非线性板球系统解耦与控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以板球控制系统为工程背景,研究一类非线性系统的解耦与控制算法。首先应用拉格朗日功能平衡法,推导建立了板球系统的复杂及简化数学模型;其次,针对板球系统的大范围镇定问题,提出了基于反馈线性化的智能切换控制算法。用模糊动态模型替代原非线性系统,按奇异点将状态空间分为三个区域,仿真实验验证了算法的可行性;然后,提出了基于单一输入规则(SIRM,Single Input Rule Module)模糊推理模型的输出解耦滑模(SMC,Sliding Mode Control)控制方法,通过4个滑模函数和2个SIRM模糊控制器,解决了8阶板球系统模型的两个方向输出耦合问题。仿真实验表明除了能有效解耦外,算法还具有很强的鲁棒性;最后,针对实际平台的数学模型未知,提出了一种具有两层结构的监督模糊控制系统的设计方法,研究了实现问题。下层控制器采用三维输入结构的SIRMs模糊推理模型作为基本控制器,上层为监督保稳控制器,随时监控Lyapunov能量函数的变化及系统状态轨迹的有界性,确保闭环系统的稳定控制。上下两层控制各司其职,下层SIRMs模型很好的解决“维数灾”问题且控制性能指标优良,而上层监督控制器则确实起到了监督保稳作用。实验结果表明:该方案能有效的解决一类基于位置的视觉伺服非线性系统的运动控制问题。
     本论文研究得到2006年高等学校博士学科点专项科研基金项目(20060183006)资助。
The problems with decoupling and control for the nonlinear ball and plate system are very representative. It belongs to that one type movement control problem based on position visual servo system. Because ball and plate system is nature nonlinear, with strong coupling when the ball move on high velocity and multi-uncertainty of fact platform, there is is important significance that the study of the ball and plate system for nonlinear control theory and real engineering application. Ball and plate system is an exemplification of nonlinear dynamics system, it has been received more and more attentions. Now, it has been used to study various control method as experimental device in some overseas university. Many scholars investigate the dynamics and control problems of it. Therefore it can be used as exploiting flat for control theory and control engineering.
     Many scholars have designed control algorithm only based on simplification model of ball and plate system, but they thought little of ill-defined relative degree, strong coupling and uncertainty. However, theory isn't suitable to the ill-defined relative degree nonlinear system which thus is the important difficulty in nonlinear control. The problem of coupling hasn’t been proposed in relative research paper so far. When the ball move on high speed, the coupling of two directions is one mostly factor that impact to control precision and dynamic performance. Third, the model for real ball and plate system is unknown because to vision lag, drive machine interspace, no flat on the surface of plate, variable friction coefficient and so on. But there are language knowledge with expert to provide the controlled plant and fuzzy controller. All of these factors make trajectory tracking of the ball and plate system difficult.
     The problems with decoupling and control algorithm of nonlinear system are investigated on the ball and plate equipment BPVS-JLUⅠwhich is independently developed by our laboratory. The work is supported by College Doctor Special Scientific Research Fund of China under Grant 20060183006. The tasks of study are included: Firstly, building the system’s mathematic model by its dynamics and kinematics analysis. Secondly, making the ball is stabilizated at a set point. According to simulation experiment, we study the ball’s regulation problem in long distance. Thirdly, the decoupling control is investigated on two directions. Lastly, putting forward some control schemes to make the ball track given trajectory and searching an optimization path for the ball in complex environment, for example, some obstacles put on the plate, and control the ball track the path. The paper focuses on problems that decoupling and control algorithm for the ball and plate system via the experimental platform BPVS-JLUⅠ.The innovation include four parts that are shown as following.
     1. The models are obtained under different conditions with Lagrange methods. We have established the mathematical model of the ball and plate system with complex and simply condition that include friction,coupling and approximate linearization on the equilibrium points.We analyze and discuss some nonlinear character items that are included in model. 2. We study the regulation problem for the ball and plate system on large bound, give and realize an approximate input-output linearization and a nonlinear switch control method with the singularities system. Intelligent switching control that is regard as new idea is also proposed to solve the singular problem. We analyze and investigate the zero dynamics of system and switch rules with stability, play to simulate experiment for the proposed controller. Results indicate the intelligent switching control is proposed to solve the singular problem and increase the area of stability. Advantage of the method is definite contrast approximate linearization.
     3. FSMC(Fuzzy Sliding Mode Control) decoupling method can partly solve dimension disaster problem. However, it is very difficult when applied to the high order system for example the ball and plate system. Therefore we propose the output decoupling control methods that SMC(Sliding Mode Control) theory based on SIRM(Single Input Rule Module) fuzzy reasoning model, apply to four sliding surface and two fuzzy controllers. It is effective to settle coupling problem with two output orientations for the ball and plate system. The decoupling will not work until the system enters into the sliding mode surface.It is different than the ordinary decoupling method.The method is not influenced by uncertain disturbances. Thus its anti-disturbance performance is sound.
     4. The discussed the design and realization methods of the fuzzy control system. The system model is unknown, but there is some knowledge with plant and language controller. The supervisory fuzzy controller under hierarchical fuzzy control scheme that has the characteristics of adaptive control is proposed. The controller is divided into two layers. The controller of the lower layer is built with single input rule module fuzzy inference logic. Number of the input is 3. The above layer is the stabilization controller for supervision. It is monitoring Lyapunov energy function transformation and system state bound. The hierarchical fuzzy controller is effect respectively. The controller of the lower layer has solved the problems of too many rules and control capability target, and the controller for supervision does stabilize the system. This control method has been tested on the experiment platforms. The results have shown that the method is able to solve the motion control problem of a class of visual servo system without system mathematical models.
     Summarily, this paper accomplishes a lot of academic and experimental research on decoupling and control algorithm for ball and plate system, and basically achieves its given goals. The main respect of this dissertation is innovation and feasibility of some key technique constituting the ball and plate system. With respect to long distance regulation and decoupling problem, intelligent switching control and fuzzy sliding decoupling algorithms are verified in the simulation system developed by this paper. The hierarchical supervisory fuzzy control algorithm is verified in the real system.
引文
[1] Isidori A.Nonlinear Control Systemst[M]. Berlin:Springer- Verlag.1995.
    [2] Khalil H K.Nonlinear System[M].Macmillan,New York,1992.
    [3] Sastry S. Nonlinear System Analysis, Stability and Control[M]. New York: Springer-verlag, 1999.
    [4]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2002.
    [5] Hauser J., Sastry S., Kokotovic P.. Nonlinear control via approximate input-output linearization: the ball and beam example [J]. IEEE Transactions on Automatic Control, 1992, 37(3): 392~398.
    [6] C. J. Tomlin and S. S. Sastry. Switching through singularities [J]. Systems & Control Letter, 35:145–154, 1998.
    [7]马国梁.球杆系统的切换控制[C].第五届全球智能控制与自动化大会.杭州:2004,1084-1087.
    [8] Yantao Tian, Ming Bai and Jintao Su. A non-linear switching controller for ball and plate system [J]. Int. J. Modelling, Identification and Control, Vol. 1, No. 3, 2006, 177-182.
    [9] YiGuo,David J.Hill,Zhong-Ping jiang. Global Nonlinear Control of the Ball and Beam System [C]. Proeeedings of the 35th Conference on Decision and Control Korea and Japan,1996,(7):2818-2823
    [10] Wen-Hue Chen and Donald J. Balance. On a Switching Control Scheme for Nonlinear System with ill-defined Relative Degree [J]. Systems and Control Letters, 2002,47(2):159-166.
    [11] W.H. Chen. Analytic predictive controllers for nonlinear systems with ill-defined relative degree [J].IEEE Proc.-Control Theory Appl, January 2001, 148(1):9-15.
    [12] W.H Chen, DJ. Balance, PJ Gawthrop. Optimal control of nonlinear systems: a predictive control approach [J]. Automatica, 2003, 39:633-641.
    [13] HUMUSOFT Ltd, CE151 Ball & Plate Apparatus Users Manual, 1993.
    [14] X. Fan, N. Zhang, S. Tang, Trajectory planning and tracking of ball and plate system using hierarchical fuzzy control scheme [J]. Fuzzy Sets and Systems. 144(2003), 297–312.
    [15] N. Yubazaki, J. YI, M. Otani, N. Unemura, K. Himota, Trajectory Tracking Control of Unconstrained Objects Based on the SIRMs Dynamically Connected Fuzzy Inference Model [J]. FUZZY-IEEE’97, 609–614.
    [16] Reza Olgati-Saber and Alezander Megretski. Controller Design for the beam-and-ball system [C]. Proc. of the 37th Conference on Decision and Control, Tampa, Fl, Dec 1998, pp.4555-4560.
    [17] Shorya Awtar, C.Bernard,N. Boklund, A. Master, D. Ueda, Kevin Craig. Mechatronic design of a ball-on-plate balancing system [J]. Mechatronics 12 (2002) 217-228.
    [18] Andrej Knuplez, Amor Chowdhury. Modeling and Control Design for Ball and Plate System [J]. IEEE, 2003, 1064-1067.
    [19] Graham Goodwin, Stefan Graebe, Mario Salgado. Control system design: ball on plate tutorial. http://csd.newcastle.edu.au,2001
    [20] Phillip Yip. Sybol-based Control of a Ball-on-plate Mechanical System [D]. Master Thesis, University of Maryland, 2004.
    [21]易建强,不受约束物体的轨道跟踪控制[J],机器人,2002年8月,24卷7期,629-633.
    [22]滕树杰,张乃尧,范醒哲,板球系统的T-S模糊多变量控制方案[J],信息与控制,2002,31(3):268-271.
    [23]滕树杰,张乃尧,分层模糊控制器的解析表达式及自适应控制方法[J],清华大学学报(自然科学版),2002,42(9):1248-1252.
    [24] Caro Lucas, Alireza Fatehi, Danial Shahmirzadi,Mohsen M.Takami. Implementation of a Genetically Optimized Interpolative Fuzzy Inference Engine in Controlling a Ball-Plate Laboratory Setup [C].Proceedings of DETC’03, ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois USA, September 2-6, 2003, 1-10.
    [25] A. B.Rad,P. T. Chan,Wai Lun Lo and C. K. Mok. An Online Learning Fuzzy Controller [J]. IEEE Transactions on Industrial Electronics, Vol. 50, No. 5, October 2003, 1016-1021.
    [26] Chin E. Lin C.C. Ker. Control implementation of a magnetic actuating ball and plate system [J]. International Journal of Applied Electromagnetics and Mechanics. Vol.27, No.1, 2008 133-151.
    [27] J.H. Park, Y.J.Lee. Robust visual servoing for motion control of the ball on a plate [J]. Mechatronics 13(2003) 723-738.
    [28] G.Milighetti, H.-B.Kuntze. Multi-sensor robot control for Two-Arm humanoid skills [J]. Frauhofer Institute for Information and Data Processing (IITB), systems for Measurement, Control and Diagnosis, Karlsruhe. Germany.1-7
    [29] G.Milighetti, H.-B.Kuntze, Multi-sensor controlled skills for humanoid robots, Frauhofer Institute for Information and Data Processing (IITB), systems for Measurement, Control and Diagnosis, Karlsruhe. Germany.1-6
    [30]李军,孙政顺.模糊控制在板球系统中的仿真研究[J],电机与控制学报,2001,5(4):270-273.
    [31]王赓,孙政顺.板球控制系统的PD型模糊控制算法研究[J],电气传动,Vol.4, 2004, 23-25.
    [32]李登辉,赵世敏,孙政顺.板球系统的模糊神经网络控制算法研究[J].科学技术与工程, Vo.l6, No.5, March 2006.540-543.
    [33]胡琳静,赵世敏,孙政顺,基于模糊控制的板球控制系统实验装置[J].实验技术与管理,2005,22(4):16-20.
    [34]苏信,孙政顺,赵世敏.板球系统的模糊控制方法研究[J].计算机仿真, Vo.23, No.9, 2006.165-167.
    [35]王赓.基于视觉系统的板球控制装置的设计与开发[D].清华大学硕士论文. 2004.
    [36]吕凯.基于视觉传感的板球系统的控制实现[D].中南大学硕士论文.2007.
    [37]章自群.台面球XY轨迹气动控制系统设计[D].上海交通大学硕士论文.2007.
    [38] Ming Bai, Yantao Tian and Jintao Su. Position control ball and plate system based on ANFIS [C]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVESYSTEMS-SERISE B-APPLICATIONS & ALGORITHMS, 2006, Vol.13, 165-168
    [39] Ming Bai,Huiqiu Lu,Jintao Su and Yantao Tian. Motion Control of Ball and Plate System Using Supervisory Fuzzy Controller[C]. The 7th World Congress on Intelligent Control and Automation, Dalin, June 2006,8127-8131
    [40] Ming Bai, Yantao Tian, Jintao Su, Jianbo Zhao, Mathematic Model and Fuzzy Control of Super Articulated Ball and Plate System [C]. Proceeding of the 24th Chinese Control Conference,Guangzhou, 2005, 1147-1151
    [41] Ming Bai, Yantao Tian, Jintao Su, Jianbo Zhao, A Nonlinear Switching Controller for a Ball-and-Plate System [C]. Proceeding of the 24th Chinese Control Conference,Guangzhou, 2005, 940-943.
    [42] Ming Bai,Yantao Tian,Jintao Su. Trajectory Tracking Control for Unconstrained Objects Based on Supervisory Fuzzy Scheme [C]. ICSCA2006,Chongqing, China , 2336-2341.
    [43]苏金涛.田彦涛.白明.基于监督模糊的板球系统轨迹控制研究[C].第25届中国控制会议.哈尔滨,2006年8月, 1528-1532.
    [44]张雪菲,田彦涛,王红睿,丁策.基于扩展卡尔曼滤波的板球系统摩擦力估计[C].第26届中国控制会议,张家界,2007年7月, 375-379.
    [45] Hongrui Wang, Yantao Tian etc. Tracking control of ball and plate system with a double feedback loop structure[C]. Proc. of International Conference on Mechatronics and Automation, Haerbin, 2007. 1114-1119.
    [46]王玉香.基于视觉伺服的无约束运动提的轨迹控制研究[D].吉林大学硕士论文.2004
    [47]赵建波.超铰接无约束运动体轨迹控制与运动规划研究[D].吉林大学硕士论文.2005
    [48]苏金涛.无约束运动体路径规划与高精度轨迹控制研究[D].吉林大学硕士论文.2006
    [49]张雪菲.板球系统摩擦特性分析与补偿控制算法研究[D].吉林大学硕士论文.2007
    [50]顾庆.基于视觉信息的运动体位置提取算法和实验研究[D].吉林大学硕士论文.2007
    [51]丁策.具有间隙迟滞非线性系统的补偿控制算法研究[D].吉林大学硕士论文.2008
    [52]林靖,陈辉堂.机器人视觉伺服系统的研究[J].控制理论与应用.2000,1(4):476-480.
    [53]申铁龙.机器人鲁棒控制基础[M].北京:清华大学出版社.2000.
    [54] I. R. Petersen. A stabilization algorithm for a class of uncertain linear system [J]. Systems & Control Letters 8, 351-357
    [55] S.G.Cao,N.W.Rees and G.Fend. Lyapunov-like stability theorems for continuous time fuzzy control systems [J]. to appear in Int.J.Control, 1996
    [56] Hirschorn R, Bricaire E A, Global Approximate output tracking for nonlinear systems [J]. IEEE Trans. on Automatic Control, 1998, AC-43: 1389-1398
    [57] Panos J. Antsakis. Guest Editorial hybrid control systems: an introductory discussion to special issue [J]. IEEE Trans. On automatic control, Vol. 43, No.4, 1998: 457-460.
    [58] Mo Yiwei and Xiao Deyun. Overview of hybrid dynamical system and its application [J]. Control theory and Applications,Vol.19, No.1, 2002 :1-8.
    [59] S.Pettersson, B.Lennartson. Stability and robustness for hybrid Systems[C]. Proceeding of the 35th CDC. 1996: 1202-1207
    [60] M. Branicky. Multiple Lyapunov functions and other analysis tools for switched systems [J]. IEEE Transactions on Automatic Control. 1998,Vol(43).4:475-482
    [61] M.Branicky. Stability of switched and hybrid systems[C]. Proceedings of the 33thCDC.1994:3498-3503
    [62]翟长连,何苇,吴智铭.切换系统的稳定性及镇定控制器设计[J].信息与控制, 2000, 29(1):21-26
    [63] M. S. Branicky. Stability of hybrid systems: state of the art[C]: Proceedings of the 36th IEEE Conference on Decision and Control, 1997, 1:120-125
    [64]高军伟,切换系统建模、控制理论与应用研究[D],铁道科学研究院博士论文,2003
    [65] XuPingXu.Analysis and design of Switched systems[D].PhD thesis,University of NotreDame.2001
    [66] M.D.Lenunon, K.X.He, I.Markovsky. Supervisory hybrid systems [J]. IEEE Control System Magazine.1999,Vol(19).4:42-55
    [67] M. Johansson, A. Rantzer. Computation of piecewise quadratic Lyapunov functions for hybrid systems [J]. IEEE Transactions on Automatic Control, 1998: 43(4): 555-559
    [68] V.I. Utkin, Variable structure systems with sliding mode: A survey [J]. IEEE Trans. Automat. Contr. 22 (1977)212–222.
    [69]张昌凡,何静.滑模变结构的智能控制理论与应用研究[M].科学出版社.2005
    [70] Ji-Chang Lo, Ya-Hui Kuo, Decoupled fuzzy sliding-mode control [J]. IEEE Trans. Fuzzy Systems 6 (3) (1998) 426–435
    [71] Byung-Jae Choi, Seong-Woo Kwak, Byung Kook Kim. Design of a single-input fuzzy logic controller and its properties [J]. Fuzzy Sets and Systems 106 (1999) 299–308
    [72] Shi-Yuan Chen, Fang-Ming Yu, Hung-Yuan Chung.Decoupled fuzzy controller design with single-input fuzzy logic [J]. Fuzzy Sets and Systems 129 (2002) 335–342
    [73] Glower, J.S. Munighan, J. Designing fuzzy controllers from a variable structures standpoint [J]. IEEE Transactions on fuzzy system, 1997, pp.138-144.
    [74] Lin M&Mon, Y. J. Decoupling control by hierarchical fuzzy sliding-mode controller [J]. IEEE Transactions on Control Systems Technology,13(4), 2005:593–598
    [75] Lon-Chen Hung, Hung-Yuan Chung.Decoupled sliding-mode with fuzzy-neural network controller for nonlinear systems [J]. International Journal of Approximate Reasoning. Vol46, 2007:74–97
    [76] Medhaffar, H., Derbel, N. and Damak, T. A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator [J]. Int. J. Modelling, Identification and Control, Vol. 1, No. 1, 2006:23–29
    [77] Tai-Zu Wua, Jinn-Der Wangb, Yau-Tarng Juang.Decoupled integral variable structure control for.MIMO systems[J]. Journal of the Franklin Institute 344 (2007) 1006-1020
    [78] N. Yubazaki, J. Yi, K. Hirota, SIRMs (single Input Rule Modules) connected fuzzy inference model [J]. J. Adv. Comput. Intell. Vol.1 (1997): 23-30
    [79] N. Yubazaki, J. Yi, M. Otani, K. Hirota, SIRM’s connected fuzzy inference model and its applications to 2rst-order lag systems and second-order lag systems[J]. Proc. Asian Fuzzy Systems Symp., Kenting, 1996, pp. 545-550
    [80] Jianqiang Yi, Naoyoshi Yubazaki, Kaoru Hirota. Stability Analysis of SIRMs Dynamically Connected Fuzzy Inference Model [C]. 2001 IEEE Fuzzy Systems Conference.143-146
    [81] Jianqiang Yi, Naoyoshi Yubazaki, Kaoru Hirot. A proposal of SIRMs dynamically connected fuzzy inference model for plural input fuzzy control [J]. Fuzzy Sets andSystems, 125 (2002):79–92
    [82]王立新著,王迎军译,模糊系统与模糊控制教程[M],清华大学出版社,2003
    [83]王兴平.非线性系统的镇定控制理论概述[J].海军航空工程学院学报,2005,20(3):306-310
    [84] W.A. Wolovich, Static decoupling [J]. IEEE Trans. Automat. Control 18 (1973) 536–537
    [85]张化光,杨英旭,柴天佑.多变量模糊控制的现状与发展[J].控制与决策, 1995,10(3): 193-203
    [86]张化光,杨英旭,柴天佑.多变量模糊控制的现状与发展[J].控制与决策, 1995,10(4): 289-295
    [87]李帆,不确定性系统的解耦控制与稳定裕度分析[D],西北工业大学博士论文,2001
    [88]柴天佑.多变量自适应解耦控制及应用[M].科学出版社,2001
    [89]马平,杨金芳,崔长春,胡胜坤.解耦控制的现状及发展[J].控制工程,2005, 12(2): 97-100
    [90] L.A. Zadeh, Fuzzy sets [J]. Informat. Control, vol.8, pp338-353, 1965.
    [91] N. Baakini and E. H Mamdani, Prescriptive methods for deriving control policy in a fuzzy-logic controller [J]. Electron. Lett.. Vol.1l pp.625-626, 1975
    [92]丁学明.模糊控制理论研究及其在移动式倒立摆中的应用[D].中国科学技术大学博士论文.2005.
    [93]孙增圻.基于模糊状态模型的连续系统控制器设计和稳定性分析[J],自动化学报,1998,24(2):212-216.
    [94]张金明,李人厚.模糊控制的系统化设计和稳定性分析[J].自动化学报,1999,25(4):493-497.
    [95] Slotin J J E, Li W. Applied nonlinear control [M]. Englewood Cliffs, NJ:Prentice Hall, 1991.
    [96]周长浩.球杆系统的控制设计[D].哈尔滨工业大学硕士论文,2006.
    [97]王广雄,杨冬云,何朕.拉格朗日方程和它的线性化[J].控制与决策,2002,17(增刊2):7-8,11
    [98] Marino R.姚郁等译.非线性系统设计-微分几何、自适应及鲁棒控制[M].北京:电子工业出版社.2006:21-22.
    [99]何朕,王毅,周长浩,刘彦文.球-杆系统的非线性问题[J].自动化学报,2007,33(5):550-553.
    [100]S.G.Cao and N.W.Rees. Identification of dynamic fuzzy models [J]. Fuzzy sets and systems, 1995, 74: 307~320.
    [101]S.G.Cao, N.W.Rees and G.Fend. Quadratic stability analysis and design of continuous-time fuzzy control systems [J]. Int.J.Systems Science, 1996, 27: 193~203
    [102]L.X.Wang and J.M.Mendel. Fuzzy basic function, universal approximation, and orthogonal least squares learning [J]. IEEE Tran.on neural Networks, vol.3, 807-814, 1992.
    [103]S.Devasia, D.Chen, B.Paden. Nonlinear inversion-based output tracking [J]. IEEE Trans. Automat Control 41(7)(1996):930-942
    [104]Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Syst,Man,Cybern,1985,SMC-15:116-132
    [105]臧怀壮,智能控制及其在球棒系统中的应用[D],燕山大学硕士论文,2002
    [106]Tanaka K, Ikeda T Wang HO. Robust stabilization of a class of uncertain nonlinear systems via fuzzy control quadratic stability, H∞control theory, and linear matrix inequalities [J]. IEEE Transactions on Fuzzy Systems, Feb 1996,4(1):1-13
    [107]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996
    [108]Zhang D, Panda S K. Chattering-free and fast-response sliding mode controller [J]. IEEE Proc. Control Theory Appl., 1999, 146(2):171-177.
    [109]E.H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant [J]. Proc. Inst. Electr. Eng. 121 (1974), 1585-1588.
    [110]Raju G V S, Zhou J, Kisner R A. Hierarchical fuzzy control [J]. Int J Control, 1991, 54(5): 1201-1216.
    [111]M. Maeda, M. Tsubone, M. Murakami, Fuzzy learning control with multi-unit controller [C], Proc. 9th Fuzzy System Symp., Sapporo, 1993, pp. 285-288.
    [112]M. Mizumoto, Improvement of fuzzy controls: time-variant fuzzy controls by fuzzy singleton-type reasoning method [C]. Proc.10th Fuzzy System Symp., Osaka, 1994, pp.445-448.
    [113]C. Chen, B. Liu, J. Tsao, Adaptive fuzzy logic controller blending the concepts of linguistic hedges and genetic algorithms [C]. Proc. 8th IEEE Internat. Conf. on Fuzzy Systems, Seoul, 1999, pp. 1299-1304.
    [114]J. Godjevac, N. Steele, Adaptive fuzzy controller for robot navigation [C]. Proc. 5th IEEE Internat. Conf. on Fuzzy Systems, New Orleans, 1996, pp.136-142.
    [115]M. Margaliot, G. Langholz, Adaptive fuzzy controller design via fuzzy Lyapunov synthesis [C]. Proc. 7th IEEE Internat. Conf. on Fuzzy Systems, Anchorage, 1998, pp. 354-359.
    [116]M. Maeda, T. Sato, S. Murakami, Design of the self-tuning fuzzy controller [C]. Proc. Internat. Conf. on Fuzzy Logic & Neural Networks, Iizuka, 1990, pp.393-396.
    [117]M. Maeda, M. Tsubone, M. Murakami. Fuzzy learning control with multi-unit controller [C]. Proc. 9th Fuzzy System Symp., Sapporo, 1993, pp. 285-288.
    [118]H. Ying, L.C. Sheppard, Tuning parameters of the fuzzy controller based on the golden section search [C]. Proc. 9th Internat. Conf. of North American Fuzzy Information Processing Society, Toronto, 1990, pp. 86-89.
    [119]J.Lin, Z.Z. Huang. A hierarchical fuzzy approach to supervisory control of robot manipulators with oscillatory bases [J]. Mechatronics 17(2007) 589-600
    [120]Tae-Woong,Jung-Su Kim,A.Stephen Morse. Supervisory control using a new control-relevant switching [J]. Automatica 43(2007) 1791-1798
    [121]Amara Gmbh. Handbook of Laboratory Equipment Ball and Beam System.germany. 1998
    [122]张国银,基于NMPC球杆系统控制方法研究及实践[D].中山大学硕士论文,2007.
    [123]张嗣瀛,王景才,刘晓平.微分几何方法与非线性控制系统(1)[J].信息与控制, 1992,21(1):37-43
    [124]Greg Andrews, Chris Colasuonno and Aaron Herrmann. Ball and Plate Balancing System[R]. ECSE-4962 Control Systems Design Final Project Report, April 28, 2004.
    [125]R.Ortega, M.W. Spong, F. Gomez- Estern, G.Blankenstein. Stabilization to ball andbeam system [J]. IEEE Trans. on Automatic Control,2002,47(8):1218-1233
    [126]R.M. Huschorn. Incremental sliding mode control of the ball and beam [J]. IEEE Traps. On Automatic Control,2002,47(10):1696-1700
    [127]Yi Jiangiang, Yubazaki N , Hirota K. Stabilization control of ball and beam systems [C]. IFCA World Congress and 20th NAFIPS International Conference, vol.1,2001.2229-2234
    [128]J. YI, N. Yubazaki, K. Hirota, A new fuzzy controller for stabilization of parallel-type double inverted pendulum system [J]. Fuzzy Sets and Systems. 126(2002), pp. 105-119
    [129]A. P. Aguiar, J. P. Hespanha, Supervisory Control of Uncertain Under-actuated Vehicles[C]. In First Int. Symp. on Control, Communications and Signal Processing, Mar. 2004
    [130]F.Andreev, D. Auckly, S. Gosavi. Matching, linear systems, and the ball and beam [J]. Automatica, 2002,38:2147-2152
    [131]Corneliu Barbu, Rodophe Sepulchre and Wei Lin. Global asymptotic stabilization of the ball-and-beam system [C]. in Proc.of the 36h IEEE Conference on Decision and Control, SanDiego, Dec 1997, pp. 2351-2355
    [132]H.L.Lam, F.H.F.leung and P.K.S.Tam. Design of a fuzzy controller for stabilizing a ball-and-beam system [C]. Proc. Of the 25th Annual Conference of the IEEE Industrial Electronics Society (IECON’99), San Jose, 29 Nov. - 3 Dec. 1999, pp.520-524
    [133]Ng K. C., Trivedi M. M. Neural integrated fuzzy controller and real-time implementation of a ball balancing beam [C]. Proceedings of the 1996 IEEE International Conference on Robotics and Automation. Minneapolis, Minnesota, U.S.A.: 1590-1595
    [134]Auckly, D., & Kapitanski, L. Mathematical problems in the control of underactuated systems [J]. CRM Proceedings and Lecture Notes, 2000 27, 41–52.
    [135]Mitsuji SAMPEI, Shintaro MIZUNO, Mitsuru SEGAWA, Masato ISHIKAWA, Hisashi DATE and Daisuke YAMADA. A Feedback Solution to Ball-plate Problem based on Time-state Control Form[C].Proceedings of the American Control Conference San Diego, California l June 1999 , 1203-1207
    [136]Giuseppe Oriolo, Marilena Vendittelli. Robust stabilization of the plate-ball manipulation system [C]. Proceedings of the 2001 IEEE International Conference on Robotica & Automation.pp.91-96 .Seoul,Korea,May 21-26,2001
    [137]Nam H. Jo and Jin H. Seo.A State Observer for Nonlinear Systems and its Application to Ball and Beam System [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 5, MAY 2000.pp.968-973
    [138]A. J. Krener and A. Isidori. Linearization by output injection and nonlinear observers [J]. Syst. Contr. Lett. vol. 3, pp. 47–52, 1983
    [139]R. Marino. Adaptive observers for single output nonlinear systems [J]. IEEE Trans. Automat. Contr., vol. 35, pp. 1054–1058, 1990
    [140]A. P. Aguiar, J. P. Hespanha. Supervisory Control of Uncertain Under-actuated Vehicles [C]. First Int. Symp. on Control, Communications and Signal Processing, Mar. 2004
    [141]J. YI, N. Yubazaki, K. Hirota.A new fuzzy controller for stabilization of parallel-typedouble inverted pendulum system [J].Fuzzy Sets and Systems. 126(2002), pp. 105-119
    [142]L. X. Wang. Modeling and control of hierarchical systems with fuzzy systems [J]. Automatica, Vol. 33, No. 6, pp. 1041-1053,1997
    [143]H. H. Fakhry, W. J. Wilson. A modified resolved acceleration controller for position-based visual servoing [J]. Mathl. Comput. Modelling vol.24, No. 5/6, pp. 1-9, 1996
    [144]S. Hutchinson, G. D. Hager, P. I. Corke. A tutorial on visual servo control [J]. IEEE Trans Robotics and Automation, vol. 12, No. 5, pp. 651-670, 1996
    [145]Martin Rentsch, Bo Bernhardsson (regler), Kalle ?str?m, Anders Robertsson (regler). Controlling a Ball and Plate Process Using Computer Vision [D]. 1998
    [146]Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems [J]. Fuzzy Sets and Systems,1992,45(2):135-15
    [147]Cao S G, Rees N W, Feng G. Quadratic stability analysis and design of continuous time fuzzy control systems [J]. Int. J. Systems Science, 1996, 27(2): 193-203
    [148]Utkin V. I. Sliding Modes in Control Optimization [M]. New York: Springer Verlag,1992