22(4):182-8
    116.贺番,葛金英,仇华吉,一种制备复制缺陷型重组水疱性口炎病毒制备效率的新方法的建立, [J].中国兽医科学2010, 40(3):111-115
    117.侯强,彭伍平,孙元,等.猪瘟病毒E2蛋白主要抗原区编码基因的原核表达及其单克隆抗体的制备[J].中国兽医科学, 2008, 38(1): 6-10.
    118.彭伍平.利用噬菌体展示技术鉴定猪瘟病毒E2蛋白抗原表位[D].中国农业科学院研究生院硕士论文, 2007.
    119. Laurence C, Jean-Christophe M, Anne OB. Coexpression of hepatitis C virus envelope proteins E1 and E2 in cis improves the stability of membrane insertion of E2 [J]. J Virol, 2003, 38(1): 6-10
    120. K?hl W, Zimmer G, Greiser-Wilke I, et a1. The surface glycoprotein E2 of bovine viral diarrhoea virus contains an intracellular localization signal [J]. J Gen Virol, 2004, 85(5):1101–1111
    121.孙元,祁巧芬,梁冰冰,等.表达猪瘟病毒E2蛋白的重组腺病毒的构建及其在兔体内的免疫原性分析[J].生物工程学报, 2008, 24(10): 1734-1739
    122. Domenico rosa, Susanna campagnoli, Carlo moretyo, A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: Cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells [J]. Biochemistry, 1996, 93, 1759-1763
    123. Weiland E, Stark R, Haas B, et a1. Pestivirus glycoprotein which inducesneutralising antibodies forms part of a dissulfide-linked heterodimer [J]. J Virol, 1990, 64(8): 3563-3569.
    124. K?hl W, Gr?ne A, Moennig V, et al. Expression of the surface glycoprotein E2 of Bovine viral diarrhea virus by recombinant vesicular stomatitis virus [J]. J Gen Virol, 2007, 88(1):157-165.
    125. Lagging LM, Meyer K, Owens RJ, et al. Functional role of hepatitis C virus chimeric glycoproteins in the infectivity of pseudotyped virus [J]. J Virol, 1998, 72(5): 3539-3546.
    126. Basu A, Beyene A, Meyer K, et al. The hypervariable region 1 of the E2 glycoprotein of hepatitis C virus binds to glycosaminoglycans, but this binding does not lead to infection in a pseudotype system [J]. J Virol, 2004, 78(9): 4478-4486.
    127. van Zijl M, Wensvoort G, Kluyver E, et al. Live attenuated pseudorabies virus expressing envelope glycoprotein El of hog cholera virus protects swine against both pseudorabies and hog cholera [J]. J Viro1, 1991, 65(5): 2761-2765.
    128. K?hl W, Zimmer G, Greiser-Wilke I, et a1. The surface glycoprotein E2 of bovine viral diarrhoea virus contains an intracellular localization signal [J]. J Gen Virol, 2004, 85(5):1101–111
    129.王华伟,徐进.第二遗传密码与蛋白质结构优化算法[J].生物技术, 2003, 13(1): 39-41