自动化公路系统车辆纵横向控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动化公路系统(Automated Highway System)是智能交通系统(IntelligentTransport System)最主要的子系统之一,该系统旨在实现车辆自动导航和控制、交通管理以及事故处理等的自动化,提高整个公路系统的安全性和运行效率。自动化公路系统中一项重要内容是研究和设计车辆纵向、横向控制规律,实现车辆无人驾驶。本文从车辆动力学模型的建立入手,在对几类非线性关联系统稳定性分析的基础上,对车辆纵向跟随、车道保持、车辆换道等自动化公路系统车辆自动控制的有关内容进行了研究。
     对影响汽车运动的主要因素及汽车纵向运动和侧向运动的相互影响进行了分析。基于汽车受力分析和动力学定律,以车辆纵向速度、横向速度及横摆角速度为状态变量,分别建立了汽车纵向运动、侧向运动以及纵横向耦合运动的动力学模型。
     对两类具有时间滞后的无限维非线性关联系统的群指数稳定性进行了研究。以系统的孤立子系统稳定性条件为基础,应用向量李雅普诺夫函数方法和比较原理,在假定系统满足全局Lipschitz条件的情况下,得到了关联系统指数稳定的充分判据。
     对自动化公路系统车辆纵向跟随控制进行了研究。就“顾前”型和“顾前顾后”型两种控制思路,基于车辆纵向动力学模型和固定车间距跟随策略建立了车辆跟随误差的动态方程;假定车队中每个跟随车辆依靠车间通信接收领头车辆以及该车相邻车辆的位移、速度信息,以车辆作动/制动作用力为控制变量,设计了变结构控制规律;基于非线性关联系统指数稳定性判据,对控制系统的稳定性进行了分析。对具有参数不确定性的车辆纵向控制系统,针对参数有界和参数慢变这两种情况分别进行了研究,设计了变结构鲁棒控制规律和参数自适应律。
     对自动化公路系统车道保持控制进行了研究。基于车辆横向动力学模型和车辆预瞄机制,建立了车辆侧滑位置误差和横摆角误差的动态方程;假定利用车载传感器获得车辆重心相对于车道中心线的横摆角及侧向位置偏差,采用非线性滑模和有限时间滑模趋近律,以车辆前轮转向角为控制变量,设计了车道保持变结构控制规律;在系统具有不确定参数和外界干扰的情况下,基于李雅普诺夫函数方法,设计了变结构自适应控制规律和参数自适应规律。
     对自动化公路系统车辆换道控制进行了研究。假设期望的侧向加速度满足正反梯形的约束条件,考虑起始车道和目的车道曲率的不同,对弯道上的车辆换道轨迹进行了规划;根据期望换道轨迹计算车辆换道时的期望横摆角和横摆角速度;假定依靠速度传感器获得横摆角速度信息,基于车辆横向动力学模型,采用有限时间滑模趋近律,设计了车辆换道变结构控制规律;基于李雅普诺夫函数方法,对车辆侧滑速度进行了估计。
     对自动化公路系统车辆纵横向耦合控制进行了研究。基于车辆纵横向耦合动态模型和车辆队列,采用有限时间滑模趋近律,设计了车道保持、车辆换道与纵向跟随的耦合控制规律;基于李雅普诺夫函数方法,对控制系统的稳定性进行了分析。
     对基于车间通信的车辆出入队控制进行了研究。综合利用车辆纵向跟随、车道保持、车辆换道等控制方法,设计了自动化公路系统车辆出队、入队的控制算法和规律。
     对取得的理论研究结果,利用Matlab工具进行了计算机仿真实验。仿真结果验证了文中设计的车辆纵向、横向控制规律的有效性以及车辆出入队控制算法的可行性。
Automated Highway System (AHS) is an uppermost subsystem of Intelligent Transport System (ITS). The system includes vehicle automatic navigation and control, traffic management automation and traffic accident treatment automation. It will significantly increase the throughput on the highways and enhance driving safety. A key factor in AHS deployment is the synthesis and design longitudinal and lateral control laws for vehicle automated driving. In this dissertation, from constructing dynamic model of vehicle, based on the stability analysis for interconnected nonlinear systems, the longitudinal control for vehicle following, and lateral control for lane keeping and lane changing in AHS were studied.
     The important factors affecting vehicle driving performance, and the coupling effects between longitudinal vehicle dynamics and lateral vehicle dynamics were investigated. Based on the analysis of vehicle dynamics, by using some of dynamics theorems, the longitudinal dynamic model, lateral dynamic model, and coupled dynamic model considering the coupling effects were constructed by taking the longitudinal velocity, lateral velocity, and yaw rate as the states.
     The stability of two classes of infinite-dimensional nonlinear interconnected systems was studied. Under the assumption that the systems are globally Lipschitz, from the conditions of stability of isolated subsystems decomposed from the interconnected nonlinear systems, by applying vector Lyapunov function method and comparison principle, the sufficient conditions of exponential string stability for these interconnected systems were obtained.
     The longitudinal control for vehicle following in AHS was studied. By employing "look ahead" and "look both ahead and behind" approach for control systems design, respectively, based on longitudinal dynamic model of vehicles and constant spacing policy, the dynamical equation for spacing errors of the string vehicles was constructed, assuming that each controlled vehicle in the platoon has full access to information on the position, velocity and acceleration of lead vehicle and vehicle in front and behind of it, by sliding mode control method, the longitudinal control laws for vehicle following were designed by taking the propulsive/braking effort as the control input. The stability of the longitudinal following control system was analyzed by the stability criteria of nonlinear interconnected systems. In the presence of parametric uncertainty (time varying or unknown), the decentralized adaptive algorithm to compensate for parametric variations was investigated and the robust variable structure control laws for each vehicle in the platoon were designed.
     The lateral control for lane keeping in AHS was studied. Applying the look-ahead scheme and vehicle lateral dynamic mode, the vehicle lateral dynamics about the lateral displacement error and yaw angle error at the look-ahead distance were modeled. Assuming the data of the lateral offset from the centerline of the lane and the angle between the tangent to the road and the vehicle orientation at the look-ahead distance can be measured with on-board sensors, applying terminal sliding mode and finite time sliding mode reaching law, the variable structure control law for lane keeping was designed taking the steering angle as the control input. In the presence of parametric uncertainty, the robust variable structure control laws were designed, the adaptive algorithm to compensate for parametric variations was investigated by the Lyapunov function method.
     The lateral control for lane changing in AHS was studied. Applying trapezoidal acceleration trajectory, considering the curvature varying from starting lane to target lane, a virtual trajectory for lane changing on curved road was presented. Applying the predetermined trajectory, the desired yaw angle and yaw rate for lane changing were generated. Assuming that the information on yaw rate of vehicle can be measured with on-board sensors, based on the lateral dynamical model of vehicle, by the finite time sliding mode reaching law, the lane changing variable structure control law was designed. The lateral velocity was estimated by the Lyapunov function method.
     The coupled longitudinal and lateral control in AHS was studied. Based on coupled longitudinal and lateral model of vehicle in a platoon, by the design method of finite time sliding mode reaching law, the coupled control laws for vehicle following with lane keeping, and vehicle following with lane changing were designed, respectively. The stability of control systems was analyzed using Lyapunov function method.
     The control for vehicle split from a platoon and join a platoon was studied based on inter-vehicle communication. The control algorithm for vehicle split from a platoon and join a platoon was designed by applying the longitudinal and lateral control laws for vehicle following, lane keeping and lane changing in AHS.
     The simulation was done applying Matlab toolbox. Simulation results indicate that the longitudinal and lateral control performance was good by using the control laws designed for vehicle following, lane keeping, and lane changing in this dissertation. Simulations also verify the feasibility of the control algorithm for vehicle split from a platoon and join a platoon.
引文
[1]Markus H.City logistics:Network modeling and intelligent transport systems.Journal of Transport Geography,2002,10(2):158-159.
    [2]Shladover S E.Automatic vehicle control developments in the PATH program.IEEE Transactions on Vehicular Technology,1991,40(1):114-130.
    [3]Varaiya P.Smart cars on smart roads:Problem of control.IEEE Transactions on Automatic Control,1993,38(2):195-207.
    [4]杨易.智能车辆组合定位与路径导航技术研究.湖南大学博士学位论文,2006.
    [5]Rajamani R,Tan H S,Law B K,et al.Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons.IEEE Transactions on Control Systems Technology,2000,8(4):695-708.
    [6]Iguchi M.A perspective on ITS deployment.JSAE Review,2002,23(2):173-176.
    [7]Maurer M,Behringer R,Dickmanns D,et al.VaMoRs-P:An advanced platform for visual autonomous road vehicle guidance.Proceedings of SPIE Conference on Mobile Robots Ⅸ,Boston,MA,USA,1994,2352:239-248.
    [8]Rudolf G.EMS-vision:A perceptual system for autonomous vehicles.IEEE Transactions on Intelligent Transportation Systems,2002:48-60.
    [9]Broggi A.The ARGO autonomous vehicle's vision and control systems.International Journal of Intelligent Control and Systems,1999,3(4):409-441.
    [10]孙振平.自主驾驶汽车智能控制系统.国防科学技术大学博士学位论文,2004.
    [11]郭木河,杨磊.视觉导航中基于模糊神经网的消阴影算法研究,软件学报,1999,10(2):155-159.
    [12]马雷.高速智能车辆滑模变结构转向控制系统的研究.吉林大学博士学位论文,2003.
    [13]Sheikholeslam S.Longitudinal control of a platoon of vehicles Ⅲ:Nonlinear Model.PATH Research Report,UCB-ITS-PRR-90-1,University of California,Berkeley,USA,1990.
    [14]Stankovic S S,Stanojevic M J,Siljak D D.Decentralized overlapping control of a platoon of vehicles. IEEE Transactions on Control Systems Technology,2000, 8(5): 816-832.
    
    [15] No T S, Chong K T, Roh D H. A Lyapunov function approach to longitudinal control of vehicles in a platoon, IEEE Transactions on Vehicular Technology,2001, 50(1): 116-124.
    
    [16] Hsiao T. Detection and identification of sensor failures in vehicle lateral control systems. Proceedings of the American Control Conference, New York,2007:1636-1641.
    [17] Kyongsu Y, Minsu W, Sung H K, et al. An experimental investigation of a CW/CA system for automobile using hardware in the loop simulation.Proceedings of the American control conference, San Diego, California, 1999:724-728
    [18] Horowitz R, Varaiya P. Control design of an automated highway system.Proceedings of the IEEE International Conference on Intelligent Transportation Systems, 2000, 88(7): 913-925.
    
    [19] Rajamani R. Vehicle Dynamics and Control. New York: Springer, 2006.
    [20] Hsiao T, Tomizuka M. Design of position feedback controllers for vehicle lateral motion. Proceedings of American Control Conference, Minneapolis,Minnesota, 2006: 5455-5460.
    [21] Junaid K M, Wang S. Autonomous vehicle following performance comparison and proposition of a quasi-linear controller. Information Technology and Control, 2007,36(4): 393-401.
    [22] Yi K, Park Y. An investigation into a string-stable vehicle following control strategy for stop-and-go cruise control. Journal of Automobile Engineering,2002, 216(12): 947-956.
    
    [23] Chu K C. Decentralized control of high-speed vehicle strings. Transportation Research, 1974, 8:362-383.
    [24] Barbieri E. Stability analysis of a class of interconnected systems. ASME Journal of Dynamic System, Measurements, Control, 1993, 115(3): 546-551.
    [25] Levine J, Athans M. On the optimal error regulation of a string of moving vehicles. IEEE Transactions on Automatic Control, 1966, 11(11): 355-361.
    [26] Caudill R E, Garrard W L. Vehicle follower longitudinal control for automated transit vehicles. ASME Journal of Dynamic Systems, Measurements, and Control, 1977,99(4)241-248.
    [27] Shladover S E. Longitudinal control of automotive vehicles in close formation platoons. ASME Journal of Dynamic Systems, Measurement, and Control,1991, 113(2): 231-241.
    [28] Junaid K M, Wang S. Autonomous vehicle following-performance comparison and proposition of a quasi-linear controller. Information Technology and Control, 2007, 36(4):393-400.
    [29] Aracil J, Heredia G, Ollero A. Global stability analysis of fuzzy path tracking using frequency Response. Engineering Applications of Artificial Intelligence,2000,13(2): 109-119.
    [30] Swaroop D, Hedrick J K. String stability of interconnected systems. IEEE Transactions on Automatic Control, 1996, 41(3): 349-357.
    [31] Eyre J, Yanakiev D, Kanellakopoulos I. A simplified framework for string stability analysis of automated vehicle. Vehicle System Dynamics, 1998, 30(5):375-405.
    [32] Shladover S E. Longitudinal control of automated guideway transit vehicles within platoons. ASME Journal of Dynamic Systems, Measurement, and Control, 1978, 100: 302-310.
    [33] Zhang J, Ioannou P A. Longitudinal control of heavy trucks in mixed traffic: environmental and fuel economy considerations. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1):92-104.
    [34] Sheikholeslam S, Desoer C A. Longitudinal control of a platoon of vehicles I:Linear model. PATH Research Report, UCB-ITS-PRR-89-3, University of California, Berkeley, USA, 1989.
    [35] Druzhinina M, Moklegaard L, Stefanopoulou A G. Parameter estimation and supervisory techniques for robust longitudinal control of heavy vehicles. PATH Research Report, UCB-ITS-PRR-2003-15, University of California, Berkeley,USA, 2003.
    [36] Fujioka T, Aso M, Kimura T. Longitudinal vehicle following control for autonomous driving.Proceedings of International Symposium on Advanced Vehicle Control,Aachen,Germany,1996:1293-1304.
    [37]Swaroop D.Direct adaptive longitudinal control of vehicle platoons.IEEE Transactions on Vehicular Technology,2001,50(1):150-161.
    [38]Sainte-Marie J,Mammar S,Nouveliere L,et al.Sub-optimal longitudinal control of road vehicles with capacity and safety Considerations.ASME Journal of Dynamic Systems,Measurement,and Control.2004,126(1):26-35
    [39]Zhang J Y,Suda Y,Twasa I,et al.Vector Lyapunov function approach to longitudinal control of vehicles in a platoon.JSME International Journal,(Series C),2004,47(2):653-658
    [40]Hedrick J K,McMahon D H,Narendran V K,et al.Longitudinal vehicle controller design for IVHS systems.Proceedings of the American Control Conference,Boston,MA,1991:3107-3111.
    [41]McMahon D H.Longitudinal vehicle controller design for IVHS:Theory and experiment.Proceedings of the American Control Conference,Chicago,1992:1753-1757.
    [42]Nouvelierea L,Mammar S.Experimental vehicle longitudinal control using a second order sliding mode technique.Control Engineering Practice,2007,15(8):943-954.
    [43]Emelyanov S V.Automatic Control Systems of Variable Structure.Moscow:Nauka,1967.
    [44]高存臣,袁付顺,肖会敏.时滞变结构控制系统.北京:科学出版社,2004.
    [45]胡跃明.变结构控制理论与应用.北京:科学出版社,2003.
    [46]Adam S H.Nonlinear observer design and fault diagnostics for automated longitudinal vehicle Control.PATH Research Report,University of California,Berkeley,USA,2002.
    [47]Cook P A.Stable control of vehicle convoys for safety and comfort.IEEE Transactions on Automatic Control,2007,52(3):526-531.
    [48]Zhang Y,Kosmatopoulos E B,Ioannou P A,et al.Intelligent cruise control using front and back information for tight vehicle following maneuvers.IEEE Transactions on Vehicular Technology,1999,48(1):319-328.
    [49] Cook P A, Sudin S. Convoy dynamic with bi-directional flow of control information. Proceedings of the 10~(th) IFAC Symp. on Control Transportation Systems, Tokyo, Japan, 2003:433-438.
    [50]舒仲周,张继业,曹登庆.运动稳定性.北京:中国铁道出版社, 2001:148-166.
    [51] Lapierre L, Soetanto D. Nonlinear path-following control of an AUV. Ocean Engineering, 2007, 34(11-12): 1734-1744.
    [52] Papadimitriou I, Lu G, Tomizuka M. Autonomous lateral following considerations for vehicle platoons. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronim (AIM), Kobe,Japan, 2003, 1:401-406.
    [53] Chan C Y. Magnetic sensing as a position reference system for ground vehicle control. IEEE Transactions on Instrum. Meas., 2002, 51(1): 43-52.
    [54] Donecker S M, Lasky T A, Ravani B A. mechatronic sensing system for vehicle guidance and control. IEEE/ASME Transactions on Mechatronics,2003,8(4)500-510.
    [55] Hernandez J I, Kuo C Y. Steering control of automated vehicles using absolute positioning GPS and magnetic markers. IEEE Transactions on Vehicular Technology, 2003, 52(1): 150-161.
    [56] Wijesoma W S, Kodagoda K R S, Balasuriya A P, et al. Road edge and lane boundary detection using laser and vision. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, USA,2001,3:1440-1445.
    [57] Lu G, Tomizuka M. Vehicle lateral control with combined use of a laser scanning radar sensor and rear magnetometers. Proceedings of the American Control Conference, Anchorage, 2002:3702-3707.
    [58] Lu G, Tomizuka M. LIDAR sensing for vehicle lateral guidance: Algorithm and experimental study. IEEE/ASME Transactions on Mechatronics, 2006,11(6): 653-660.
    [59] Hsiao T, Tomizuka M. Design of position feedback controllers for vehicle lateral motion. Proceedings of American Control Conference, Minneapolis, Minnesota,2006:5855-5860.
    [60]王荣本,马雷,储江伟等.智能车辆转向变结构控制方法的研究.汽车工程,2004,26(1):1-4.
    [61]Suryanarayanan S.Fault tolerant control and its application to lane-keeping control of automated vehicles.PhD dissertation,University of California,Berkeley,USA,2002.
    [62]周俊,姬长英.智能车辆横向控制研究.机器人,2003,25(1):26-30.
    [63]Espiau B,Chaumette F,Rives P.A new approach to visual serving in robotics.IEEE Transactions on Robotics and Automation,1992,8(3):313-326.
    [64]Raviv D,Herman M.A non-reconstruction approach for road following.Proceedings of SPIE on Intelligent Robots and Computer Vision,Boston,MA,USA,1991,1608:2-12.
    [65]王荣本.基于视觉的智能车辆自主导航最优控制器设计.汽车工程,2001,23(2):97-100.
    [66]Peng H.Vehicle lateral control for highway automation.PhD dissertation,University of California,Berkeley,USA,1992.
    [67]Ackerman J.Robust control prevent car skidding.IEEE Control Systems Magazine,1997,17(3):23-31.
    [68]李庆中,顾伟康,叶秀清等.移动机器人路径跟踪的智能预瞄控制方法研究.机器人,2002,24(3):252-255.
    [69]Kehtarnavaz N,Coriswold N,Miller K,et al.A transportable neural network approach to autonomous Vehicle following.IEEE Transaction on Vehicular Technology,1998,47(2):694-720.
    [70]M S Netto,R.Labayrade,S.Ieng,et al.Different modes on shared lateral control.Proceedings of the 10~(th) World Congress and Exhibition on Intelligent Transportation systems and Services,Madrid,Spain,2003,16-20.
    [71]Cai L,Rad A B,Chan W L,et al.A Robust Fuzzy PD controller for automatic steering control of autonomous vehicles.Proceedings of the IEEE International Conference on Fuzzy Systems,St.Louis,USA,2003,1:549-554.
    [72]Pushkar H,Wang J Y,Tai M,et al.Lateral control of heavy duty vehicles for automated highway system:experimental study on a tractor semi-trailer.PATH Working Paper,UCB-ITS-PWP-2000-1,University of California,Berkeley,USA,2000.
    [73]Hingwe P,Tomizuka M.Experimental evaluation of a chatter free sliding mode control for lateral control in AHS.Proceedings of the American Control Conference,Albuquerque,NM,1997:3365-3369.
    [74]Oya M,Wang Q.Adaptive lane keeping controller for four-wheel-steering vehicles.Proceedings of IEEE International Conference on Control and Automation,Guangzhou,China,2007:1942-1947
    [75]Yoshida Y,Wang Q,Oya M,et al.Adaptive longitudinal velocity and lane keeping control of four-wheel-steering Vehicles.SICE Annual Conference,Japan,2007:1305-1310.
    [76]Benton R E.Linear matrix inequality approach to robust emergency lateral control of a highway vehicle with time-varying uncertainties.PhD dissertation,Louisiana State University,Baton Rouge,Louisiana,USA,1997.
    [77]赵治国,方宗德,黄英亮等.车辆动力学稳定性系统变结构滑模控制研究.中国机械工程,2004,14(2):152-156.
    [78]Guldner J,Tan H S,Patwardhan S.On fundamental issues of vehicle steering control for highway automation.PATH Working Paper,UCB-ITS-PWP-97-11,University of California,Berkeley,USA,1997.
    [79]Guldner J,Tan H S,Patwardhan S.Study of design directions for lateral vehicle control.Proceedings of the 36~(th) conference on decision and control,San Diego,California,USA,1997,5:4732-4737.
    [80]Suryanarayanan S,Tomizuka M,Suzuki T.Design of simultaneously stabilizing controllers and its application to fault-tolerant lane-keeping controller design for automated vehicles.IEEE Transactions on Control Systems Technology,2004,12(3):329-339.
    [81]Suryanarayanan S,Tomizuka M.Appropriate sensor placement for fault tolerant lane-keeping control of automated vehicles.IEEE/ASME Transaction on Mechatronics,2007,12(4):465-471.
    [82]Salvucci D D,Liu A.The time course of a lane change:Driver control and eye-movement behavior.Elsevier Science Ltd.,Transportation Research Part F, 2002,5:123-132.
    [83]Feng J,Ruan J,Li Y.Study on intelligent vehicle lane change path planning and control simulation.Proceeding of the IEEE International Conference on Information Acquisition,Weihai,China,2006:683-688.
    [84]Hesse T,Sattel T.An approach to integrate vehicle dynamics in motion planning foradvanced driver assistance systems.Proceedings of IEEE Intelligent Vehicles Symposium,Istanbul,Turkey,2007:1240-1245.
    [85]游峰.智能车辆自动换道与自动超车控制方法的研究.吉林大学博士学位论文,2005.
    [86]Tan H S,Guldner J,Chen C,et al.Lane changing Maneuvers with look-down reference systems on automated highways.Control Engineering Practice,2000,8(9):1033-1043.
    [87]Hatipoglu C,Redmill K,(O|¨)zg(u|¨)ner(U|¨).Steering and lane change:A working system.Proceeding of IEEE Conference on Intelligent Transportation System (ITSC),Boston,MA,USA,1997:272-277.
    [88]Hatipoglu C,(O|¨)zg(u|¨)ner(U|¨),Redmill K.Automated lane change controller design.IEEE Transactions on Intelligent Transportation Systems,2003,4(1):13-22.
    [89]Lin Y S,Cook G.Automobile Steering Autopilot with lane change capability.Proceedings of the 23rd International Conference on Industrial Electronics,Control and Instrumentation,New Orleans,LA,USA,1997,1:143-148.
    [90]Hessburg T.Fuzzy logic control for lane change maneuvers in lateral vehicle guidance.PATH Research Report,University of California,USA,1995:2-10.
    [91]Hedrick J K,Swaroop D.Dynamic coupling in vehicles under automatic control.Vehicle System Dynamics,1994,23(S):209-220.
    [92]候永平,胡于进,李成刚,郭孔辉.大侧偏角下侧偏松弛长度特性的研究.汽车工程,2001(2):78-81.
    [93]Li L,Wang F Y,Zhou Q Z.Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control.IEEE Transactions on Intelligent Transportation Systems,2006,7(1):1-19.
    [94]Lim E M.Lateral and longitudinal vehicle control coupling in the automated highway system.Master dissertation,University of California,Berkeley,USA, 1998.
    [95]李以农,杨柳,郑玲等.基于滑模控制的车辆纵横向耦合控制.中国机械工程,2007,18(7):866-870.
    [96]Mammar S,Netto M.Integrated longitudinal and lateral control for vehicle low speed automation.Proceedings of IEEE International Conference on Control Applications,Taipei,Taiwan,2004:350-355.
    [97]Beji L,Bestaoui Y.Motion generation and adaptive control method of automated guided vehicles in road following.IEEE Transactions on Intelligent Transportation Systems,2005,6(1):113-123.
    [98]Pham H.A.Combined lateral and longitudinal control of vehicles for the automated hignway system.PhD dissertation,University of California,Berkeley,USA,1996.
    [99]秦贵和,葛安林,雷雨龙.智能交通系统及其车辆自动控制技术.汽车工程,2001,23(2):92-96.
    [100]Zhou J,Peng H.Range policy of adaptive cruise control vehicles for improved flow stability and string stability.IEEE Trans.Transactions on Intelligent Transportation Systems,2005,6(2):229-237.
    [101]Hedrick J K,Chen Y,Mahal S.Optimized vehicle control/communication interaction in an automated highway system.PATH Research Report,UCB-ITS-PRR-2001-29,University of California,Berkeley,USA,2001.
    [102]郭孔辉.汽车操纵动力学.长春:吉林科技出版社,2002.
    [103]Pham H.Integrated maneuvering control for automated highway systems based on a magnetic reference/sensing system.PATH Research Rreport,UCB-ITS-PRR-95-12,University of California,Berkeley,USA,1995:14-30.
    [104]刘侃.车辆动力学综合控制的性能仿真研究.华中科技大学博士学位论文,2003.
    [105]Willumeit H P.车辆动力学模拟及其方法.北京:北京理工大学出版社,1998.
    [106]Wong J Y.Theory of ground vehicles.Third Edition,New York:Wiley -Interscience,2001.
    [107]Slotine J E,Li W.Applied Nonlinear Control.Beijing:China Machine Press, 2004.
    [108]Ackerman J.Robust control prevent car skidding.IEEE Control Systems Magazine,1997,17(3):23-31.
    [109]Li Z.Vehicle merging control for an automated highway system.PhD dissertation,Virginia Polytechnic Institute and State University,Blackburg,Virginia,USA,1996.
    [110]Yu X,Man Z.Fast terminal sliding mode control design for nonlinear dynamical systems.IEEE Transactions on Circuits Systems Ⅰ,2002,49(2):261-264.
    [111]康宇,奚宏生,季海波.有限时间快速收敛滑模变结构控制.控制理论与应用,2004,21(4):623-626.
    [112]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    [113]Zhang J R,Xu S T.Nonlinear observer design for automatic steering of vehicles.Proceedings of the 5~(th) IEEE International Conference on intelligent Transportation Systems,Singapore,2002:179-182.
    [114]Swaroop D,Yoon S M.The design of a controller for a following vehicle in an emergency lane change maneuver.California PATH Working Paper,UCB-ITS-PWP-99-3,University of California,Berkeley,USA,1999.
    [115]Hsu H C H,Liu A.Platoon lane change maneuvers for automated highway systems.Proceeding of the IEEE International conference on Robotics,Automation and Mechatronics,Singapore,2004:780-785.