白术不同提取物免疫佐剂作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白术为菊科多年生植物白术(Atractylodis macrocephalae Koidz.)的干燥根茎,是临床常用的一种补益类中药。前期研究发现,口服白术水煎剂后注射免疫口蹄疫(FMD)疫苗可增强动物的免疫反应。本文在此基础上主要研究白术不同提部分—多糖、挥发油和内酯对口蹄疫疫苗的口服佐剂作用,筛选出具有显著佐剂作用的活性成分,并探讨其增强小鼠免疫反应的作用机理,为进一步研究开发白术提供参考。
     1.白术多糖和白术挥发油的提取分离
     目的从生药白术中提取白术多糖和白术挥发油,测定其得率,并分析白术多糖的单糖组成情况。方法一白术多糖的提取和含量测定。取生药白术100g,粉碎后加25倍量水,煎煮2次,每次煎煮2h,合并煎煮液,过滤。滤液浓缩至200ml左右,边搅拌边缓缓加入4倍体积95%乙醇,4℃冰箱中静置24h,布氏漏斗抽滤,沉淀加热复溶于1000ml蒸馏水中,布氏漏斗抽滤,滤液上D101大孔树脂柱,用蒸馏水进行洗脱。洗脱液浓缩至200m1,加入4倍体积95%乙醇,4℃冰箱中静置24h,沉淀加200ml蒸馏水溶解,得多糖溶液。Sevage法除蛋白后分别对自来水和蒸馏水透析48h(cut-off Mw7000Da)。袋内糖溶液减压浓缩至适量体积,冷冻干燥得白术多糖,即为RAMPS.用苯酚硫酸法-测定多糖含量;方法二白术多糖成分分析。称取白术多糖20mg,加入2mol/L三氟乙酸15mL,室温浸渍过夜,110℃密闭水解6h,水解液于50℃减压蒸发至干,乙酰化后进行气象色谱分析其单糖组成;方法三白术挥发油的提取。取生药白术200g,加入12倍量的石油醚,70℃回流提取70min,抽滤后,同等条件下将滤渣再提取一次,合并滤液,加入适量无水硫酸钠干燥,抽滤,将滤液用旋转蒸发仪浓缩,至无溶剂滴出,即得白术挥发油。结果与结论白术多糖得率为4.2%,多糖含量为86.2%,由鼠李糖、阿拉伯糖、木糖、甘露糖、葡萄糖、半乳糖组成,物质的量比为:1.00:2.49:2.07:4.94:11.33:1.35;白术挥发油,油显金黄色,粘稠、有香气,得率为1.185%。
     2.口服白术多糖、挥发油和内酯Ⅰ对口蹄疫疫苗佐剂作用的评价
     目的通过研究白术多糖、白术挥发油和白术内酯Ⅰ对口蹄疫疫苗的免疫增强作用,筛选出具有免疫佐剂作用的提取物。方法一将42只ICR小鼠随机分成7组,每组6只,分别设生理盐水对照组、白术水煎剂组和5个不同剂量的白术多糖组。每只小鼠每天灌胃给药,连续4d,于灌胃结束后24h皮下注射O型FMD疫苗免疫,0.2mL/只,2周后采取同样方法加强免疫一次。2免后3周采血,检测血清抗FMDV特异性抗体水平;方法二将48只ICR小鼠随机分成8组,每组6只,分别设生理盐水对照组、吐温-80组、白术水煎剂组和5个不同剂量的白术挥发油组。每只小鼠每天灌胃给药,连续4d,于灌胃结束后24h皮下注射O型FMD疫苗免疫,0.2mL/只,2周后采取同样方法加强免疫一次。2免后3周采血,检测血清抗FMDV特异性抗体水平;方法三将48只ICR小鼠随机分成8组,每组6只,分别设生理盐水对照组、DMSO组、白术水煎剂组和5个不同剂量的白术内酯Ⅰ组。每只小鼠每天灌胃给药,连续4d,于灌胃结束后24h皮下注射O型FMD疫苗免疫,0.2mL/只,2周后采取同样方法加强免疫一次。2免后3周采血,检测血清抗FMDV特异性抗体水平。结果与结论口服白术多糖可明显提高小鼠产生的抗FMDV特异性抗体的水平,而口服白术挥发油和白术内酯Ⅰ并不能提高小鼠血清中特异性抗体水平,表明小鼠口服白术多糖对FMDV疫苗免疫佐剂作用。3.口服白术多糖对口蹄疫疫苗免疫佐剂作用的研究
     目的观察白术多糖口服给药对小鼠皮下注射口蹄疫疫苗的免疫反应。方法将35只ICR小鼠随机分成5组,每组7只。分别设生理盐水对照组、白术水煎剂组和3个不同剂量的白术多糖组。每只小鼠每天灌胃给药,连续4d,于灌胃结束后24h皮下注射O型FMD疫苗免疫,0.2mL/只,2周后采取同样方法加强免疫一次。2免后3周眼球采血,间接ELISA法检测血清抗FMDV抗体效价及抗体亚类IgG1、IgG2a、IgG2b和IgG3水平,western blot检测血清中IFN-γ和IL-5水平;无菌分离脾淋巴细胞,用MTT法检测淋巴细胞增殖和RT-PCR法检测FMDV抗原刺激后脾脏淋巴细胞细胞因子和转录因子mRNA表达水平。结果0.025g/d、0.05g/d和0.01g/d的白术多糖连续灌胃4d后,小鼠血清抗FMDV特异性抗体效价、抗体亚类水平、脾淋巴细胞刺激指数、脾淋巴细胞Th1/Th2类细胞因子IFN-γ/IL-4以及转录因子T-bet/GATA-3mRNA的表达水平都显著高于对照组(P<0.05),其中以0.05g/d白术多糖灌胃的提高幅度最大;0.05g/d白术多糖组小鼠血清中IFN-γ和IL-5的水平也得到明显提高(P<0.05)。结论口服白术多糖能够显著提高小鼠对口蹄疫疫苗免疫产生的免疫应答,促进T、B淋巴细胞活化,并激活Th1和Th2型免疫应答反应,对FMD疫苗具有佐剂作用。
     4.口服白术多糖对小鼠肠道黏膜免疫的影响
     目的观察口服白术多糖对小鼠肠道黏膜免疫系统的影响。方法将56只雌性ICR小鼠随机分成4组,每组14只。分别设白术多糖和生理盐水对照免疫组以及白术多糖和生理盐水对照非免疫组。每只小鼠每天灌胃给药0.25mL,连续4d,免疫组小鼠于灌胃给药后24h腹股沟皮下注射O型FMD疫苗免疫,0.2mL/只,2周后采取同样方法加强免疫一次。首免后1周和2免后2周,每组取7只小鼠眼球采血,间接ELISA法检测血清抗FMDV抗体水平;采集十二指肠,用于肠道内容物的收集、肠道组织mRNA的提取以及石蜡切片的制备,采用ELISA法测定肠道内容物中总IgA的水平,RT-PCR检测肠道组织细胞因子(?)nRNA表达水平、HE染色计数肠上皮淋巴细胞(IEL)数量、免疫组化法计数IgA+细胞数量。结果口服白术多糖可显著提高小鼠血清中抗FMDV特异性抗体水平。口服白术多糖后1周后,小鼠十二指肠内容物中IgA水平、肠道IgA+浆细胞面积、肠组织TGF-β、IL-6、TNF-α mRNA表达水平以及小肠IEL细胞数目均显著高于对照组;灌胃后2周,以上指标有升高趋势,但差异不明显。结论口服白术多糖可提高小鼠肠道黏膜免疫水平,灌胃后1周的效果要高于灌胃后2周。
     5.白术多糖体外对小鼠巨噬细胞模式识别受体的作用
     目的观察白术多糖体外对小鼠巨噬细胞模式识别受体有无作用。方法以Raw-Blue细胞(稳转pNifty-2质粒的RAW264.7细胞)为刺激对象,分别向细胞培养液中加入不同终浓度的白术多糖和黄芪多糖刺激细胞,使最终浓度为0、1μg/ml、4μg/ml、8μg/ml、16μg/ml、25μg/ml、50μg/ml、100μg/ml和200μg/ml。37℃,5%C02培养箱中培养18h后,取40μl细胞培养上清,加入到160μl显色液中,37℃培养2h后,检测报告基因SEAP (分泌型碱性磷酸酶)的表达水平。结果与结论白术多糖对细胞上清中SEAP的水平没有影响,表明白术多糖并不能刺激Raw-Blue细胞NF-κB的表达,对TLRs、NLRs或RLRs等PRRs无作用;
     综上所述,口服白术挥发油和白术内酯Ⅰ对FMD疫苗无免疫增强作用,而口服白术多糖可显著提高小鼠血清的抗FMDV特异性抗体水平,促进T、B淋巴细胞的增殖,提高Thl和Th2型免疫应答,增强小鼠肠道黏膜免疫水平,表明白术水煎剂的口服佐剂作用主要是由白术多糖所引起;白术多糖的佐剂作用并不通过TLRs、NLRs或RLRs信号途径所介导,具体的作用机制还有待进一步研究。
Atractylodis macrocephalae Koidz. is a natural plant in family of Compositae, The rhizome of the plant (RAM) has been utilized as a digestive stimulator in traditional Chinese medicine. Our previous study has demonstrated that oral administration of a decoction made from RAM has significantly increased immune responses to vaccines against FMD in mice. In the present thesis, adjuvant activity of different extracts from RAM were studied in order to screening for the adjuvant fractions, and then its effect on the systemic and intestinal mucosal immune response to FMD vaccine in mice was investigated.
     1. Extraction and purification of polysaccharide and volatile oil from the rhizome of Atractylodis macrocephalae Koidz.(RAM)
     Objective To extract and purify the polysaccharide and volatile oil from RAM. Methods Three experiments were designed and described as follows. In experiment A, the rhizome of RAM (100g) was ground into powder and then extracted with boiling water two times under reflux for2h each time. The aqueous portion was filtered through filter paper. The filtrate was concentrated under reduced pressure. Four volumes of95%ethanol were added to the supernatant, and kept overnight at4℃. The resulting precipitate was dissolved in distilled water, subjected to Macroporous Adsorption Resin column D101, and then washed with water.The collected elute was concentrated, dialyzed against distilled water (cut-off Mw7000Da) and lyophilized to afford a total RAM polysaccharide (RAMPS). Total sugar content was estimated by the phenol-sulfuric acid analysis using glucose as a standard. In experiment B, RAMPS (20mg) were hydrolyzed with15ml of2M TFA at110℃for6h to release component monosaccharides. The hydrolyzed monosaccharides (inositol as the internal standard) were derivatized to acetylated aldononitriles and isothermally separated by gas chromatography (GC) in an Agilent6890N system equipped with a flame-ionization detector (FID) and a DB-5capillary column (30.0m×0.32mm× 0.25μm). In experiment C, the rhizome of RAM (200g) was ground into powder and then extracted with petroleum ether at70℃two times under reflux for70min each time. The filtrate was concentrated under reduced pressure until no solvent left to obtain volatile oil of RAM. Results and Conclusions The yield of RAMPS in this experiment was4.2%, The polysaccharide contained in RAMPS was86.2%. GC quantitative analysis with derivatization revealed that RAMPS was composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose with the molar ratio of1.00:2.49:2.07:4.94:11.33:1.35.The extraction rates of volatile oil was1.185%.
     2. Adjuvant effects of oral administration of RAMPS、volatile oil and atractylenolide I against FMD vaccine in mice
     Objective To screen for the ingredient(s) contributing the adjuvant activity of RAM. Methods In experiment A, Forty-two female ICR mice were randomly divided into seven groups with six mice in each. The animals were subcutaneously injected twice with200μl of FMDV type O vaccine with2-week intervals. One day before each immunization, the mice had already been orally administered for4days with0.25ml of0.89%saline solution, or RAMPS (6.25,12.5,25,50or100mg) or RAM decoction (250mg). Blood samples were collected3weeks after the booster immunization for detection of of FMDV-specific antibody response. In experiment B, Forty-eight female ICR mice were randomly divided into eight groups with six mice in each. The animals were subcutaneously injected twice with200μl of FMDV type O vaccine with2-week intervals. One day before each immunization, the mice had already been orally administered for4days with0.25ml of0.89%saline solution, or tween-80(2%) or volatile oil of RAM (1,2,4,8or16mg) or RAM decoction (250mg). Blood samples were collected3weeks after the booster immunization for detection of of FMDV-specific antibody response. In experiment C, Forty-eight female ICR mice were randomly divided into eight groups with six mice in each. The animals were subcutaneously injected twice with200μl of FMDV type O vaccine with2-week intervals. One day before each immunization, the mice had already been orally administered for4days with0.25ml of0.89%saline solution, or DMSO (0.5%) or atractylenolide I (0.05,0.1,0.2,0.4or0.8mg) or RAM decoction (250mg). Blood samples were collected3weeks after the booster immunization for detection of of FMDV-specific antibody response. Results and Conclusions Oral administration of RAMPS tended to enhance serum sepcific IgG response against FMDV immunization, neither volatile oil nor atractylenolide I have been found adjuvant properties in our experiments. Therefore, the adjuvant activities of RAM may be attributed to RAMPS.
     3. Adjuvant effects of oral administration of RAMPS to FMD vaccine in mice
     Objective To investigate the effect of RAMPS on the immune responses to a commercial FMD vaccine in mice. Methods Thirty-five female ICR mice were randomly divided into five groups with7mice in each. The animals were subcutaneously injected twice with200μl of FMDV type O vaccine with2-week intervals. One day before each immunization, the mice had already been orally administered for4days with0.25ml of0.89%saline solution, or RAMPS (0.025,0.05or0.1g) or RAM decoction (0.25g). Blood samples were collected3weeks after the booster immunization for detection of IgG titers, the IgG subclasses and western blot analysis. Splenocytes were harvested for determination of lymphocyte proliferation and cytokines mRNA expression. Results After oral administration for4days of RAMPS, immunization of a commercial FMD vaccine induced significantly higher serum specific IgG and the IgG isotype responses in association with up-regulated serum IFN-y and IL-5. In addition, RAMPS significantly increased splenocyte proliferative responses to ConA, LPS and FMDV, as well as mRNA expression of Thl/Th2cytokines (IFN-y/IL-4) and transcription factors (T-bet/GATA-3) by splenocytes. Conclusions Oral administration of RAMPS can enhance the activities of T and B cells and promote a balanced Th1/Th2immune responses against FMD in mice. Considering its natural origin and low side effects, RAMPS could be used as an effective adjuvant to FMD vaccine.
     4. Effects of oral administration of RAMPS on the intestinal mucosal immunity of mice
     Objective To investigate the effect of RAMPS on the intestinal mucosal immune syetem of mice. Methods Fifty-six female ICR mice were randomly divided into four groups with14mice in each. Two groups of the animals were subcutaneous!y injected twice with200μl of FMDV type O vaccine with2-week intervals. One day before each immunization, the mice had already been orally administered for4days with0.25ml of0.89%saline solution, or RAMPS0.05g.The other two groups were not immunized with vaccine, but had been orally administered at the same time.One week after first immunization and two weeks after the booster immunization, half mice of every group were sacrificed. Blood samples were collected for detection of antigen-specific antibody response. Intestine duodenum of mice were seperated. Fecal samples were collected from individual mice and extracted by making a1:10suspension (wt/vol) with stool diluent. The suspension was vortexed and centrifuged for20min at12000g. The supernatant was collected for detection of Total IgA levels. Part of the duodenum was grinded with liquid nitrogen for determination of cytokine mRNA expression. Tissue paraffin sections were prepared and stained with haematoxylin and eosin (HE) for analysis of intraepithelial lymphocytes (IEL) and immunohistochemical analysis were also performed for analysis of IgA+plasma cells. Results Oral administration of RAMPS at the dose of0.05g/d for4days could improve serum antigen-specific antibody responses as well as total IgA levels, mRNA expression of TGF-β, IL-6, TNF-α, the area of IgA+plasma cells and the number of IELs in the duodenum of mice. Conclusions Oral administration of RAMPS significantly increased systemic as well as gut mucosal immunity in mice immunized with FMD vaccine.
     5. Effect on PRRS of a macrophage cell line of mice by RAMPS
     Objective To observe the effect of RAMPS on the activation of PRRs in a macrophage cell line of mice. Methods Raw-Blue is a macrophage cell line (Raw264.7), which was stably transfected with plasmid (pNifty-2), which can be induced by activated NF-κB to secrete SEAP protein. Raw-Blue cells were stimulated with RAMPS and APS at different final concentration (0、1、48、16、25、50、100、200μg/ml) for18h, then the SEAP in supernate were detected by substrate. Results and Conlusions There was no significantly ascensus of SEAP in the supernate, thus RAMPS and APS could not activate the signal pathways of NF-κB, showed no effects on PRRs(TLRs or NLRs or RLRs).
     All together, neither volatile oil nor atractylenolide I have been found adjuvant properties in our experiments.But oral administration of RAMPS tended to enhance serum sepcific IgG response against FMDV immunization, the activity of T and B cells of the mice and a balanced Th1/Th2immune responses against FMD, as well as the intestinal mucosal immune responses. Therefore, the oral adjuvant activities of RAM may be attributed to the fraction of polysaccharide (RAMPS). But the adjuvant activity of RAMPS was not mediated by TLRs or NLRs or RLRs, the mechanisms need to be further investigated.
引文
陈磊,裘连君,侯一杰,张怡沛,田薇,2010.不同生长期白术多糖的含量测定.时珍国医国药,(4):858-859.
    程相朝,张春杰,李银聚,吴庭才,2002.中药免疫增强剂对肉仔鸡免疫器官生长发育及免疫活性细胞影响的研究.中兽医学杂志,(3):6-8.
    池玉梅,李伟,文红梅,崔小兵,蔡皓,毕肖林,2001.白术多糖的分离纯化和化学结构研究.中药材,(9):647-648.
    戴远威,江青艳,傅伟龙,鲁锡祥,黄瑞花,高萍,1997.补益中药提取物对雏鸡免疫功能的影响.中兽医学杂志,(2):2-5.
    段启,许冬谨,刘传祥,李成龙,2008.白术的研究进展.中草药,39(5):14.
    冯璞,王凤连,1988.四君子汤对小鼠免疫功能的影响.兰州医学院学报,(3):8-11.
    郝大丽,罗荣,徐宜芳,李凯六,2005.猪口蹄疫免疫抗体效价的测定及结果分析.畜牧兽医杂志,24(2):42.
    郝延军,桑育黎,李宝林,贾天柱,2007.苍术酮的常温稳定性研究.中成药,(6):895-896.
    郝延军,桑育黎,李宝林,王勒,贾天柱,2006.白术内酯Ⅰ及白术内酯Ⅲ对唾液淀粉酶活性的影响.时珍国医国药,17(9):1617-1618.
    胡松华,杜爱芳,2000.复方黄芪、绞股蓝对鸡新城疫疫苗免疫效果的影响.中兽医学杂志,(2):1-3.
    胡晓蕾,胡迎利,汪以真,2006.白术及白术多糖对SD大鼠生长性能和免疫功能的影响.中国兽药杂志,(1):2-6.
    江兴林,蒋乐龙,胡祥上,王玉爱,田小英,邓伟峰,房华,刘辉,2006.中药白芍对小鼠体液免疫功能影响的探讨.怀化医专学报,5(2):54-55.
    江振友,林晨,刘小澄,韦静,袁桂秀,李小兰,2003.灵芝多糖对小鼠体液免疫功能的影响.暨南大学学报(自然科学与医学版),(2):51-53.
    姜东平,2008.玉屏风口服液对鸡新城疫和法氏囊病疫苗免疫效果的影响.畜禽业,(8):50-52.
    李翠芹,贺浪冲,2005.白细胞膜色谱模型建立与白术中TLR4受体拮抗活性成分筛选研究.中国科学:C辑,35(6):545-550.
    李宏全,赵万国,吕小虎,2008.动物免疫增效剂黄芪多糖化学组分及其结构分析.中兽医医药杂志,(5):5-9.
    李秋莲,周梦圣,1984.四君子汤对小鼠胸腺组织中核酸含量和外周血中T淋巴细胞数的影响.中西医结合杂志,366-367.
    李瑞丽,胡松华,2010.玉屏风散及其麦冬加味对O型口蹄疫疫苗免疫反应的影响.中国兽医学报,(2):233-235.
    李伟,文红梅,张爱华,葛建华,吴皓,2001.白术质量标准研究1——HPLC(?)测定2种白术内酯的含量.药物分析杂志,(3).
    梁中焕,郭志欣,张丽萍,2007a.白术水溶性多糖的结构特征.分子科学学报,(3):185-188.
    梁中焕,郭志欣,张丽萍,2007b.白术水溶性多糖的结构特征.分子科学学报,(3):185-188.
    刘昳,叶峰,邱根全,章梅,王锐,何群英,蔡云,2005.白术内酯Ⅰ对肿瘤恶病质患者细胞因子和肿瘤代谢因子的影响.第一军医大学学报,(10):1308-1311.
    刘良,周华,等,2001.四君子汤复方总多糖对小鼠肠道粘膜相关淋巴组织的影响.中国免疫 学杂志,17(4):204-206.
    刘良,周华,王培训,胡英杰,2001.四君子汤复方总多糖对小鼠肠道粘膜相关淋巴组织的影响.中国免疫学杂志,(4):204-206.
    刘伟祥,黎琼红,谢晨,段启,2007.HPLC法测定白术中的白术内酯Ⅰ、Ⅱ、Ⅲ.中草药,38(8):1261-1262.
    马艳,杨安东,文筱,2006.白术多糖提取工艺研究.中药材,(10):1104-1106.
    毛俊浩,吕志良,曾群力,阮红,1996.白术多糖对小鼠淋巴细胞功能的调节.免疫学杂志,(4):21-24.
    乔小云,姚峰,李俏,王玉玺,2001.影响白术多糖提取工艺的因素探讨.中成药,(4):61-62.
    邱根全,赵旭升,孙烨,刘昳,蔡云,王锐,何群英,孙喜才,2006.白术挥发油治疗癌性恶病质的实验研究.西安交通大学学报:医学版,27(5):477-479.
    邱世翠,韩兆东,刘学东,刘云波,邸大琳,宫照龙,2002.葛根对小鼠淋巴细胞增殖、IL-2和抗体产生的影响.中国中医药科技,(4):211.
    邱细敏,卢岳华,沈品,刘爱霞,张毅,李丽立,2005.不同产地白术多糖含量测定.中国药业,(4).
    沈国庆,张宏桂,2007.白术挥发油提取方法改进.中国药房,(27):2112-2114.
    石玉祥,闫金坤,王雪敏,张书亮,于晶晶,2011.中药提取物对应激小鼠肠道上皮内淋巴细胞和杯状细胞数量及IL-2水平的影响.中国兽医科学,41(1):85-88.
    孙炜,潘中文,2002.小柴胡汤及白虎汤的免疫学研究.中医药研究,18(2):8.
    孙奕,王景明,骆永珍,2002.淫羊藿总黄酮促进免疫功能低下小鼠IL-2和NK活性的实验研究.中草药,(7):62-64.
    汤新慧,1998.白术多糖对小鼠免疫功能的影响.中医研究,(2):9-11.
    唐小云,鞠宝玲,李霞,2008.小柴胡汤对BALB/c小鼠免疫调节作用研究.中药药理与临床,(5).
    田允波,周家容,李琦华,贾俊静,黄日豪,2009.白术多糖对仔猪生长性能和血清生化参数的影响.中国畜牧杂志,(9).
    王峰,蔡光明,郭惠玲,2008.高效液相色谱法测定白术挥发油中苍术酮的含量.中南药学,(3):320-322.
    王翕,刘玉瑛,史天良,张鸿翔,杨广文,2002.白术挥发油抗实体瘤的作用研究.中国药物与临床,(4):239-240.
    王郁金,苏衍进,2009.白术挥发油对小鼠H22肝癌血道转移的抑制作用及机理研究.陕西中医,(6):735-736.
    王自然,2008.加减四君子汤对商品肉鸡免疫功能的研究.中国预防兽医学报,30(2):145-148.
    卫修来,陈镇,夏泉,许杜娟,2009.索氏提取法提取白术内酯Ⅰ的工艺研究.时珍国医国药,(6):1427-1428.
    文红梅,李伟,吴皓,邱鲁婴,1997a.炮制对白术中白术内酯Ⅲ含量的影响.中国中药杂志,(11):22-23.
    文红梅,李伟,吴皓,邱鲁婴,1997b.炮制对白术中白术内酯111含量的影响.中国中药杂志,(11):22-23.
    文红梅,张爱华,王莉,吴皓,李伟,1999.炮制对白术中白术内酯Ⅰ含量的影响.中药材,(3):125-126.
    许冬青,王明艳,姜海英,赵凤鸣,2002.五种补益方对环磷酰胺造模小鼠骨髓、胸腺细胞周期的影响.中药药理与临床,(5):11-12.
    薛志成,2005.奶牛接种O型口蹄疫疫苗的免疫效果监测初报.当代畜牧,(4):17.
    言丽娜,陈波,姚守拙,2008.白术中白术内酯Ⅲ的分离纯化.天然产物研究与开发,20(B05):64-66.
    张兆捷,陈殿学,2008.加味补中益气汤对肺孢子虫肺炎大鼠的免疫调节作用研究.中国病原生物学杂志,(6).
    张宗,张鸿翔,史天良,刘玉瑛,2006.白术挥发油抗肿瘤作用的研究.肿瘤研究与临床,(12):799-800.
    周德文,周立勇,1996.术类的药理和药效.国外医药:植物药分册,11(3):120-122.
    周桂琴,赵宏艳,吕诚,张皖东,谭勇,陈士林,杨大坚,陈新滋,吕爱平,2009.灵芝多糖对H22肝癌小鼠肠道黏膜免疫功能的影响.中国中西医结合杂志,29(4):335-339.
    周海虹,徐兆兰,1993.白术提取物对子宫平滑肌作用的研究.安徽中医学院学报,12(4):39-40.
    周然,徐仁莲,1996.玉屏风散对小鼠免疫功能的影响.中医药研究,(2):52-54.
    周日宝,吴佳,童巧珍,刘叶曼,刘湘丹,2008.不同提取方法中白术挥发油成分的比较研究.中药材,(2):229-232.
    朱金照,冷恩仁,等,2003.白术对大鼠肠道乙酰胆碱酯酶及P物质分布的影响.中国现代应用药学,20(1):14-16.
    朱庆均,2008.白术挥发油对人肺癌细胞株PG细胞增殖和细胞周期的影响.中国中医药科技,(6):428-429.
    Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., Nakanishi, K., Akira, S.,1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity,9(1):143-150.
    Autschbach, F., Braunstein, J., Helmke, B., Zuna, I., Schurmann, G., Niemir, Z.I., Wallich, R., Otto, H.F., Meuer, S.C.,1998. In situ expression of interleukin-10 in noninflamed human gut and in inflammatory bowel disease. Am J Pathol,153(1):121-130.
    Beagley, K.W., Eldridge, J.H., Kiyono, H., Everson, M.P., Koopman, W.J., Honjo, T., McGhee, J.R.,1988. Recombinant murine IL-5 induces high rate IgA synthesis in cycling IgA-positive Peyer's patch B cells. J Immunol,141(6):2035-2042.
    Beagley, K.W., Eldridge, J.H., Lee, F., Kiyono, H., Everson, M.P., Koopman, W.J., Hirano, T., Kishimoto, T., McGhee, J.R.,1989. Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells. J Exp Med,169(6): 2133-2148.
    Borsutzky, S., Cazac, B.B., Roes, J., Guzman, C.A.,2004. TGF-beta receptor signaling is critical for mucosal IgA responses. J Immunol,173(5):3305-3309.
    Brandtzaeg, P., Bjerke, K., Kett, K., Kvale, D., Rognum, T.O., Scott, H., Sollid, L.M., Valnes, K., 1987. Production and secretion of immunoglobulins in the gastrointestinal tract. Ann Allergy, 59(5 Pt 2):21-39.
    Brandtzaeg, P., Halstensen, T.S., Kett, K., Krajci, P., Kvale, D., Rognum, T.O., Scott, H., Sollid, L.M.,1989. Immunobiology and immunopathology of human gut mucosa:humoral immunity and intraepithelial lymphocytes. Gastroenterology,97(6):1562-1584.
    Brooksby, J.B.,1982. Portraits of viruses:foot-and-mouth disease virus. Intervirology,18(1-2): 1-23.
    Burzyn, D., Rassa, J.C., Kim, D., Nepomnaschy, I., Ross, S.R., Piazzon, I.,2004. Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J Virol,78(2):576-584.
    Campbell, J.B., Saponins, D.,1995. Stewart-Tull, Editor. The Theory and Practical Application of Adjuvants,95-127.
    Cepek, K.L., Shaw, S.K., Parker, C.M., Russell, G.J., Morrow, J.S., Rimm, D.L., Brenner, M.B., 1994. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature,372(6502):190-193.
    Chavali, S.R., Campbell, J.B.,1987. Adjuvant effects of orally administered saponins on humoral and cellular immune responses in mice. Immunobiology,174(3):347-359.
    Chuang, T.H., Ulevitch, R.J.,2000. Cloning and characterization of a sub-family of human toll-like receptors:hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw,11(3):372-378.
    Coffman, R.L., Lebman, D.A., Shrader, B.,1989. Transforming growth factor beta specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J Exp Med,170(3):1039-1044.
    Collen, T., Pullen, L., Doel, T.R.,1989. T cell-dependent induction of antibody against foot-and-mouth disease virus in a mouse model, J Gen Virol,70 (Pt 2)395-403.
    Constant, S.L., Bottomly, K.,1997. Induction of Thl and Th2 CD4+T cell responses:the alternative approaches. Annu Rev Immunol,15297-322.
    Defrance, T., Vanbervliet, B., Briere, F., Durand, I., Rousset, F., Banchereau, J.,1992. Interleukin 10 and transforming growth factor beta cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A. J Exp Med,175(3):671-682.
    Del, P.G., De Carli, M., Ricci, M., Romagnani, S.,1991. Helper activity for immunoglobulin synthesis of T helper type 1 (Thl) and Th2 human T cell clones:the help of Thl clones is limited by their cytolytic capacity. J Exp Med,174(4):809-813.
    Deters, A.M., Lengsfeld, C., Hensel, A.,2005. Oligo- and polysaccharides exhibit a structure-dependent bioactivity on human keratinocytes in vitro. J Ethnopharmacol,102(3): 391-399.
    Doel, T.R.,2003. FMD vaccines. Virus Res,91(1):81-99.
    Edelmann, K.H., Richardson-Burns, S., Alexopoulou, L., Tyler, K.L., Flavell, R.A., Oldstone, M.B.,2004. Does Toll-like receptor 3 play a biological role in virus infections? Virology, 322(2):231-238.
    Farstad, I.N., Carlsen, H., Morton, H.C., Brandtzaeg, P.,2000. Immunoglobulin A cell distribution in the human small intestine:phenotypic and functional characteristics. Immunology,101(3): 354-363.
    Fiorentino, D.F., Bond, M.W., Mosmann, T.R.,1989. Two types of mouse T helper cell. ⅣV. Th2 clones secrete a factor that inhibits cytokine production by Thl clones. J Exp Med,170(6): 2081-2095.
    Florindo, H.F., Pandit, S., Goncalves, L.M., Alpar, H.O., Almeida, A.J.,2009. New approach on the development of a mucosal vaccine against strangles:Systemic and mucosal immune responses in a mouse model. Vaccine,27(8):1230-1241.
    Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J., Madara, J.L.,2001. Cutting edge:bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol,167(4); 1882-1885.
    Girard, R., Pedron, T., Uematsu, S., Balloy, V., Chignard, M., Akira, S., Chaby, R.,2003. Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J Cell Sci,116(Pt 2):293-302.
    Gupta, R.K., Rost, B.E., Relyveld, E., Siber, G.R.,1995. Adjuvant properties of aluminum and calcium compounds. Pharm Biotechnol,6229-248.
    Guy-Grand, D., Vassalli, P.,2002. Gut intraepithelial lymphocyte development. Curr Opin Immunol,14(2):255-259.
    Harris, D.P., Haynes, L., Sayles, P.C., Duso, D.K., Eaton, S.M., Lepak, N.M., Johnson, L.L. Swain, S.L., Lund, F.E.,2000. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol,1(6):475-482.
    Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M., Aderem, A.,2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature,410(6832):1099-1103.
    Haynes, L.M., Moore, D.D., Kurt-Jones, E.A., Finberg, R.W., Anderson, L.J., Tripp, R.A.,2001. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol, 75(22):10730-10737.
    Heumann, D., Lauener, R., Ryffel, B.,2003. The dual role of LBP and CD 14 in response to Gram-negative bacteria or Gram-negative compounds. J Endotoxin Res,9(6):381-384.
    Hossain, M.S., Takimoto, H., Hamano, S., Yoshida, H., Ninomiya, T., Minamishima, Y., Kimura, G., Nomoto, K.,1999. Protective effects of hochu-ekki-to, a Chinese traditional herbal medicine against murine cytomegalovirus infection. Immunopharmacology,41(3):169-181.
    Kang, P., Xiao, H.L., Hou, Y.Q., Ding, B.Y., Liu, Y.L., Zhu, H.L., Hu, Q.Z., Hu, Y., Yin, Y.L. 2010. Effects of Astragalus Polysaccharides, Achyranthes bidentata Polysaccharides, and Acantbepanax senticosus Saponin on the Performance and Immunity in Weaned Pigs. Asian Australas J Anim Sci,23(6):750-756.
    Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., Yamaguchi, O., Otsu, K., Tsujimura, T., Koh, C.S., Reis, E.S.C., Matsuura, Y., Fujita, T., Akira, S.,2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature,441(7089):101-105.
    Kayamuro, H., Abe, Y., Yoshioka, Y., Katayama, K., Nomura, T., Yoshida, T., Yamashita, K., Yoshikawa, T., Kawai, Y., Mayumi, T., Hiroi, T., Itoh, N., Nagano, K., Kamada, H., Tsunoda, S., Tsutsumi, Y.,2009. The use of a mutant TNF-alpha as a vaccine adjuvant for the induction of mucosal immune responses. Biomaterials,30(29):5869-5876.
    Kim, P.H., Kagnoff, M.F.,1990. Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J Immunol,145(11):3773-3778.
    Krieg, A.M., Yi, A.K., Matson, S., Waldschmidt, T.J., Bishop, G.A., Teasdale, R., Koretzky, G.A., Klinman, D.M.,1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature, 374(6522):546-549.
    Lai, C.Y., Hung, J.T., Lin, H.H., Yu, A.L., Chen, S.H., Tsai, Y.C., Shao, L.E., Yang, W.B., Yu, J., 2010. Immunomodulatory and adjuvant activities of a polysaccharide extract of Ganoderma lucidum in vivo and in vitro. Vaccine,28(31):4945-4954.
    Lebman, D.A., Coffman, R.L.,1988. The effects of IL-4 and IL-5 on the IgA response by murine Peyer's patch B cell subpopulations. J Immunol,141(6):2050-2056.
    Li, C.Q., He, L.C., Jin, J.Q.,2007. Atractylenolide I and atractylenolide Ⅲ inhibit Lipopolysaccharide-induced TNF-alpha and NO production in macrophages. Phytother Res, 21(4):347-353.
    Li, R., Chen, W.C., Wang, W.P., Tian, W.Y., Zhang, X.G.,2009. Extraction, characterization of Astragalus polysaccharides and its immune modulating activities in rats with gastric cancer. Carbohydr Polym,78(4):738-742.
    Li, R., Sakwiwatkul, K., Yutao, L., Hu, S.,2009. Enhancement of the immune responses to vaccination against foot-and-mouth disease in mice by oral administration of an extract made from Rhizoma Atractylodis Macrocephalae (RAM). Vaccine,27(15):2094-2098.
    Lillehoj, H.S.,1989. Intestinal intraepithelial and splenic natural killer cell responses to eimerian infections in inbred chickens. Infect Immun,57(7):1879-1884.
    Livak, K.J., Schmittgen, T.D.,2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,25(4):402-408.
    Livingston, P.O., Adluri, S., Helling, F., Yao, T.J., Kensil, C.R., Newman, M.J., Marciani, D., 1994. Phase 1 trial of immunological adjuvant QS-21 with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma. Vaccine, 12(14):1275-1280.
    Lund, J., Sato, A., Akira, S., Medzhitov, R., Iwasaki, A.,2003. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med,198(3): 513-520.
    Lundqvist, C., Melgar, S., Yeung, M.M., Hammarstrom, S., Hammarstrom, M.L.,1996. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J Immunol,157(5):1926-1934.
    Maharaj, I., Froh, K.J., Campbell, J.B.,1986. Immune responses of mice to inactivated rabies vaccine administered orally:potentiation by Quillaja saponin. Can J Microbiol,32(5): 414-420.
    Marciani, D.J., Press, J.B., Reynolds, R.C., Pathak, A.K., Pathak, V., Gundy, L.E., Farmer, J.T., Koratich, M.S., May, R.D.,2000. Development of semisynthetic triterpenoid saponin derivatives with immune stimulating activity. Vaccine,18(27):3141-3151.
    Matsumoto, M., Funami, K., Oshiumi, H., Seya, T.,2004. Toll-like receptor 3:a link between toll-like receptor, interferon and viruses. Microbiol Immunol,48(3):147-154.
    Mazanec, M.B., Coudret, C.L., Fletcher, D.R.,1995. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol,69(2):1339-1343.
    McCullough, K.C., Crowther, J.R., Butcher, R.N., Carpenter, W.C., Brocchi, E., Capucci, L., De Simone, F.,1986. Immune protection against foot-and-mouth disease virus studied using virus-neutralizing and non-neutralizing concentrations of monoclonal antibodies. Immunology,58(3):421-428.
    McCullough, K.C., De Simone, F., Brocchi, E., Capucci, L., Crowther, J.R., Kihm, U.,1992. Protective immune response against foot-and-mouth disease. J Virol,66(4):1835-1840.
    McGhee, J.R., Mestecky, J., Dertzbaugh, M.T., Eldridge, J.H., Hirasawa, M., Kiyono, H.,1992. The mucosal immune system:from fundamental concepts to vaccine development. Vaccine, 10(2):75-88.
    Mestecky, J., Lue, C., Russell, M.W.,1991. Selective transport of IgA. Cellular and molecular aspects. Gastroenterol Clin North Am,20(3):441-471.
    Mowat, A.,1997. Intestinal graft-versus-host disease. Graftvs-Host Disease. Marcel Dekker, New York,337-384.
    Neutra, M.R., Frey, A., Kraehenbuhl, J.P.,1996. Epithelial M cells:gateways for mucosal infection and immunization. Cell,86(3):345-348.
    Ogura, Y., Inohara, N., Benito, A., Chen, F.F., Yamaoka, S., Nunez, G.,2001. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem,276(7):4812-4818.
    Pene, J., Rousset, F., Briere, F., Chretien, I., Bonnefoy, J.Y., Spits, H., Yokota, T., Arai, N., Arai, K., Banchereau, J., Et, A.,1988. IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons gamma and alpha and prostaglandin E2. Proc Natl Acad Sci U S A,85(18):6880-6884.
    Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du X, Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., Beutler, B., 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene. Science,282(5396):2085-2088.
    Ramsay, A.J., Husband, A.J., Ramshaw, I.A., Bao, S., Matthaei, K.I., Koehler, G., Kopf, M.,1994. The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science,264(5158): 561-563.
    Renegar, K.B., Small, P.J., Boykins, L.G., Wright, P.F.,2004. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J Immunol,173(3): 1978-1986.
    Rivera-Walsh, I., Cvijic, M.E., Xiao, G., Sun, S.C.,2000. The NF-kappa B signaling pathway is not required for Fas ligand gene induction but mediates protection from activation-induced cell death. J Biol Chem,275(33):25222-25230.
    Rome,2010. FAO warns of increased foot-and-mouth threats. FAO Media Centre, http://www.fao.org/news/story/en/item/41702/icode/.
    Sakagami, H., Hashimoto, K., Suzuki, F., Ogiwara, T., Satoh, K., Ito, H., Hatano, T., Takashi, Y., Fujisawa, S.,2005. Molecular requirements of lignin-carbohydrate complexes for expression of unique biological activities. Phytochemistry,66(17):2108-2120.
    Savilahti, E.,1972. Intestinal immunoglobulins in children with coeliac disease. Gut,13(12): 958-964.
    Shan, J.J., Ke, W., Deng, J.E., Tian, G.Y.,2003. Structural Elucidation and Antitumor Activity of Polysaccharide AMP-1 from Atractylodis macrocephalae K. Chinese J Chem, (1):87-90.
    Shao, B.M., Xu, W., Dai, H., Tu, P., Li, Z., Gao, X.M.,2004. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem Biophys Res Commun,320(4):1103-1111.
    Shen, M.L., Zhai, S.K., Chen, H.L., Luo, Y.D., Tu, G.R., Ou, D.W.,1991. Immunomopharmacological effects of polysaccharides from Acanthopanax senticosus on experimental animals. Int J Immunopharmacol,13(5):549-554.
    Smith, K.D., Andersen-Nissen, E., Hayashi, F., Strobe, K., Bergman, M.A., Barrett, S.L., Cookson, B.T., Aderem, A.,2003. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol,4(12):1247-1253.
    Song, X., Bao, S., Wu, L., Hu, S.,2009. Ginseng stem-leaf saponins (GSLS) and mineral oil act synergistically to enhance the immune responses to vaccination against foot-and-mouth disease in mice. Vaccine,27(1):51-55.
    Stumbles, P.A., McWilliam, A.S., Holt, P.G.,1999. Dendritic cells and mucosal macrophages. Mucosal immunology. Academic Press, San Diego, CA,397-412.
    Sun, H.X., Wang, H., Xu, H.S., Ni, Y.,2009. Novel polysaccharide adjuvant from the roots of Actinidia eriantha with dual Thl and Th2 potentiating activity. Vaccine,27(30): 3984-3991.
    van Vlasselaer, P., Punnonen, J., de Vries, J.E.,1992. Transforming growth factor-beta directs IgA switching in human B cells. J Immunol,148(7):2062-2067.
    Wang, L., Smith, D., Bot, S., Dellamary, L., Bloom, A., Bot, A.,2002. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination. J Clin Invest,110(8):1175-1184.
    Yadav, S., Sharma, R., Chhabra, R.,2005. Interleukin-2 potentiates foot-and-mouth disease vaccinal immune responses in mice. Vaccine,23(23):3005-3009.
    Yamaoka, Y., Kawakita, T., Nomoto, K.,2001. Protective effect of a traditional Japanese medicine Hochu-ekki-to (Chinese name:Bu-zhong-yi-qi-tang), on the susceptibility against Listeria monocytogenes in infant mice. Int Immunopharmacol,1(9-10):1669-1677.
    Yang, T., Jia, M., Meng, J., Wu, H., Mei, Q.,2006. Immunomodulatory activity of polysaccharide isolated from Angelica sinensis. Int J Biol Macromol,39(4-5):179-184.
    Yarovinsky, F., Zhang, D., Andersen, J.F., Bannenberg, G.L., Serhan, C.N., Hayden, M.S., Hieny, S., Sutterwala, F.S., Flavell, R.A., Ghosh, S., Sher, A.,2005. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science,308(5728):1626-1629.
    Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.M., Gale, M.J., Akira, S., Yonehara, S., Kato, A., Fujita, T.,2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol,175(5):2851-2858.
    Zhai, L., Li, Y., Wang, W., Wang, Y., Hu, S.,2011a. Effect of oral administration of ginseng stem-and-leaf saponins (GSLS) on the immune responses to Newcastle disease vaccine in chickens. Vaccine,29(31):5007-5014.
    Zhai, L., Li, Y., Wang, W., Wang, Y., Hu, S.,2011b. Effect of oral administration of ginseng stem-and-leaf saponins (GSLS) on the immune responses to Newcastle disease vaccine in chickens. Vaccine,29(31):5007-5014.
    Zhang, N.W., Li, J.F., Hu, Y.X., Cheng, G.L., Zhu, X.Y., Liu, F.Q., Zhang, Y.J., Liu, Z.J., Xu, J.Q.,2010. Effects of astragalus polysaccharide on the immune response to foot-and-mouth disease vaccine in mice. Carbohydr Polym,82(3):680-686.
    Zhao, H., Luo, Y., Lu, C., Lin, N., Xiao, C., Guan, S., Guo, D.A., Liu, Z., Ju, D., He, X., Lu, A., 2010. Enteric mucosal immune response might trigger the immunomodulation activity of Ganoderma lucidum polysaccharide in mice. Planta Med,76(3):223-227.
    Zhao, L.H., Ma, Z.X., Zhu, J., Yu, X.H., Weng, D.P.,2011. Characterization of polysaccharide from Astragalus radix as the macrophage stimulator. Cell Immunol,271(2):329-334.
    Zhuge, Z.Y., Zhu, Y.H., Liu, P.Q., Yan, X.D., Yue, Y., Weng, X.G., Zhang, R., Wang, J.F.,2012. Effects of Astragalus polysaccharide on immune responses of porcine PBMC stimulated with PRRSV or CSFV. PLoS One,7(1):e29320.