乌苏里拟鲿Pseudobagras ussuriensis品质评价、适宜蛋白能量水平和氨基酸需要量及对豆粕的利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乌苏里拟鲿(Pseudobagras ussuriensis)是分布在我国黑龙江水系特有的江河野生经济鱼类。多栖息于缓流中,具有肉质细嫩、味道鲜美等特点,具有很高的食用价值和经济价值。迄今对于其营养生理研究报道非常有限,因此,开展乌苏里拟鲿营养需求的研究已成为乌苏里拟鲿养殖业持续健康发展迫切需要解决的问题。本文主要研究2方面的内容:一是对野生及养殖乌苏里拟鲿的肌肉营养成分进行分析,并对其营养品质进行评价;二是采用营养学、能量学和生理学相结合的方法,确定乌苏里拟鲿对蛋白质、脂肪、适宜的蛋能比、蛋氨酸和赖氨酸的需要量以及对豆粕的利用,为该鱼的配合饲料配制提供依据。
     具体研究内容和结果如下:
     1.乌苏里拟鲿肌肉营养成分及品质评价
     利用常规肌肉营养测定方法,分析了野生和养殖乌苏里拟鲿的肌肉营养成分。结果表明,野生乌苏里拟鲿肌肉中水分的含量(72.91%)显著高于人工养殖乌苏里拟鲿(70.82%)(P<0.05),而粗脂肪含量却显著低于人工养殖乌苏里拟鲿(P<0.05),两者的粗蛋白和灰分含量无显著差异(P>0.05);野生和养殖乌苏里拟鲿肌肉中氨基酸组成基本一致,均含有16种氨基酸,野生鱼必需氨基酸含量(29.29%)和鲜味氨基酸含量(27.74%)显著高于养殖鱼的必需氨基酸(26.53%)和鲜味氨基酸含量(23.75%)(P<0.05);野生苏里拟鲿与养殖乌苏里拟鲿的必需氨基酸总量与氨基酸总量的比例分别为42.78%,43.02%,必需氨基酸与非必需氨基酸的比例分别为85.52%和87.74%,其必需氨基酸的构成比例符合联合国粮农组织/世界卫生组织FAO/WHO的标准;按照氨基酸评分(AAS)和化学评分(CS),野生苏里拟鲿与养殖乌苏里拟鲿的限制性氨基酸均为Met+Cys;野生乌苏里拟鲿的∑SFA(31.36%)显著高于养殖乌苏里拟鲿(25.01%),而∑PUFA(11.67%)却显著低于养殖乌苏里拟鲿(17.19%),∑MUFA的差异则不显著,分别为47.92%和48.10%。野生乌苏里拟鲿脂肪酸中EPA和DHA含量分别为1.26%和3.44%,低于养殖乌苏里拟鲿中EPA和DHA的含量(1.8%和5.45%)。综合分析认为,乌苏里拟鲿是营养价值和经济价值较高的优质鱼类。
     2.乌苏里拟鲿适宜蛋白能量比的研究
     以乌苏里拟鲿稚鱼(初始体重为3.40±0.01g)为研究对象,研究饲料中不同蛋白、脂肪含量对乌苏里拟鲿生长、饲料利用及体组成的影响。设置4个蛋白质水平(35%、40%、45%和50%),每个蛋白质水平设置3个脂肪水平(5%、10%和15%),配制出12种试验饲料。每个处理设3个重复,每个玻璃缸(150L)25尾乌苏里拟鲿,饱饲投喂,养殖试验持续8周。试验结果表明:在同一蛋白质水平下,增重率(WG)和特定生长率(SGR)随饲料脂肪水平的增加而降低。与5%和10%组相比,脂肪水平为15%饲料组的饲料系数显著高于5%和10%组组(P<0.05),而蛋白质效率和氮沉积率显著降低,5%和10%组之间差异不显著(P>0.05)。在同一脂肪水平下,当饲料中蛋白质水平从35%增加到45%时,WG和SGR均显著升高(P<0.05),当蛋白质水平超过45%后,WG和SGR降低,但是与45%组差异不显著(P>0.05);当饲料蛋白质含量从35%升高至50%时,蛋白质效率(PER)由198%降至165%,其中,40%、45%和50%组PER分别比35%组降低4.55%、9.09%和16.67%,各组之间差异显著(P<0.05)。饲料中蛋白质、脂肪水平对乌苏里拟鲿摄食率、蛋白质效率和氮沉积率有显著影响(P<0.05),随着蛋白质和脂肪水平的升高而降低。
     饲料蛋白质和脂肪水平对乌苏里拟鲿全鱼水分的影响不显著(P>0.05)。饲料蛋白质和脂肪水平对乌苏里拟鲿全鱼粗蛋白和粗脂肪影响显著(P<0.05)。在同一脂肪水平下,鱼体中蛋白含量随饲料中蛋白水平的升高而升高,45%组全鱼体蛋白质显著高于35%组和40%组(P<0.05),与50%组差异不显著(P>0.05)。鱼体中脂肪含量随饲料中蛋白水平的升高而显著下降(P<0.05)。在同一蛋白水平下,随着饲料中脂肪水平的升高,鱼体中蛋白含量逐渐下降,而鱼体中脂肪含量逐渐升高。饲料中蛋白质和脂肪水平对全鱼灰分含量无显著影响影响显著(P>0.05)。饲料蛋白质水平对肥满度、肝体比和脏体比均未产生明显的影响(P>0.05)。饲料脂肪水平对肥满度和脏体比均未产生明显的影响(P>0.05),对肝体比影响显著(P<0.05)。
     3.乌苏里拟鲿赖氨酸需求量的研究
     以初始体重(0.60±0.00g)的乌苏里拟鲿稚鱼为实验对象,在玻璃缸(1.0×0.5×0.8m3)中进行为期8周的摄食生长实验,研究乌苏里拟鲿稚鱼对饲料中赖氨酸(Lys)的需要量。通过在基础饲料中添加晶体Lys使饲料中Lys含量分别达到1.34%、2.04%、2.74%、3.44%、4.14%和4.84%,配制成6种等氮、等能饲料。每种饲料设3个重复,每个重复随机放养50尾鱼。每天饱饲投喂2次(08:00和16:00)。实验结果表明,各饲料处理组成活率(86.67%-92.67%)无显著差异。当饲料中Lys水平由1.34%(占饲料蛋白3.32%)增加到3.44%(占饲料蛋白8.43%)时,乌苏里拟鲿的增重率、特定生长率和蛋白质效率显著提高(P<0.05),而饲料系数显著降低(P<0.05);随着饲料Lys水平由3.44%增加到4.84%,乌苏里拟鲿的增重率、特定生长率和蛋白质效率逐渐降低,但均与3.44%组无显著差异。乌苏里拟鲿全鱼、肌肉蛋白质含量随着饲料中Lys水平由1.34%增加到3.44%而显著提高(P<0.05),当Lys水平进一步增加时,乌苏里拟鲿全鱼蛋白质略有降低,但均与3.44%组无显著差异;饲料中Lys水平对乌苏里拟鲿全鱼水分、脂肪、肌肉水分的影响不显著,而随着饲料中Lys水平由1.34%增加到2.74%,肌肉脂肪含量显著升高(P<0.05),之后随着Lys水平的升高而降低。随着饲料中Lys水平由1.34%增加到4.84%,肝体指数逐渐降低,但差异不显著;1.34%组乌苏里拟鲿的肥满度指数显著低于其它组(P<0.05),而其它组之间差异不显著;3.44%和4.14%组的脏体比指数显著低于1.34%、2.04%、2.74%和4.84%组(P<0.05)。根据饲料中Lys水平与乌苏里拟鲿增重率的关系,采用折线模型拟合得出,当增重率达到最大时,饲料中Lys的最适水平为3.38%(占饲料蛋白8.31%);采用二次回归模型拟合得出,当PER达到最大时,饲料中Lys的最适水平为3.91%(占饲料蛋白9.61%)。
     4.乌苏里拟鲿蛋氨酸需求量的研究
     以初始体重(0.60±0.00g)的乌苏里拟鲿稚鱼为实验对象,在玻璃缸(1.0×0.5x0.8m3)中进行为期8周的摄食生长实验,研究乌苏里拟鲿稚鱼对饲料中蛋氨酸(Met)的需要量。通过在基础饲料中添加晶体Met使饲料中Met含量分别达到0.55%、0.85%、1.15%、1.45%、1.75%和2.05%,配制成6种等氮、等能饲料。每种饲料设3个重复,每个重复随机放养50尾鱼。每天饱饲投喂2次(08:00和16:00)。实验结果表明,各饲料处理组成活率(84.67%-91.33%)无显著差异。在饲料中胱氨酸含量为0.25%(占饲料蛋白0.62%)时,当饲料中Met水平由0.55%(占饲料蛋白1.35%)增加到1.15%(占饲料蛋白2.84%)时,乌苏里拟鲿的增重率、特定生长率和蛋白质效率显著提高(P<0.05),而饲料系数显著降低(P<0.05);之后,随着饲料Met水平由1.15%(占饲料蛋白2.84%)增加到2.05%(占饲料蛋白5.08%),乌苏里拟鲿的增重率、特定生长率和蛋白质效率逐渐降低,而饲料系数显著上升,其中,2.05%组WG、SGR显著低于1.15%、1.45%和1.75%组(P<0.05)。乌苏里拟鲿全鱼、肌肉蛋白质含量随着饲料中Met水平由0.55%增加到1.15%而显著提高(P<0.05),全鱼、肌肉脂肪含量随着饲料中Met水平的增加而提高,当Met水平进一步增加时,脂肪含量降低。饲料中Met水平对乌苏里拟鲿全鱼水分和灰分的影响不显著。1.15%组肌肉水分含量显著低于1.45%组,但与其它组之间差异不显著。1.45%、1.75%和2.05%组肌肉灰分含量显著高于0.85%和1.15%组(P<0.05),但均与0.55%组差异不显著。肥满度随着饲料中Met水平由0.55%增加到1.15%而显著提高,当Met水平进一步增加时,肥满度降低,但与1.15%组无显著差异;肝体比随着Met水平的升高而逐渐降低,其中,0.55%、0.85%、1.15%和1.45%组显著高于1.75%和2.05%组(P<0.05);0.55%、0.85%、1.15%组脏体指数无显著差异,但均显著高于1.45%、1.75%和2.05%组。根据增重率和饲料中Met水平的关系拟合二次曲线方程得出,当乌苏里拟鲿增重率达到最大时,其饲料中Met的适宜需求量为1.42%(占饲料蛋白3.51%),以蛋白质效率为响应指标时,得出其饲料中Met的适宜需求量为1.39%(占饲料蛋白3.44%)。
     5.乌苏里拟鲿饲料中豆粕替代鱼粉的研究
     以豆粕分别替代对照饲料中0%、10%、20%、30%、40%、50%和60%的鱼粉,配制7种等氮、等能试验饲料,另外60%组添加0.3%蛋氨酸。以初始体重0.50±0.00g的乌苏里拟鲿稚鱼为试验对象,在室内水族箱中进行为期8周的摄食生长实验。试验结果表明,豆粕替代鱼粉对乌苏里拟鲿的生长性能和饲料利用有显著影响(P<0.05)。随着饲料中SBM替代比例的增大,鱼体的末体重、增重率、特定生长率和蛋白质效率均表现为逐渐降低,但S10、S20、S30、S40与S0之间差异不显著,S50、S60显著低于S0组(P<0.05),末体重和特定生长率S20、S30、S40、S50与S60之间差异不显著,S60组添加晶体蛋氨酸后,其末均重、增重率和特定生长率与S60相比有所提高,但与其无显著差异,且与S20、S30、S40、S50之间无显著差异,但还是显著低于S0组(P<0.05);饲料系数的变化规律与增重率的趋势正好相反;当饲料中SBM替代水平由0%增加到20%时,乌苏里拟鲿的摄食率由3.22%提高到3.55%,而后随着替代比例进一步增加,摄食率逐渐降低,但单因素方差分析表明,差异不显著;这一结果表明,豆粕可以替代乌苏里拟鲿饲料中40%鱼粉蛋白,并没有对乌苏里拟鲿的生长和饲料利用产生不利影响,此替代比例下。饲料中鱼粉和豆粕的含量分别为30%和28.4%。
     饲料中豆粕替代鱼粉对乌苏里拟鲿全鱼水分和灰分含量的影响不显著,而随着替代比例的升高,肌肉水分逐渐升高,其中,S0组最低;全鱼、肌肉蛋白质含量随着替代比例的升高而逐渐降低,其中,S0、S10、S20、S30、S40和S50组间差异不显著,但均显著高于S60和S60+Met组(P<0.05),随着饲料中豆粕替代鱼粉比例的升高,全鱼、肌肉脂肪呈现升高的趋势,其中,S60和S60+Met组显著高于其它替代组(P<0.05),从本试验结果可知,乌苏里拟鲿的肥满度有随着豆粕替代比例的增加而降低的趋势,但在组间差异不显著;在0~50%替代组,肝体比、脏体比指数差异不显著,但是当SBM替代鱼粉比例为S60%时,肝体比、脏体比指数显著升高(P<0.05),这表明高比例豆粕替代鱼粉会影响肝脏的形态。
     饲料中豆粕替代鱼粉对乌苏里拟鲿营养物质表观消化率影响显著(P<0.05)。当替代水平由0%升高到40%时,各实验组干物质消化率差异不显著,50%,60%组的干物质的表观消化率显著降低(P<0.05);蛋白质的表观消化率随着替代比例的增加呈现逐渐降低的趋势,替代比例小于40%时,各实验组蛋白质消化率差异不显著,而50%和60%组显著降低(P<0.05),在本实验中,随着SBM替代比例由0%升高到60%,磷表观消化率由36.07%升高到66.50%。
     饲料中豆粕替代鱼粉对乌苏里拟鲿氮、磷排泄的影响显著(P<0.05)。随着豆粕替代水平的增加,氮排泄逐渐升高,而氮的沉积率则表现出逐渐降低的趋势。其中,S20、S30、S40、S50和S60组的氮排泄差异不显著,但均显著高于S0组和S10组(P<0.05);氮沉积率则表现出逐渐降低的趋势;其中,S0与S10、S20、S40和S50组间差异不显著,显著高于S30和S60组(P<0.05),60%组添加蛋氨酸后,显著提高氮沉积率,对氮排泄无显著影响,随着豆粕替代水平的增加,磷排泄显著降低,而磷的沉积率则表现出显著升高的趋势(P<0.05)。
Pseudobagrus ussuriensis is one of the most important indigenous species in the northeast of China. Pseudobagrus ussuriensis is a Siluriformes species with high potential for aquaculture exploitation in China due to its excellent taste, high market value, high resistance against diseases and availability of reproduction technology. So far, no nutritional studies have been conducted to determine the nutritional requirements of this fish, and there are no commercially available feeds specifically formulated for this fish, which is a limiting factor for the development of this species reared in aquaculture. The present study was carried out to compare the nutritional composition of farmed and wild Pseudobagrus ussuriensis muscles, to evaluate the optimum protein and energy levels, lysine and methionine requirements, and utilization of soybean meal of Pseudobagrus ussuriensis for developing cost-effective and nutritionally balanced diets. The Results of the study are presented as follows:
     1. Comparative study of nutritional composition of farmed and wild Pseudobagrus ussuriensis muscles
     The nutritional composition of the muscle of wild Pseudobagrus ussuriensis and farmed fish were compared. The lipid content of the farmed fish was significantly higher, while moisture content was significantly lower, than those of the wild fish (P<0.05). Pseudobagrus ussuriensis protein has a well-balanced amino acid composition. The amino compositions of the two groups are also including16kinds of amino acids (tryptophan was not measured). The percentages of total amino acids, total essential amino acids, total nonessential amino acids and total delicious amino acids were significantly higher in the wild than those in farmed fish. The ratios of WEAa/WTAA (42.78%~43.02%) and WEAA/WNEAA (85.52%~87.74%) were comparable to the reference values of40%and above60%recommended by FAO/WHO. According to the amino acid scores, methionine and cystine would has been described as the first limiting amino acid, and Lys had the highest score for the proteins in both wild and farmed Pseudobagrus ussuriensis. Total saturated fatty acids (SFAs) were higher in the wild fish comparing to cultured fish, whereas its total polyunsaturated fatty acids (PUFAs) was lower, and monounsaturated fatty acids (MUFAs) did not differ significantly between farmed and wild fish. This study shows that Pseudobagrus ussuriensis under investigation have high nutritional qualities and are good protein resources.
     2. Effects of dietary protein and lipid levels on growth, feed utilization and body composition in Pseudobagrus ussuriensis fingerlings
     An8-week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight:3.40±0.01g). Twelve diets containing four protein levels (350,400,450and500g kg-1crude protein) and three lipid levels (50,100and150g kg-1crude lipid) were formulated. Fish were randomly allotted to36aquaria (1.0x0.5x0.8m) with25fish to each glass aquarium. Fish were fed twice daily (08:00and16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from50to150g kg-1at the same dietary protein level. Fish fed the diets containing150g kg-1lipid exhibited higher FCR (p<0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing50and100g kg-1lipid. Weight gain and SGR significantly increased with increasing dietary protein from350to450g kg-1at the same dietary lipid level, and even a little decline in growth with the further increase of dietary protein to500g kg-1. PER decrease with increasing dietary protein and lipid levels (Table3). PER of fish fed the350,400,450g kg-1protein diet with150g kg-1lipid was significantly (P<0.05) lower than that of fish fed the50g kg-1or100g kg-1lipid diet. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (p<0.05), and tended to decrease with increasing dietary protein and lipid levels.
     No significant differences among treatments were detected for moisture content in whole body samples (P>0.05). Whole body protein content increased as protein levels increased and lipid levels decreased. Whole body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There were no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P<0.05), and increased with increasing dietary lipid level at the same protein level. No significant differences among treatments were detected for moisture, protein and ash content in muscle samples (p>0.05). Muscle protein content increased as protein levels increased at the same lipid level. Muscle lipid content was affected by dietary protein and lipid level (P<0.05), and increased as lipid levels increased and protein levels decreased.
     3. Dietary lysine requirement of juvenile Pseudobagras ussuriensis
     An8-week feeding experiment was conducted to estimate the dietary lysine requirement of juvenile Pseudobagras ussuriensis with an initial average weight of0.60g reared in indoor flow-through and aerated aquaria (1.0x0.5x0.8m3). Six isonitrogenous and isolipidic diets containing six levels of dietary lysine levels ranging from1.34%to4.84%(dry weight) at about 0.7%increments were formulated. Equal amino acid nitrogen was maintained by replacing lysine with nonessential amino acid mixture. Triplicate groups of50fish were fed to apparent satiation by hand twice daily (08:00and16:00). No significant differences were observed in survival rates of fish (86.67%~92.67%), but specific growth rate (SGR), weight gain (WG), feed conversion ratio (FCR) and protein efficiency ratio (PER) were significantly affected by different dietary lysine levels (P<0.05). Weight gain (WG), SGR and PER increased, while FCR decreased with increasing dietary lysine level up to3.44%(8.43%of the dietary protein), and then leveled off. The whole body and muscle crude protein contents increased significantly with dietary lysine levels from1.34%to3.44%(P<0.05), and decreased with dietary lysine levels from3.44%to4.84%(P>0.05). Moisture and lipid content in whole body, moisture content in muscle were not affected by dietary lysine level. The muscle lipid contents increased significantly with dietary lysine levels from1.34%to2.74(P<0.05), and thereafter, remained nearly the same. The hepatosomatic index was negatively correlated with dietary lysine levels, but no significant differences were observed. CF and VSI were significantly affected by dietary lysine levels. CF of1.34%treatments were significantly lower than the other treatments (P<0.05). VSI of3.44%and4.14%treatments were significantly lower than those of fish fed diets1.34%,2.04%,2.74%and4.84%group (.P<0.05). Broken-line analysis on the basis of weight gain showed that the dietary lysine requirement of juvenile Pseudobagras ussuriensis was3.38%of dry diet (8.31%dietary protein); Quadratic regression analysis of PER against dietary lysine levels indicated that the optimal dietary lysine requirement for maximum growth and feed utilization of juvenile Pseudobagras ussuriensis is3.91%of dry diet (9.61%dietary protein).
     4. Dietary methionine requirement of juvenile Pseudobagras ussuriensis
     An8-week feeding experiment was conducted to estimate the dietary methionine requirement of juvenile Pseudobagras ussuriensis with an initial average weight of0.60g reared in indoor flow-through and aerated aquaria (1.0x0.5x0.8m3). Six isonitrogenous and isolipidic diets containing six levels of dietary methionine levels ranging from0.55%to2.05%(dry weight) at about0.3%increments were formulated at a constant dietary cystine level of0.25%. Equal amino acid nitrogen was maintained by replacing lysine with nonessential amino acid mixture. Triplicate groups of50fish were fed to apparent satiation by hand twice daily (08:00and16:00). No significant differences were observed in survival rates of fish (84.67%~91.33%), but specific growth rate (SGR), weight gain (WG), feed conversion ratio (FCR) and protein efficiency ratio (PER) were significantly affected by different dietary methionine levels (P<0.05). WG, SGR and PER increased, while FCR decreased with increasing dietary methionine level from0.55%to1.15%(P<0.05), however, with further increase in dietary methionine level from1.15%to2.05%, WG, SGR and PER significantly decreased, while FCR increased (P<0.05). The whole body and muscle crude protein contents increased significantly with dietary methionine levels from0.55%to 1.15%(P〈0.05), and decreased with dietary methionine levels up to2.05%. The whole body and muscle lipid contents increased significantly with dietary methionine levels, and thereafter decreased. Moisture and ash content in whole body were not affected by dietary methionine level. The muscle moisture content of1.15%group was significantly lower than the1.45%group (P〈0.05). The muscle ash content of1.45%,1.75%and2.05%group were significantly higher than the0.85%and1.15%group (P〈0.05). CF increased with increasing dietary methionine levels from0.55%to1.15%(P〈0.05) and then decreased with further increase to2.05%(P>0.05). HSI of0.55%,0.85%,1.15%and1.45%groups were significantly higher than those of fish fed diets1.75%and2.05%groups (P〈0.05). VSI of0.55%,0.85%and1.15%groups were significantly higher than those of fish fed diets1.45%,1.75%and2.05%groups (P〈0.05). Quadratic regression analysis of weight gain and PER gainst dietary methionine levels indicated that the optimal dietary methionine requirement for maximum growth and feed utilization of juvenile Pseudobagras ussuriensis were1.42%and1.39%dry diet (3.51%and3.44%dietary protein), respectively in the presence of0.25%cystine.
     5. Fish meal replacement by soybean meal in diets for juvenile Pseudobagras ussuriensis
     An8-week feeding experiment was conducted in indoor culture system to evaluate the effects of replacing fish meal with soybean meal (SBM) in feeds for juvenile Pseudobagras ussuriensis. Triplicate groups of juvenile Pseudobagras ussuriensis (initial weight of0.5g) were fed one of eight experimental diets which were formulated to replace FM protein by SBM at0%,10%,20%,30%,40%,50%or60%(designated as SO, S10, S20, S30, S40, S50or S60, respectively). To investigate the effects of supplementation with crystalline amino acid mixture (CAA) to balance Diet S60, one diet was formulated to add0.3%methionine (SM60). Growth, feed utilization were significantly affected by dietary SBM replacement level (P<0.05). Weight gain (WG), specific growth rate (SGR) and protein efficiency ratio (PER) linearly decreased with increasing SBM replacement level from0to60%, however, there were no significant differences in WG, SGR and PER between fish fed the control diet and feeds in which SBM replaced10to40%of the fish meal (P>0.05), but fish fed the diets S50and S60had lower WG, SGR and PER than the diet SO (P〈0.05). Supplementation with CAA improved growth and feed efficiency, however, there were no significant differences in growth between fish fed the diet S60and diet SM60(P>0.05), and significantly lower than those in fish fed diet SO. Feed conversion ratio (FCR) had an opposite trend with WG and SGR. There was no significant difference in feeding intake (FI) among fish fed the different diets. Moisture and ash content in whole body were not affected by dietary SBM replacement level. The muscle moisture content of diet SO was significantly lower than the other groups (P〈0.05). The whole body and muscle protein contents decreased with the increase of dietary SBM level, and fish fed the feeds in which SBM replaced0to50%of the fish meal had higher protein content than that of fish fed the diets S60and SM60(P〈0.05). The whole body and muscle lipid contents increased with increasing dietary SBM level, and S60and SM60groups were significantly higher than the other groups (P<0.05). The CF was inversely correlated with the SBM replacement level, but no significant difference was found among the dietary treatments. Fish fed the diets S60and SM60had higher VSI and HSI than those of fish fed the diets in which0to50%of the fish meal was replaced (P<0.05), and no significant difference in VSI and HSI among fish fed the diets S0-S50was found. The ADC of protein and dry matter of the diet S50and S60were significantly lower than that of the other diets (P0.05), while no significant differences were found among the other diets (P>0.05). The ADC of phosphorus significantly increased with an increase of SBM incorporation in the diet (P<0.05). Phosphorus excretion significantly decreased with increasing levels of SBM replacement (P<0.05), while phosphorus retention increased with increasing levels of SBM replacement from0to60%. Fish fed the diets SO and S10had lower nitrogen excretion than those of fish fed the diets in which20to60%of the fish meal was replaced (P<0.05). Fish fed the diets S30and S60had lower nitrogen retention than those of fish fed the other diets (P<0.05). The results of this study show that SBM is an acceptable ingredient to replace40%of fish meal in Pseudobagras ussuriensis diets, but that higher dietary levels reduce fish performance under the experimental conditions used in this study.
引文
[1]张觉民.黑龙江省鱼类志[M].哈尔滨:黑龙江科学技术出版社,1995:205-207.
    [2]王鹏,赵春刚,叶继丹,等.乌苏里拟鲿人工繁育技术及开发利用——乌苏里拟鲿仔幼鱼食性与生长的初步研究[J].水产学杂志,2001,14(2):4-6.
    [3]于波.乌苏里拟鲿精巢发育的周年变化及精子入卵研究[D].哈尔滨:东北林业大学硕士研究生论文.2008
    [4]潘伟志,王鹏,赵春刚,等.乌苏里拟鲿人工繁育技术及开发利用——乌苏里拟鲿繁殖生物学及人工催产初步研究[J].水产学杂志,2001,14(2):1-3.
    [5]潘伟志,陈军,王鹏,等.乌苏里拟鲿人工繁育技术研究[J].水产学杂志.2006,19(1):31-35
    [6]潘伟志,尹洪滨,孙中武.乌苏里拟鲿(Pseudobagrus ussuriensis)同工酶分析[J].东北林业大学学报.2006,34(6):66-69.
    [7]李超.4种鲇形目鱼类的PAPD研究[D].哈尔滨:东北林业大学硕士研究生论文.2008
    [8]尹洪滨,孙中武,于波.乌苏里拟鲿(Pseudobagrus ussuriensis)精子的超微结构[J].广东海洋大学学报,2009,29(6):28-31.
    [9]薛淑群,尹洪滨.乌苏里拟鲿的染色体组型研究[J].水产学杂志,2008,21(2):75-78.
    [10]王桂芹,孙丽,李子平,等.不同食性鱼类的含肉率及肌肉营养组成与评价[J].饲料工业,2010(增刊),94-98.
    [11]徐如卫,申屠基康,江锦坡,等.3种不同规格瓯江彩鲤含肉率及肌肉营养成分比较[J].宁波大学学报(理工版),2012,25(1):13-19
    [12]邴旭文,蔡宝玉,王利平.中华倒刺鲃肌肉营养成分与品质的评价[J].中国水产科学,2005,12(2):211-215.
    [13]邴旭文,张宪中.斑驳尖塘鳢肌肉营养成分与品质的评价[J].中国海洋大学学报,2006,36(1):107-111.
    [14]尹洪滨,孙中武,沈希顺,等.山女鳟肌肉营养组成分析[J].水生生物学报,2004,28(5):577-580.
    [15]FALLAH, A.A., SAEI-DEHKORDI, S.S., NEMATOLLAHI, A. Comparative assessment of proximate composition, physicochemical parameters, fatty acid profile and mineral content in farmed and wild rainbow trout (Oncorhynchus mykiss) [J]. Int. J. Food Sci. Technol,2011,46, 767-773
    [16]OZOGUL Y, OZOGUL F, ALAGOZ S. Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey:A comparative study [J].Food Chem.,2007,103 (1):217-223
    [17]金庆华,李桂玲,何世文.湖北地区淡水鱼中EPA和DHA含量的研究[[J].营养学报,1997,19(4):474-476
    [18]SAGLIK ASLAN, S., GUVEN, K.C., GEZGIN, T., et al. Comparison of fatty acid contents of wild and cultured rainbow trout Oncorhynchus mykiss in Turkey [J]. Fish. Sci.,2007,73, 1195-1198.
    [19]GRIGORAKIS, K., ALEXIS, M.N., TAYLOR, K.D.A., et al. Comparison of wild and cultured gilthead sea bream; composition, appearance and seasonal alterations [J]. Int. J. Food Sci. Technol,2002,37,477-484.
    [20]CASAS, C., MARTINEZ, O., GUILLEN, M.D., et al. Textural properties of raw Atlantic salmon (Salmo salar) at three points along the fillet, determined by different methods [J]. Food Control,2006,17(7):511-515
    [21]郝红涛,赵改名,柳艳霞.肉类制品的质构特性及其研究进展[J].食品与机械,2009,25(3):125-128
    [22]高瑞昌,苏丽,黄星奕,等.水产品风味物质的研究进展[J].水产科学,2013,32(1):59-62.
    [23]汤辰婧,王锡昌,刘源,等.水产品滋味成分研究及开发利用进展[J].水产科技情报,2013,40(3):164-168.
    [24]PERIAGO, M.J., AYALA, M.D., LOPEZ-ALBORS, O., et al. Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L [J]. Aquaculture,2005,249, 175-188.
    [25]任洁,韩育章,管敏,等.3种鲫鱼营养成分分析与评价[J].水利渔业,2008,28(1):35-37.
    [26]邴旭文.中华倒刺鲃和光倒刺鲃肌肉营养品质的比较[J].大连水产学院学报,2005,20(3):233-237.
    [27]甄润英,陶秉春,马俪珍,等.3种鲶鱼肌肉主要营养成分的对比分析[J].食品与机械,2008,24(4):108-111.
    [28]陈定福,何学福,周启贵.南方大口鲶和鲶鱼的含肉率及鱼肉的营养成分[J].动物学杂志,1990,25(1):7-10.
    [29]林利民,王秋荣,王志勇,等.不同家系大黄鱼肌肉营养成分的比较[J].中国水产科学,2006,13(2):286-291.
    [30]孙中武,李超,尹洪滨,王炳谦.不同品系虹鳟的肌肉营养成分分析[J].营养学报,2008,30(3):298-302.
    [31]滕瑜,郭晓华,苑德顺,等.不同规格鲆鲽类的生化组成及营养价值比较[J].渔业科学进展,2010,31(4):120-125.
    [32]陈琴,黄钧,唐章生,等.南美鲱鱼的含肉率及肌肉营养评价[J].动物学杂志,200237(1):53-57.
    [33]蔡卫俊,叶元土,邱晓寒,等.不同生长阶段翘嘴红鲌肌肉中氨基酸分析[J].饲料广角,2009,14,40-42.
    [34]钱云霞,杨文鸽.不同龄期养殖鲈鱼的生化组成川.宁波大学学报(理工版),2002,15(1): 15-18.
    [35]徐继林,朱艺峰,严小军,等.养殖与野生大黄鱼肌肉脂肪酸组成的比较[J].营养学报,2005,27(3):256-258.
    [36]吉红,孙海涛,单世涛.池塘与网箱养殖匙吻鲟肌肉营养成分及品质评价[J].水产学报,2011,35(2):261-267.
    [37]宋超,庄平,章龙珍,等.野生及人工养殖中华鲟幼鱼肌肉营养成分的比较[J].动物学报,2007,53(3):502-510.
    [38]王伟,陈立侨,顾志敏.六个群体翘嘴红鲌肌肉生化组成的比较[J].水产学报,2007,31(增刊):92-99.
    [39]JOHNSTON, I. A., LI, X., VIEIRA, V. L. A., et al. Muscle and flesh quality traits in wild and farmed Atlantic salmon [J].Aquaculture,2006,256,323-336.
    [40]GONZALEZ S., FLICK G.J., O'KEEFE S.F., et al. Composition of farmed and wild yellow perch(Perca flavescens) [J]. J. Food Compos. Anal,2006,19,720-726.
    [41]ALASALVAR, C., TAYLOR, K.D.A., ZUBCOV, E., et al. Differentiation of cultured and wild sea bass(Dicentrarchus labrax):total lipid content, fatty acid and trace mineral composition [J]. Food Chemistry,2002,79,145-150.
    [42]GRIGORAKIS, K. Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass(Dicentrarchus labrax) and factors affecting it:A review [J]. Aquaculture,2007,272,55-75.
    [43]JANKOWSKA, B., ZAKES, Z., ZMIJEWSKI, T., et al. Fatty acid profile of muscles, liver and mesenteric fat in wild and reared perch (Perca fluviatilis L.) [J]. Food Chemistry,2010, 118,764-768
    [44]MNARI, A., BOUHLEL, I., CHRAIEF, I., et al. Fatty acids in muscles and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata [J]. Food Chemistry,2007,100, 1393-1397.
    [45]王际英,李培玉,宋志东,等.野生和人工养殖褐牙鲆亲鱼不同组织氨基酸的比较[J].水产学报,2010,34(11):1736-1743.
    [46]GULER, G.O., KIZTANIR, B., AKTUMSEK, A., et al. Determination of the seasonal changes on total fatty acid composition and x3/x6 ratios of carp(Cyprinus carpio L.) muscle lipids in Beysehir Lake (Turkey) [J]. Food Chemistry,2008,108,689-694.
    [47]RASOARAHONA, J. R., BARNATHAN, G., BIANCHINI, J. P., et al. Annual evolution of fatty acid profile from muscle lipids of the common carp(Cyprinus carpio) in Madagascar inland waters [J]. J. Agric. Food Chem,2004,52,7339-7344.
    [48]DAL BOSCO, A., MUGNAI, C, MOURVAKI, E., et al. Seasonal changes in the fillet fatty acid profile and nutritional characteristics of wild Trasimeno Lake goldfish(Carassius auratus L.) [J]. Food Chemistry,2012,132,830-834
    [49]高露姣,楼宝,毛国民,等.不同饵料饲养的褐牙鲆肌肉营养成分的比较[J].海洋渔业,2009,31(3):293-299.
    [50]王常安,徐奇友,包玉龙,等.不同饲料对哲罗鲑生长性能和营养成分的影响[J].水产养殖,2011,32(1):5-9.
    [51]林建斌.鱼类营养因素与肉质的关系.中国渔业报,2010.
    [52]NICKELL D.C, BROMAGE, N.R. The effect of timing and duration of feeding astaxanthin on the development and variation in fillet colour and efficiency of pigmentation in rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture,1998,169,233-246.
    [53]KESHAVANATH P, MANJAPPA K, GANGADHARA B. Evaluation of carbohydrate rich diets through common carp culture in manured tanks [J]. Aquac. Nutr.,2002,8,169-174.
    [54]GAYExSIESSEGGER J, FOCKEN V, BECKER K. Effects of dietary protein/carbohydrate ratio on activities of hepatic enzymes involved in the amino acid metabolism of Nile tilapia, Oreochromis niloticus (L.) [J]. Fish Physiol Biochem,2006,32,275-282.
    [55]GOCKSE M A, TASBOZAN O, CELIK M, et al. Seasonal variation in proximate and fatty acid compositions of female common sole (Solea solea) [J]. Food Chemistry,2004,88,419-423
    [56]LOVELL, R. T. Nutrition of aquaculture species [J]. J Anim Sci,1991,69,4193-4200.
    [57]CEJAS, J.R., ALMANSA, E., VILLAMANDOS, J. E., et al. Lipid and fatty acid composition of ovaries from wild fish and ovaries and eggs from captive fish of white sea bream(Diplodus sargus) [J]. Aquaculture,2003,216,299-313.
    [58]UYSAL, K, AKSOYLAR, M. Y. Seasonal variations in fatty acid composition and the n-6/n-3 fatty acid ratio of pikeperch (Sander lucioperca) muscle lipids [J]. Ecol. Food Nutr,2005,44, 23-35.
    [59]程开敏,胡超群,刘艳妮,等.海水和淡化养殖凡纳滨对虾的组织成分比较研究[J].热带海洋学报,2006,25(3):34-39.
    [60]李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社.1996.
    [61]钱雪桥,崔奕波,谢绶启,等.养殖鱼类饲料蛋白需要的研究进展[J].水生生物学报,2002,26(4):410-416.
    [62]NRC. Nutrient Requirements of Fish. National Research Council, National Academy Press, Washington.1993.
    [63]ZEITOUN, I.H., ULLEREY, D.E., MAGEE, W.T. Quantifying nutrient requirement of fish [J]. J. Fish. Res. Board Can,1976,33:167-172.
    [64]林小植,谢小军,罗毅平.中华倒刺鳃幼鱼饲料蛋白质需求量的研究[J].水生生物学报,2009,33(4):674-681.
    [65]王贵英,曾可为,高银爱,等.鳜配合饲料的最适蛋白质含量[J].水生生物学报,2005,29(2):189-192
    [66]张文兵,谢小军,付世建,等.南方鲇的营养学研究:饲料的最适蛋白质含量[J].水生生物学报,2000,24(6):603-609.
    [67]温小波,库夭梅,罗静波.中华鲟配合饲料适宜蛋白质含量及最佳蛋白能量比研究[J].海洋科学,2003,27(4):38-43.
    [68]刘洋,姜志强,王福强,等.大泷六线鱼对蛋白质的最适需要量[J].大连水产学院学报,2008,23(5):387-390.
    [69]CHEN, H.Y., TSAI, J.C. Optimal dietary protein level for the growth of juvenile grouper, Epinphelus malabaricus, fed semi-purified diets [J]. Aquaculture,1994,119,265-271.
    [70]SHIAU, S.Y., LAN, C.W. Optimum dietary protein level and protein to energy ratio for growth of gouper (Epinephelus malabaricus) [J]. Aquaculture,1996,145,259-266.
    [71]SIDDIQUI A Q, HOWLADER M S, ADAM A A. Effects of dietary protein levels on growth, feed conversion and protein utilization in fry and young nile tilapia(Oreochromis niloticus) [J]. Aquaculture,1988,70:63-73
    [72]JOSE M V, FERNANDEZ-PALACIOS H, LIDIA R, et al. The effect of varying dietary protein level on the feed efficiency, protein utilization and body composition of gilthead Seabream fry [J].Fish Sci,1996,62:620-623
    [73]MAI K, MERCER J P, DONLON J. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannailno. IV. Optimum dietary protein level for growth [J]. Aquaculture,1995,136:165-180
    [74]SHIAU S Y, HUANG S L. Optimal dietary protein for hybrid tilapia reared in seawater [J]. Aquaculture,1989,81:119-127
    [75]JAUNCEY K. The effect of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapia Sarotherodon mosambicus [J]. Aquaculture,1982,27:34-54.
    [76]KHAN M S, ANG K J, AMBAK M A, et al. Optimum dietary protein requirement of a Malaysian freshwater catfish, Mystus nemurus [J]. Aquaculture,1993,112:227-235.
    [77]ELANGOVAN A, SHIM K F. Growth response of juvenile Barbodes altus fed isocaloric diets with variable protein levels [J]. Aquaculture,1997,158:321-329
    [78]DANIELS, W.H, ROBINSON, E.H. Protein and energy requirements of juvenile red drum (Sciaenops ocellatus) [J]. Aquaculture,1986,53:243-252.
    [79]HENKEN A.M, MACHIELS M.A, DEKKER W, et al. The effect of dietary protein and energy content on growth rate and feed utilization of the African catfish, Clarias gariepinus (Burchell 1822) [J]. Aquaculture,1986,58:55-74.
    [80]KATERSKY, R.S., CARTER C.G. High growth efficiency occurs over a wide temperature range for juvenile barramundi Lates calcarifer fed a balanced diet [J].Aquaculture,2007,272: 444-450.
    [81]PERES, H, OLIVA-TELES A. Influence of temperature on protein utilization in juvenile European seabass(Dicentrarchus labrax) [J]. Aquaculture,1999,170:337-348.
    [82]HIDALGO, F, ALLIOT E. Influence of water temperature on protein requirement and protein utilization in juvenile sea bass, Dicentrarchus labrax [J].Aquaculture,1988,72:115-129
    [83]黄凯,王武,卢洁.南美白对虾幼虾饲料蛋白质的需要量[J].中国水产科学,2003,10(4):318-324.
    [84]ZEITOUN I H, TACK P I, HALVER J E, et al. Influence of salinity on protein requirements of rainbow trout finglings [J]. J. Fish. Res. Board Can,1973,30:1867-1873
    [85]ROBERTSON L, LAWRENCE, A L, CANDLE F. Interaction of salinity and feed protein level on of Penaeus vannamei [J]. J. Appl. Aquac,1993,2,43-54
    [86]王兴强,马甡,董双林.盐度和蛋白质水平对凡纳滨对虾存活、生长和能量转换的影响[J].中国海洋大学学报,2005,35(1):33-37.
    [87]BINDU R.P, DIVAN A.D. Effects of acute salinity stress on oxygen consumption and ammonia excretion rates of the marine shrimp Metapenaeus monoceros [J]. J. Crustac. Biol, 2002,22(1):45-52.
    [88]CLAYBROOK D L. Nitrogen metabolism [M]//Mantel L H, (Ed.), The biology of Crustacea, intgernal anatomy and physiological regulation. New York:Academic Press,1983,163-213.
    [89]WEBSTER, C.D, TIU, L.G, TIDWELL, J.H, et al. Effect of dietary protein and lipid levels on growth and body composition of sunshine bass (Morone chrysops ×M saxatilis) reared in cages [J]. Aquaculture,1995,131:291-301.
    [90]NEMATIPOUR, G.R, BROWN, M.L, GATLIN, D.M.I. Effects of dietary energy:protein ratio on growth characteristics and body composition of hybrid striped bass, Morone chrysops (female) ×M. saxatilis (male) [J]. Aquaculture,1992,107:359-368.
    [91]TAKEDA, M., SHIMENO, S., HOSOKAWA, H., et al. The effect of dietary calorie-to-protein ratio on the growth, feed conversion and body composition of young yellowtail [J]. Bulletin of the Japanese Society of Scientific Fisheries 1975,41,443-447.
    [92]JOVER, M, GARCIA-GOMEZ, A, TOMAS A, et al. Growth of mediterranean yellowtail (Seriola dumerilii) fed extruded diets containing different levels of protein and lipid [J]. Aquaculture,1999,179,25-33
    [93]艾庆辉,谢小军.水生动物对植物蛋白源利用的研究进展[J].中国海洋大学学报,2005,35(6):929-935
    [94]ABIMORAD E.G, CARNEIRO D.J. Digestibility and performance of pacu(Piaractus mesopotamicus) juveniles-ged diets containing different protein, lipid and carbohydrate levels [J]. Aquac. Nutr.,2007,13,1-9
    [95]DABROWSKI K. Protein requirements of grass carp fry (Ctenopharyngodon idella Val.) [J]. Aquaculture,1977,12,63-73
    [96]PAGE J.W, ANDREWS J.W. Interaction of dietary levels of protein and energy on channel catfish (Ictalurus punctatus) [J]. J. Nutr,1973,103:1339-1346.
    [97]GRISDALE-HELLAND, B., SHEARER, K.D., GATLIN III D.M., et al. Effects of dietary protein and lipid levels on growth, protein digestibility, feed utilization and body composition of Atlantic cod (Gadus morhua) [J]. Aquaculture,2008,283:156-162.
    [98]ELLIS, S.C., REIGH, C. Effects of dietary lipid and carbohydrate levels on growth and body composition of juvenile red drum Scianops ocellatus [J]. Aquaculture,1991,97,383-394.
    [99]JANTRAROTAI, W, SITASIT, P, JANTRAROTAI, P, et al. Protein and energy levels for maximum growth, diet utilization, yield of edible flesh and protein sparing of hybrid Clarias catfish(Clarias macrocephalus×Clarias gariepinus) [J]. J. World Aquacult. Soc,1998,29: 281-289.
    [100]徐奇友,王炳谦,徐连伟,等.哲罗鱼稚鱼的蛋白质和脂肪需求量[J].中国水产科学,2007,14(3):498-503.
    [101]付世建,解小军,张文兵,等.南方鲇的营养学研究:Ⅲ:饲料脂肪对蛋白质的节约效应[J].水生生物学报,2001,25(1):70-75.
    [102]CHO, C.Y, KAUSHIK, S.J. Nutritional energetics in fish:energy and protein utilization in rainbow trout (Salmo gairdneri) [J]. World Rev.Nutr. Diet,1990,61:132-172.
    [103]SAMANTARAY K, MOHANTY S.S. Interactions of dietary levels of protein and energy on fingerling snakehead, Channa striata [J].Aquaculture,1997,156:241-249.
    [104]OGINO C, CHIOU J Y, TAKEUCHI T. Protein nutrition in fish. Ⅵ. Effect of dietary energy sources on the utilization of protein by rainbow trout and carp [J].Bull Jap Soc Sci Fish,1976,42:213-218.
    [105]ERFANULLAH JAFRI, A.K. Effect of dietary carbohydrate-to-lipid ratio on growth and body composition of walking catfish (Clarias batrachus) [J].Aquaculture,1998a,161,159-168.
    [106]GARLING, D.L, WILSON, R.P. Optimum protein to energy ratio for channel catfish fingerlings, Ictalurus punctatus [J].J.Nutr,1976,106:1368-1375.
    [107]WILSON, R.P., HALVER, J.E. Protein and amino acid requirements of fishes [J]. Annu. Rev. Nutr.1986,6:225-244.
    [108]韩庆,夏维福,罗玉双,等.不同营养水平对黄颡鱼春片鱼种生长的影响[J].饲料工业,2002,23(7):43-44.
    [109]邵庆均,苏小凤,许梓荣,等.饲料蛋白水平对宝石鲈生长和体组成影响研究[J].水生生物学报,2004b,28(4):367-373.
    [110]WEE, K.L, TUAN, N.A. Effects of dietary protein level on growth and reproduction in Nile tilapia (Oreochromis niloticus) [J]. ICLARM,1988,15:623-640.
    [111]BISWAS B.K., JI S.C., BISWAS A.K, et al. Dietary protein and lipid requirements for the Pacific bluefin tuna Thunnus orientalis juvenile [J]. Aquaculture,2009,288:114-119
    [112]王武,石张东,甘炼.江黄颡鱼幼鱼最适蛋白质需求量的研究[J].上海水产大学学报,2003,12(2):183-186.
    [113]林鼎,毛永庆,蔡发盛.鲩鱼(Ctenopharyngodon idellus)鱼种生长阶段蛋白质最适需要量的研究[J].水生生物学集刊,1980,7(2):207-212
    [114]王桂芹,周洪琪,陈建明,等.翘嘴红鲌对饲料蛋白的营养需求及豆粕对鱼粉的适宜替代量[J].中国水产科学,2006,13(2):277-285
    [115]SIDDIQUI T.Q., KHAN M.A. Effects of dietary protein levels on growth, feed utilization, protein retention efficiency and body composition of young Heteropneustes fossilis (Bloch) [J]. Fish Physiol Biochem,2009,35,479-488
    [116]MINTON, R.V. Responses of channel catfish fed diets of twonutrient concentrations at three rates in ponds [D]. Master's Thesis. Auburn University. Auburn, AL, USA.1978
    [117]LI, M, LOVELL, R.T. Comparison of satiate feeding and restricted feeding of channel catfish with various concentrations of dietary protein in production ponds [J]. Aquaculture, 1992,103:165-175.
    [118]OGINO C. Protein requirement of carp and rainbow trout [J]. Bull Jpn Soc Sci Fish,1980, 46:385-388
    [119]MOHANTA K.N, MOHANTY S.N., JENA J.K, et al. Protein requirement of silver barb Puntius gonionotus fingerlings [J]. Aquacult. Nutr,2008,14,143-152.
    [120]JUANCEY K. The effects of varying dietary protein level on the growth and food conversion, protein utilization and body composition of juvenile tilapia Sarotherodonm ossambicus [J]. Aquaculture,1982,27:43-54.
    [121]ENGIN K, CARTER C G. Ammonia and urea excretion rates of juvenile red drum (Sciaenops ocellatus) [J]. Aquaculture,2001,53:243-252
    [122]SARGENT J, MC EVOY L, ESTEVEZ A, et al. Lipid nutrition of marine fish during early development:current status and future directions [J]. Aquaculture,1999,179:217-229
    [123]MORAIS, S., KOVEN, W., R(?)NNESTAD, I., et al. Dietary protein/lipid ratio affects growth and amino acid and fatty acid absorption and metabolism in Senegalese sole (Solea senegalensis Kaup 1858) larvae [J]. Aquaculture,2005,246,347-357
    [124]WING K N, PHAIK K L, PENG L B. Dietary lipid and palm oil source affects growth, fatty acid composition and muscle a-tocopherol concentration of African catfish(Clarias gariepinus) [J]. Aquaculture,2003,215,229-243
    [125]王煜恒,王爱民,刘文斌,等.不同脂肪源对异育银鲫鱼种生长、消化率及体成分的影响[J].水产学报,2010,34(9):1439-1446.
    [126]张媛媛,刘波,戈贤平,等.不同脂肪源对异育银鲫生长性能、机体成分、血清生化指标、体组织脂肪酸组成及脂质代谢的影响.水产学报,2012,36(7):1111-1118.
    [127]季文娟.饲料中不同脂肪源对黑鲷幼鱼生长和鱼体脂肪酸组成的影响[J].中国水产科学,1999,20(1):69-74.
    [128]CABALLERO, M.J., OBACH, A., ROSENLUND, G., et al. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss [J]. Aquaculture,2002,214,253-271.
    [129]LIU, K.K.M., BARROWS, F T., HARDY, R W., et al. Body composition, growth performance, and product quality of rainbow trout(Oncorhynchus mykiss) fed diets containing poultry fat, soybean/corn lecithin, or menhaden oil [J]. Aquaculture,2004,238, 309-328
    [130]JOBLING M., LEKNES, O., SAETHER, B.S., et al. Lipid and fatty acid dynamics in Atlantic cod, Gadus morhua, tissues:Influence of dietary lipid concentrations and feed oil sources [J]. Aquaculture,2008,281,87-94
    [131]TOCHER, D.R., BENDIKSEN, E.A., CAMPBELL, P.J, et al. The role of phospholipids in nutrition and metabolism of teleost fish [J]. Aquaculture,2008,280,21-34
    [132]TAKEUCHI T, WATANABE T. Requirement of carp for essential fatty acids [J].Bull Jap Soc Sci Fish,1977,43:541-551.
    [133]TAKEUCHI, T, MASUDA, R, ISHIZAKI, Y, et al. Determination of the requirement of larval striped jack for eicosapentaenoic acid and docosahexaenoic acid using enriched Artemia nauplii [J]. Fish. Sci.1996,62,760-765.
    [134]BRINKMEYER, R.L., HOLT, G.J. Highly unsaturated fatty acids in diets for red drum (sciaenops ocellatus) larval [J].Aquaculture,1998,161,253-268.
    [135]刘兴旺,谭北平,麦康森,等.饲料中不同水平n-3 HUFA对军曹鱼生长及脂肪酸组成的影响[J].水生生物学报,2007,31(2):190-195
    [135]TOYOTA M, TAKEUCHI T, WATANABE T. Dietary value to larval yellowtail of Atemia nauplii enriched with EPA and DHA [A].Jopanese Society of Scientific Fisheries [C]. ToKyo:1991.
    [136]WU, F.C., TING, Y.Y, CHEN, H.Y. Docosahexaenoic acid is superior to eicosahexaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabaricus [J]. J. Nutr., 2002,132,72-79.
    [137]MORAIS, S., NARCISO, L., DORES, E., et al. Lipid enrichment for Senegal sole (Solea senegalensis) larvae:effect on larval growth, survival and fatty acid profile [J].Aquac. Int. 2004,12,281-298.
    [138]IZQUIERDO M S, WATANABE T, TAKEUCHIN ARKAWA T, et al. Optimal levels in Artemia to meet the EFA requirements ofred seabream(Pagrus major)[A].Takeda M, Watanabe T. The Current Status of Fish Nutrition in Aquaculture [C].Tokyo:Japan Trabskatuib Cebter, Ltd,1989.221-232.
    [139]KOVEN, W.M, TANDLER, A, SKLAN, D, et al. The association of eicosapentaenoic and docosahexaenoic acids in the phoapholipids of different age Sparus aurata larvae with growth [J]. Aquaculture,1993,116:71-82.
    [140]REITAN, K.I., RAINUZZO, J.R., OSLEN, Y. Influence of lipid composition of live feed on growth, survival and pigmentation of turbot larvae [J]. Aquacult. Int,1994,2,33-48.
    [141]IBEAS C. Influence of dietary n-3 highly unsaturated fatty acids level on juvenile gilthead seabream (Sparus aurata) growth and essential fatty acid composition [J]. Aquaculture, 1996,142,221-235
    [142]RODRIGUEZ C, PEREZ J, IZQUIERDO M.S, et al. The effect of n-3 HUFA proportions in diets for gilthead seabream (Sparus aurata) larval culture [J]. Aquaculture,1994,124,284.
    [143]RODRIGUEZ, C., PEREZ, J.A., DIAZ, M., et al. Influence of the EPA/DHA ratio in rotifers on gilthead seabream (Sparus aurata) larval development [J]. Aquaculture,1997,150,77-89
    [144]卢素芳.磷脂在黄颗鱼仔稚鱼人工微粒饲料中应用及其作用机理的研究[D].武汉.华中农业大学博士学位论文.2008
    [145]SALHI, M., HERNA NDEZ-CRUZ, C.M., BESSONART, M, et al. Effect of different dietary polar lipid levels and different n-3 HUFA content in polar lipids on gut and liver histological structure of gilthead sea bream (Sparus aurata) larvae [J].Aquaculture,1999, 179,253-263.
    [146]IZQUIERDO, M.S., SOCORRO, J., ARANTZAMENDI, L., et al. Recent advances in lipid nutrition in fish larvae [J]. Fish Physiol. Biochem.2000,22,97-107.
    [147]曹俊明,刘永坚,劳彩玲,等.饲料中不同脂肪酸对草鱼组织脂质含量和脂肪酸构成的影响[J].动物营养学报,1997,9(3):36-44.
    [148]陈彦,王重刚,陈品健,等.卵磷脂对花尾胡椒鲷幼鱼Ca2+-ATP酶和Na+, K+-ATP酶活性的影响[J].海洋科学,2002,26(8):54-57
    [149]刘镜恪,周利,雷霁霖.海水仔稚鱼脂类营养研究进展[J].海洋与湖沼,2002,33(4):446-452.
    [150]陈晓琳,刘镜恪.真鲷仔稚鱼对实验微粒饲料中卵磷脂适宜需要量的研究[J].海洋水产研究,2004,25(1):15-19.
    [151]KANAZAWA, A. Essential phospholipids of fish and crustaceans. In:Fish Nutrition in Practice [M]. Edited by Kaushik S.J. and Luquet P. INRA, Paris,1993, pp.519-530.
    [152]ZAMBONINO INFANTE L, CAHU C L. High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development [J]. J. Nutr,1999,129, 1195-1200
    [153]COUTTEAU P, GEURDEN I, CAMARA M R, et al. Review on the dietary effects of phospholipids in fish and crustacean larvi culture [J]. Aquaculture,1997,155,149-164
    [154]李二超,禹娜,陈立侨,等.脂肪和L-肉碱对大口黑鲈饲料中蛋白质的节约作用[J].动物营养学报,2010,22(3):787-796.
    [155]LIE O, LIED E, LAMBERTSEN G. Feed optimization in Atlantic cod (Gadus morhua):fat versus protein content in the feed [J]. Aquaculture,1988,68:333-341.
    [156]黄钧,冯健,孙挺,等.瓦氏黄颡鱼(Pelteobagrus fulvidraco Richardson)幼鱼日粮中主要营养素需要量研究[J].海洋与湖沼,2009,40(4):437-445.
    [157]ARZEL, J., LOPEZ, F.X. M., METAILLER, R., et al. Effect of dietary lipid on growth performance and body composition of brown trout Salmo trutta reared in seawater [J]. Aquaculture,1994,123,361-375.
    [158]HANLEY F. Effects of feeding supplementary diets containing varying levels of lipid on growth, food conversion, and body composition of Nile tilapia Oreochromis niloticus L [J]. Aquaculture,1991,93,323-334.
    [159]SKALLI, A., HIDALGO, M. C., ABELLAN, E., et al. Effects of the dietary protein/lipid ratio on growth and nutrient utilization in common dentex (Dentex dentex L.) at different growth stages [J].Aquaculture,2004,235,1-11.
    [160]HALVER, J.E, HARDY, R.W. Fish Nutrition, III edn [M]. Academic Press, San Diego.2002, 805
    [161]KESTEMONT, P., VANDELOISE, E., MELARD, C., et al. Growth and nutritional status of Eurasian perch Perca fluviatilis fed graded levels of dietary lipids with or without added ethoxyquin [J]. Aquaculture,2001,203,85-99.
    [162]MORAIS, S., BELL, J.G., ROBERTSON, D.A., et al. Protein/lipid ratios in extruded diets for Atlantic cod(Gadus morhua L.):effects on growth, feed utilization, muscle composition and liver histology [J].Aquaculture,2001,203,101-119.
    [163]GAYLORD T.G, GATLIN III D.M. Dietary protein and energy modifications to maximize compensatory growth of channel catfish(Ictalurus punctatus) [J]. Aquaculture,2001,194, 337-348.
    [164]LEE, S.M.,JEON, I.G., LEE J.Y. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli) [J]. Aquaculture,2002,211,227-239.
    [165]杨建梅,王安利,霍湘,等.鱼类利用脂肪节约蛋白的研究进展[J].水利渔业,2006,26(1):74-77.
    [166]HELLAND, S.J., GRISDALE-HELLAND, B. Growth, feed utilization and body composition of juvenile Atlantic halibut (Hippoglossus hippoglossus) fed diets differing in the ratio between the macronutrients [J]. Aquaculture,1998,166,49-56.
    [167]YAMAMOTO, T, UNUMA, T, AKIYAMA, T. The influence of dietary protein and fat levels on tissue free amino acid levels of fingerling rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture,2000,182,353-372.
    [168]XU, X.L, JI, W.J, CASTELL, J.D, et al. Essential fatty acid requirement of the Chinese prawn, Penaeus chinensis [J]. Aquaculture,1994,127,29-40.
    [169]HEVR(?)Y, E.M., SANDNES, K., HEMRE G.I. Growth, feed utilisation, appetite and health in Atlantic salmon (Salmo salar L.) fed a new type of high lipid fish meal, Sea Grain(?), processed from various pelagic marine fish species [J]. Aquaculture,2004,235,371-392.
    [170]CHAIYAPECHARA, S., CASTEN, M.T., HARDY, R.W., et al. Fish performance, fillet characteristics, and health assessment index of rainbow trout(Oncorhynchus mykiss) fed diets containing adequate and high concentrations of lipid and vitamin E [J]. Aquaculture, 2003,9,715-738.
    [171]RUEDA-JASSO, R., CONCEICAO, L. E. C, DIAS, J., et al. Effect of dietary non-protein energy levels on condition and oxidative status of Senegalese sole (Solea senegalensis) juveniles [J]. Aquaculture,2004,231,417-433.
    [172]JANSSENS B J, CHILDRESS JJ, BAGUET F, et al. Reduced enzymatic antioxidative defence in deep-sea fish [J].J Exp Biol,2000,203,3717-3725.
    [173]WINFREE, R.A., STICKNEY, R.R. Effects of dietary protein and energy on growth, feed conversion efficiency and body composition of Tilapia aurea [J].J. Nutr.1981,111, 1001-1012.
    [174]TIBBETTS, S.M., LALL, S.P, MILLEY, J.E. Effect of dietary protein and lipid levels and DP DE"'ratio on growth, feed utilization and hepatosomatic index of juvenile haddock, Melanogrammus aeglefinus L [J]. Aquacult. Nutr,2005,11,67-75.
    [175]MOHANTA, K.N, MOHANTY, S.N., JENA J et al. A dietary energy level of 14.6 MJ kg-1 and protein-to-energy ratio of 20.2gMJ-1 results in best growth performance and nutrient accretion in silver barb Puntius gonionotus fingerlings [J]. Aquac. Nutr.,2009,15,627-637.
    [176]JOHNSON, E.G, WATANABE, W.O, ELLIS, S.C. Effects of dietary lipid levels and energy:Protein ratios on growth and feed utilization of juvenile Nassau grouper fed isonitrogenous diets at two temperatures [J]. N. Am. J. Aquac,2002,64,47-54
    [177]朱小明,李少菁,姜晓东.能量代谢研究对水产配合饲料研制和评价的应用价值[J].台湾海峡,2001,20(增刊):29-35.
    [178]JIANG D H, WILLIAM H N, GONG H. Effect s of temperature and salinity on nit rogenous excretion by Litopenaeus vannamei juveniles [J]. J Exp Mar Biol Ecol,2000,253, 193-209.
    [179]薛敏,李爱杰,董双林,等.中国对虾幼虾饲料中最佳蛋白能量比研究[J].青岛海洋大学学报,1998,28(2):245-252.
    [180]STONE D.A.J, ALLAN G.L, ANDERSON A.J. Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell). Ⅱ. Digestibility and utilization of starch and its break-down products [J]. Aquac. Res.,2003,34,109-121
    [181]ALI M.Z, JAUNCEY K. Approaches to optimizing dietary protein to energy ratio for African catfish Clarias gariepinus (Burchell,1822) [J]. Aquac. Nutr.,2005,11,95-101.
    [182]AI, Q.H., MAI, K.S., LI, H.T., et al. Effects of dietary protein to energy ratios on growth and body composition of juvenile Japanese seabass, Lateolabrax japonicas [J]. Aquaculture, 2004,230,507-516.
    [183]CACERES-MARTINEZ C, CADENA-ROA, METAILLER R. Nutritional requirements of turbot(Scophthalmus maximus) Ⅰ. A preliminary study of protein and lipid utilization [J]. J World Maricult Soc,1984,15:191-202.
    [184]COMPANY R, ALDUCH-GINER J.A, PEREA-SANCHEZ J. Protein sparing effect of dietary lipids in common dentex (Dentexdentex):a comparative study with sea bream (Sparus aurata) and sea bass(Dicentrachus labrax) [J]. Aquat Living Resour,1999,12: 23-30.
    [185]LEE, S.M., CHO, S.H., KIM, K.D. Effects of dietary protein and energy levels on growth and body composition of juvenile flounder (Paralichthys olivaceous) [J]. J. World Aquacult. Soc.,2000,31,306-315.
    [186]DENG D E, REFSTIE S, HEMRE G L. et al. A new technique of feeding, repeated sampling of blood and continuous collection of urine in white sturgeon [J]. Fish Physiol. Biochem, 2000,22,191-197.
    [187]ALAM M S, TESHIMA S, KOSHIO S, et al. Optimum dietary threonine level for juvenile Japanese Flounder Paralichthys olivaceus [J]. Asian Fisheries Society,2003,16:175-184.
    [188]ZHOU, Q.C, WU, Z.H, TAN, B.P, et al. Optimal dietary methionine requirement for juvenile cobia(Rachycentron canadum) [J]. Aquaculture,2006,258,551-557.
    [189]陈乃松,马建忠,周恒永,等.大口黑鲈对饲料中蛋氨酸需求量的评定[J].水产学报,2010,34(8):1244-1253.
    [190]WILSON, R.P. Amino acids and proteins. In: Halver, J.E., Hardy, R.W. (Eds.), Fish Nutrition,3rd ed. Academic Press, New York,2002, pp.143-179.
    [191]FORSTER, I., OGATA, H.Y. Lysine requirement of juvenile Japanese flounder Paralichthys olivaceus and juvenile red sea bream Pagrus major [J]. Aquaculture,1998,161,131-142.
    [192]ZHANG, C.X., AI, Q.H., MAI K.S., Dietary lysine requirement of large yellow croaker, Pseudosciaena crocea R. [J]. Aquaculture,2008,283,123-127
    [193]BAKER, D.H. Problems and pitfalls in animal experiments designed to establish dietary requirements for essential nutrient [J]. J. Nutr.,1986,116:2339-2349
    [194]ROBBINS, K.R., NORTON, H.W., BAKER, D.H. Estimation of nutrient requirements from growth data [J]. J. Nutr,1979,109,1710-1714.
    [195]COWEY, C.B. Protein and amino acids requirements:a critique of methods [J]. J. Appl. Ichthyol.1995,11,199-204.
    [196]WILSON R P, COWEY C B. Amino acid composition of whole body tissue of rainbow trout and Atlantic salmon [J]. Aquaculture,1985,48,373-376.
    [197]UNPRASERT N G. An evaluation of the use of ideal protein concept to estimate essential amino acid requirements of the Clarias hybrid(Clarias macrocephal us×Clarias gariepi nus) [D]. Mississippi State University, Miss. State.1994.
    [198]ROLLIN X. Critical study of the indispensable amino acids requirements in Atlantic salmon (Salmo salar L.) fry [D]. University Catholique de Louvain.1999.
    [199]TWIBELL R G, GRIFFIN M E, MARTIN B, et al. Predicting dietary essential amino acid requirements for hybrid striped bass [J]. Aquac. Nutr.,2003,9,373-381.
    [200]TIBALDI E, TULLI F. Dietary threonine requirement of juvenile European sea bass (Dicent rarchus labrax) [J]. Aquaculture,1999,175:155-166.
    [201]ALAM M S, TESHIMA S I, YANIHARTO D, et al. Assessment of reference dietary amino acid pattern for juvenile red sea bream, Pagrus major [J]. Aquac. Int.,2005,13:369-379.
    [202]PORTZ L, CYRINO J E. Comparison of the amino acid contents of roe, whole body and muscle tissue and their A/E ratios for large-mouth bass Micropterus salmoides (Lacepede, 1802) [J]. Aquac. Res.,2003,34,585-592.
    [203]KETOLA, H.G. Amino acid nutrition of fishes:requirements and supplementation of diets [J].Comp. Biochem. Physiol.,1982,73b:17-24.
    [204]PERES H, OLIVA-TELES A. Effect of the dietary essential amino acid pattern on growth, feed utilization and nitrogen metabolism of European sea bass(Dicent rarchus labrax) [J]. Aquaculture,2007,267,119-128.
    [205]BOREN R S, GATLIN D M III. Dietary threonine requirement of juvenile red drum (Sciaenops ocellat us) [J]. J. World Aquacult. Soc,1995,26:279-283.
    [206]ROBINSON E H, WILSON R P, WILLIAM E P. Arginine requirement and apparent absence of lysine-arginine antagonist in fingerling channel catfish [J]. J Nutr,1981,111,46-52
    [207]SANTIAGO C B, LOVELL R T. Amino acid requirements for growth of Nile tilapia [J]. J Nutr,1988,118,1540-1546.
    [208]AHMED I, KHAN M.A. Dietary lysine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton) [J]. Aquaculture,2004,235,499-511.
    [209]KIM K I. Re-evaluation of protein and amino acid requirements of rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture,1997,151,3-7.
    [210]Bodin N, Govaerts B, Abboudi T, et al. Protein level affects the relative lysine requirement of growing rainbow trout(Oncorhynchus mykiss) fry [J]. Br J Nutr.2009,102(1):37-53.
    [211]YAMADA, S., TANAKA, Y., KATAYAMA, T. Feeding experiments with carp fry fed an amino acid diet by increasing the number of feedings per day [J]. Bull. Jpn. Soc. Sci. Fish, 1981,47,42-47.
    [212]ZARATE, LOVELL, PAYNE. Effects of feeding frequency and rate of stomach evacuation on utilization of dietary free and protein-bound lysine for growth by channel catfish Ictaluruspunctatus [J]. Aquac. Nutr.,1999,5,17-22
    [213]KEEMBIYEHETTY C N, GATLIN D M III. Dietary threonine requirement of juvenile hybrid striped bass (Morone chrysops xM. saxatilis) [J]. Aquac. Nutr.,1997,3:217-221.
    [214]麦康森,何志刚,艾庆辉.鱼类苏氨酸营养生理研究进展.中国海洋大学学报,2008,38(2):195-200
    [215]BERGE G E, LIED E, SVEIER H. Nutrition of Atlantic salmon(Salmo salar):the requirement and metabolism of arginine [J]. Comp Biochem Physiol,1997,117A:501-509.
    [216]MAI, K.S, ZHANG, L, AI, Q.H., et al. Dietary lysine requirement of juvenile Japanese seabass(Lateolabrax japanicus) [J]. Aquaculture,2006,258,535-542.
    [217]李桂梅,解绶启,雷武,等.异育银鲫幼鱼对饲料中缬氨酸需求量的研究[J].水生生物学报,2010,34(6):1157-1165.
    [218]MONTES-GIRAO, P.J, FRACALOSSI, D.M. Dietary lysine requirement as basis to estimate the essential dietary amino acid profile for Jundia Rhamdia quelen [J].J. World Aquac. Soc., 2006,37,388-397.
    [219]冷向军,李小勤,陈丙爱,等.鱼类对晶体氨基酸利用的研究进展[J].水生生物学报.2009,33(1):119-123.
    [220]RONNESTAD, I., CONCEICAO, L.E.C., ARAGAO, C., et al. Free amino acids are absorbed faster and assimilated more efficiently than protein in post larval Senegal sole (Solea senegalensis) [J]. J. Nutr.2000,130,2809-2812.
    [221]AHMED I, KHAN M A, JAFRI A K. Dietary methionine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton) [J]. Aquac. Int.,2003,11,449-462.
    [222]MAI, K.S., WAN J.L., AI, Q.H., et al. Dietary methionine requirement of juvenile yellow croaker Pseudosciaena crocea R. [J]. Aquaculture,2006,253,564-572.
    [223]KHAN M A, ABIDI S F. Total aromatic amino acid requirement of Indian major carp Labeo rohita (Hamilton) fry [J]. Aquaculture,2007,267,111-118
    [224]BERGE G H, BAKKE-MCKELLEP A M, LIED E. In vitro uptake and interaction between arginine and lysine in the intestine of Atlantic salmon (Salmo salar) [J].Aquaculture,1999, 179,181-193
    [225]MURTHY R K, VARGHESE T J. Total sulphur amino acid requirement of the Indian major carp, Labeo rohita (Hamilton) [J]. Aquac. Nutr.,1998,4,1-65.
    [226]LUO, Z., LIU, Y.J., MAI, K.S, et al. Dietary 1-methionine requirement of juvenile grouper Epinephelus coioides at a constant dietary cystine level [J]. Aquaculture,2005,249,409-418.
    [227]周歧存,麦康森,刘永坚,等.动植物蛋白源替代鱼粉研究进展[J].水产学报,2005,29(3):404-410
    [228]TACON, A.G.J., METIAN, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds:Trends and future prospects [J]. Aquaculture,2008,285, 146-158.
    [229]NEW M.B. Use of fishmeal and fish oil in aquafeeds:further thoughts on the fishmeal trap. Food amd Agriculture Organization of the United Nations. Rome.2002.
    [230]DENG, J.M., MAI, K.S., AI, Q.H., et al. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus [J]. Aquaculture,2006,258,503-513.
    [231]徐奇友,王常安,许红,等.大豆分离蛋白替代鱼粉对哲罗鱼稚鱼生长、体成分和血液生化指标的影响[J].水生生物学报,2008,32(6):941-946
    [232]WEBSTER, C. D., YANCEY, D. H., TIDEWELL, J. H. Effect of partially or totally replacing fish meal with soybean meal on growth of blue catfish(Ictalurus furcatus) [J]. Aquaculture,1992,103:141-152.
    [233]MOHSEN, A.A., LOVELL, R.T.1990. Partial substitution of soybean meal with animal protein sources in diets for channel catfish [J]. Aquaculture,1990,90:303-311.
    [234]REFSTIE, S., STOREBAKKEN, T., BAEVERFJORD, G., et al. Long-term protein and lipid growth of Atlantic salmon(Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level [J]. Aquaculture,2001,193,91-106.
    [235]WANG, Y., KONG, L.J., LI, C., et al. Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum(Nibea miichthioides) [J]. Aquaculture,2006,261,1307-1313.
    [236]AI, Q.H, XIE, X.J. Effects of replacement of fish meal by soybean meal and supplementation of methionine in fish meal/soybean meal-based diets on growth performance of the Southern catfish Silurusm eridionalis [J]. J.World Aquac.Society,2005,36 (4):498-507.
    [237]RUMSEY G L, ENDRES J G, BOWSER P R, et al. Soy protein in diets of rainbow trout: effects on growth, protein absorption, gastrointestinal histology, and nonspecific serologic and immune response. In:Lim, C.E., Sessa, D.J. (Eds.), Nutrition and Utilization Technology in Aquaculture. AOCS Press, Champaign, IL, USA,1994, pp.166-188.
    [238]BURRELLS C, WILLIAMS P D, SOUTHGATE P J, et al. Immunological, physiological and pathological responses of rainbow trout(Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins [J]. Vet. Immunol. Immunopathol,1999,72:277-288.
    [239]TANTIKITTI, C., SANGPONG, W., CHIAVAREESAJJA, S. Effects of defatted soybean protein levels on growth performance and nitrogen and phosphorus excretion in Asian seabass(Lates calcarifer) [J]. Aquaculture,2005,248,41-50.
    [240]ZHOU, Q.C., MAI, K.S., TAN, B.P., et al. Partial replacement of fishmeal by soybean meal in diets for juvenile cobia (Rachycentron canadum) [J]. Aquac. Nutr.,2005,11,175-182.
    [241]OSTASZEWSKA, T., DABROWSKI, K., PALACIOS, M.E et al. Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss)and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins [J]. Aquaculture,2005, 245,273-286.
    [242]艾庆辉,谢小军.水生动物对植物蛋白源利用的研究进展[J].中国海洋大学学报,2005,35(6):929-935
    [243]BAKKE-MCKELLEP A M, PRESS C M, BAEVERFJORD G, et al. Changes in immune and enzyme histochemical phenotypes of cells in the intestinal mucosa of Atlantic salmon, Salmo salar L., with soybean meal-induced enteritis [J]. J. Fish Dis.2000,23,115-127.
    [244]BUTTLE L G, BURRELLS A C, GOOD J E, et al. The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic salmon and Rainbow trout, Oncorhynchus mykiss, fed high levels of soybean meal [J]. Vet. Immunol. Immunopathol,2001,80,237-244.
    [245]BUREAU D P, HARRIS A M, CHO C Y. The effects of purified alcohol extracts from soy products on feed intake and growth of Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout(Oncorhy chusmykiss) [J].Aquaculture,1998,161:27-43.
    [246]HOFFMANN E M, MUETZEL S, BECKER K. The fermentation of soybean meal by rumen microbes in vitro reveals different kinetic features for the inactivation and the degradation of trypsin inhibitor protein [J]. Anim. Feed Sci. Technol,2003,106,189-197.
    [247]ROMARHEIM O H, SKREDE A, GAO Y, et al. Comparison of white flakes and toasted soybean meal partly replacing fish meal as protein source in extruded feed for rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture,2006,256,354-364
    [248]HIGGS D A, FAGERLUND U H M,MCBRIDE J R, et al. Protein quality of Altex canola meal for juvenile chinook salmon (Oncorhynchus tshawytscha) considering dietary protein and 3,5,3'-triiodo-L-thyronine content [J]. Aquaculture,1983,34:213-238.
    [249]LIM C, KLESIUS P.H, HIGGS D.A. Influence of dietary substitution of canola meal for soybean meal on growth and health of channel Catfish [J]. Agric Res,1998,48:1022-1025
    [250]马利,黄峰,吴建开,等.不同菜粕水平对草鱼生长、血清生化指标和毒素残留的影响[J].水产学报,2005,29(6):798-803.
    [251]BUREL C, BOUJARD T, KAUSHIK S J, et al. Potential of plant-protein sources as fishmeal substitutes in diets of turbot (Psetta maxima):growth, nutrient utilization and thyroid status [J]. Aquaculture,2000,188:363-382.
    [252]HILTON J W, SLINGER S J. Digestibility and utilization of canola meal in practical-type diets for rainbow trout Salmo gairdneri [J]. Can. J. Fish. Aquat. Sci.,1986,43,1149-1155.
    [253]赵飞,吴志新,庞素风,等.菜籽粕对异育银鲫免疫应答能力的影响[J].华中农业大学 学报,2007,26(3):361-366
    [254]BARROS M M, LIM C, KLESIUS, P H. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of Channel Catfish(Ictalurus puctatus) to Edwardsiella ictaluri challenge [J].Aquaculture,2002,207: 263-279
    [255]ROBINSON E H. Improvement of cottonseed meal protein with supplemental Iysine in feeds for channel catfish [J].J Appl Aquacult,1991,1,1-14
    [256]林仕梅,麦康森,谭北平.菜粕、棉粕替代豆粕对奥尼罗非鱼{Oreochromis niloticus×O. aureus)生长、体组成和免疫力的影响[J].海洋与湖沼,2007,38(2):168-173
    [257]罗琳,薛敏,吴秀峰.脱酚棉籽蛋白对日本鲈的生长、体成分及营养成分表观消化率的影响[J].水产学报,2005,29(6):866-870
    [258]解绶启,Jokumsen A.饲料中土豆蛋白替代鱼粉对虹鳟摄食率、消化率和生长的影响[J].水生生物学报,1999,23(2):127-133.
    [259]TUSCHE K, WUERTZ S, SUSENBETH A, et al. Feeding fish according to organic aquaculture guidelines EC 710/2009:Influence of potato protein concentrates containing various glycoalkaloid levels on health status and growth performance of rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture,2011,319:122-131.
    [260]华雪铭,王军,韩斌,等.玉米蛋白粉在水产饲料中应用的研究进展[J].水产学报,2011,35(4):627-635.
    [261]RUMSEY G L, HUGHES S G, KINSELLA L. Use of dietary yeast Saccharomyces cerevisiae nitrogen by lake trout [J]. J World Aquacult Soc,1990,21:205-209.
    [262]MAMBRINI M, ROEM A J, CRAVEDI J P, et al. Effects of replacing fish meal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss [J]. J. Anim. Sci, 1999,77:2990-2999
    [263]REFSTIE S, SAHLSTROM S, BRATHEN E, et al. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar) [J]. Aquaculture,2005,246,331-345.
    [264]REFSTIE S, HELLAND SV, STOREBAKKEN T. Adaptation to soybean meal in diets for rainbow trout, Oncorhyrwhus mrkwss [J]. Aquaculture,1997,153:263-272.
    [265]REFSTIE S, STOREBAKKEN T, ROEM A J. Feed consumption and conversion in Atlantic salmon(Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soy antigens [J]. Aquaculture,1998,162,301-312.
    [266]FRANCIS G, MAKKAR H P S, BECKER K. Anti-nutritional factors presenting plant-derived alternate fish feed ingredients and their effects in fish [J]. Aquaculture,2001, 199:197-227.
    [267]MEDALE F, BOUJARD T, VALLEE F, et al. Voluntary feed intake, nitrogen and phosphorus losses in rainbow trout(Oncorhynchus mykiss)fed increasing dietary levels of soy protein concentrate [J]. Aquat.Living.Resource,1998,11,239-246.
    [268]TUSCHE K, BERENDS K, WUERTZ S, et al. Evaluation of feed attractants in potato protein concentrate based diets for rainbow trout(Oncorhynchus mykiss) [J]. Aquaculture, 2011,321:54-60.
    [269]HUGHES, S.G. Single-feeding response of chinook salmon fry to potential feed intake modifiers [J]. Prog. Fish-Cult,1985,55,40-42.
    [270]KAUSHIK S J, CRAVEDI J P, LALLES J P, et al. Partial or total replacement of fishmeal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolaemia and flesh quality in rainbow trout, Onchorhynchus mykiss [J]. Aquaculture, 1995,133:257-274.
    [271]DAVIES S J, MORRIS P C. Influence of multiple amino acid supplementation on the performance of rainbow trout, Oncorhynchus mykiss (Walbaum), fed soya based diets [J]. Aquaculture Research,1997,28,65-74.
    [272]YAMAMOTO, T., SHIMA, T., FURUITA, H., et al. Influence of feeding diets with and without fish meal by hand and by self-feeders on feed intake, growth and nutrient utilization of juvenile rainbow trout(Oncorhynchus mykiss) [J]. Aquaculture,2002,214,289-305.
    [273]FOWLER LG. Poultry by-product meal as a dietary protein source in fall chinook salmon diets [J]. Aquaculture,1991,99:309-321.
    [274]WU, Y.V., TUDOR, K.W., BROWN, P.B., et al. Substitution of plant proteins or meat and bone meal for fish meal in diets of Nile tilapia [J]. N. Am. J. Aquac.1999,61,58-63.
    [275]MILLAMENA O M.Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides [J]. Aquaculture,2002,204:75-84.
    [276]ALBREKTSEN, S., MUNDHEIM, H., AKSNES, A. Growth, feed efficiency, digestibility and nutrient distribution in Atlantic cod(Gadus morhua) fed two different fish meal qualities at three dietary levels of vegetable protein sources [J]. Aquaculture 2006,261, 626-640.
    [277]KAUSHIK, S.J., COVES, D., DUTTO, G., et al. Almost total replacement of fishmeal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax [J]. Aquaculture 230,2004,391-404.
    [278]GOMEZ-REQUENI, P., MINGARRO, M., CALDUCH-GINER, J.A, et al. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream(Sparus aurata) [J]. Aquaculture,2004,232,493-510.
    [279]WEBSTER, C.D., THOMPSON, K.R., MORGAN, A.M., et al. Use of hempseed meal, poultry by-product meal, and canola meal in practical diets without fish meal for sunshine bass Morone chrysops× M.saxatilis [J].Aquaculture,2000,188,299-309.
    [280]徐奇友,李婵,杨萍,等.用大豆分离蛋白和肉骨粉代替鱼粉对虹鳟生产性能和非特异性免疫指标的影响[J].大连水产学院学报,2008,23(1):8-12
    [281]ABDEL-WARITH, A.A., RUSSELL, P.M., DA VIES, S.J. Inclusion of a commercial poultry by-product meal as a protein replacement of fish meal in practical diets for African catfish Clarias gariepinus (Burchell 1822) [J]. Aquac. Res.2001,32,296-305.
    [282]BUREAU, D.P., HARRIS, A.M., CHO, C.Y. Apparent digestibility of rendered animal protein ingredients for rainbowtrout (Oncorhynchus mykiss) [J]. Aquaculture,1999,180, 345-358.
    [283]BUREAU, D.P., HARRIS, A.M., BEVAN, D.J., et al. Feather meals and meat and bone meals from different origins as protein sources in rainbow trout(Oncorhynchus mykiss) diets [J]. Aquaculture,2000,181,281-291.
    [284]李会涛,麦康森,艾庆辉,等.大黄鱼对儿种饲料蛋白原料消化率的研究[J].水生生物学报,2007,31(3):370-376.
    [285]MEEKER, D.L.动物蛋白及油脂产品加工及使用[M].2006.第二版.美国动物蛋白及油脂提炼协会.p140.
    [286]STEFFENS W. Replacement of fish meal with poultry byproduct meal in diets for rainbow trout, Onchorynchus mykiss [J]. Aquaculture,1994,124:27-34.
    [287]SOLTAN, M.A., HANAFY. M.A., WAFA, M.I.A. An Evaluation of Fermented Silage Made from Fish By-Products as a Feed Ingredient for African Catfish(Clarias gariepinus) [J]. Global Veterinaria 2008,2 (2):80-86.
    [288]苑艳辉.水产品下脚料综合利用研究之进展[J].水产科技情报,2004,31(1):44-48.
    [289]HARDY, R.W., SHEARER, K.D., STONE, F.E. et al. Fish silage in aquaculture diets [J]. J. World Maricult. Soc.1983,14:695-703.
    [290]王敦,张强,翟少伟.昆虫源蛋白质、壳聚糖、脂肪酸在动物营养和饲料中的应用研究与前景[J].西北林学院学报,2006,21(4):135-138
    [291]KIKUCHI, K., TOMONORI, S., TAKESHI, F., et al. Use of meat and bone meal as a protein source in the diet of juvenile Japanese flounder [J]. Fisheries Sci.1997,63,29-38.
    [292]ALLAN, G.L., AND S.J. ROWLAND. Performance and sensory evaluation of silver perch Bidyanus bidyanus (Mitchell) fed soybean or meat meal-based diets in earthen ponds [J]. Aquaculture Research,2005,36,1322-1332.
    [293]周文豪,饶辉,郭庆.肉骨粉替代鱼粉在鲤鱼饲料中应用的效果[J].江西饲料,2003,(1):22-24.
    [294]SHAPAWI, R., NG, W.K., MUSTAFA, S. Replacement of fish meal with poultry by- product meal in diets formulated for the humpback grouper, Cromileptes altivelis [J]. Aquaculture 2007,273,118-126.
    [295]YANG, Y., XIE, S.Q., CUI, Y.B., et al. Partial and total replacement of fishmeal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio (Bloch) [J]. Aquac. Res.2006,37,40-48.
    [296]MCGOOGAN, B.B, REIGH R.C. Apparent digestibility of selected ingredients in red drum (Sciaenops ocellatus) diets [J]. Aquaculture,1996,141:233-244.
    [297]CHO, C.Y., S.J. SLINGER, BAYLEY H.S. Bioenergetics of salmonid fishes:energy intake, expenditure and productivity [J]. Comparative Biochemistry physiology,1982,73B:25-41
    [298]TIBBETTS, S.M., MILLEY, J.E., LALL, S.P. Apparent protein and energy digestibility of common and alternative feed ingredients by Atlantic cod, Gadus morhua (Linnaeus,1758) [J]. Aquaculture,2006,261,1314-1327
    [299]AI Q.H, MAI K.S, TAN B.P, et al. Replacement of fish meal by meat and bone meal in diets for large yellow croaker, Pseudosciaena crocea [J]. Aquaculture,2006,260,255-263.
    [300]SUBHADRA B., LOCHMANN, R., RAWLES, S., et al. Effect of fish-meal replacement with poultry by-product meal on the growth, tissue composition and hematological parameters of largemouth bass (Micropterus salmoides) fed diets containing different lipids [J]. Aquaculture,2006,260,221-231
    [301]CRUZ-SUAREZ, L.E., NIETO-LOPEZ, M., GUAJARDO-BARBOSA, C., et al. Replacement of fish meal with poultry byproduct meal in practical diets for Litopenaeus vannamei, and digestibility of the tested ingredients and diets [J]. Aquaculture 2007,272, 466-476.
    [302]MOHSON, A.A., LOVELL, R.T. Partial substitution of soybean meal with animal protein sourees in diets for channel catfish [J]. Aquaculture,1990,90:303-311
    [303]WATANABE T, PONGMANEERAT J, SATO S, et al. Replacement of fish meal by alternative protein sources in rainbow trout diets [J]. Bull Jap Soc.Sci.Fish,1993,59, 1573-1579.
    [304]WU, Y.V., TUDOR, K.W., BROWN, P.B., et al. Substitution of plant proteins or meat and bone meal for fish meal in diets of Nile tilapia [J]. N. Am. J. Aquac.1999,61,58-63.
    [305]WANG, X., PARSONS, C.M. Effect of raw material source, processing systems, and processing temperatures on amino acid digestibility of meat and bone meals [J]. Poultry Science,1998,77:834-841.
    [306]JOHNSON, M.L., AND C.M. PARSONS. Effects of raw material source, ash content, and assay length on protein efficiency ratio and net protein ratio values for animal protein meals [J]. Poult. Sci.1997,76:1722-1727.
    [307]WATANABE, T., PONGMANEERAT, J. Quality evaluation of some animal protein sources for rainbow trout Oncorhynchus mykiss [J]. Nipon Suisan Gakkaishi 1991,57,495-501.
    [308]SADIKU S. O. E., JAUNCEY K. Digestibility, apparent amino acid Availability and waste generation potential of soybean flour-poultry meat meal blend diets for the Sharp-Toothed Catfish, Clarias gariepinus, Fingerlings [J]. Journal of Applied Aquaculture,1998,8:69-75
    [309]YANG, Y., XIE, S.Q., LEI, W., et al. Effect of replacement of fish meal by meat and bone meal and poultry by-product meal in diets on the growth and immune response of Macrobrachium nipponense [J].Fish Shellfish Immunol,2004,17,105-114.
    [310]ESPE, M., SVEIER, H., H(?)G(?)Y, I., et al. Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate [J]. Aquaculture 1999,174,119-137.
    [311]FASAKIN, E.A., SERWATA, R.D., DAVIES, S.J. Comparative utilization of rendered animal derived products with or without composite mixture of soybean meal in hybrid tilapia (Oreochromis niloticus×Oreochromis mossambicus) diets [J]. Aquaculture,2005,249, 329-338.
    [312]MCGOOGAN B.B., GATLIN III D.M. Effects of replacing fish meal with soybean meal in diets for Red Drum Sciaenops ocellatus and potential for palatability enhancement [J]. Journal of the World Aquaculture Society,1997,28,374-385
    [313]TAKAGI, S., MURATA, H., GOTO, T., et al. Taurine is an essential nutrient for yellowtail Seriola quinqueradiata fed non-fish meal diets based on soy protein concentrate [J]. Aquaculture,2008,280,198-205.
    [314]CHENG, Z.J., K.C. BEHNKE, AND W.G. DOMINY. Effect of feather meal on growth and body composition of the juvenile Pacific White shrimp, Litopenaeus Vannamei [J].Journal of Applied Aquaculture,2002,12(1):57-68.
    [315]MENDOZA, R., DEDIOS, A., VAZQUEZ, C., et al. Fish meal replacement with feather enzymatic hydrolyzates co-extruded with soyabean meal in practical diets for the Pacific white shrimp(Litopenaeus vannamei) [J]. Aquaculture Nutrition.7,143-151.
    [316]WALTON M J, COWEY C B, ADRON J W. Methionine metabolism in rainbow trout fed diets of differing methionine and cystine content [J]. J Nutr,1982,112,1525-1535
    [317]CARTER C G, HAULER R C. Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L [J]. Aquaculture,2000,185,299-311.
    [318]庄平,宋超,章龙珍.舌虾虎鱼肌肉营养成分与品质的评价[J].水产学报,2010,34(4):559-564.
    [319]AOAC,1995. Official Methods of Analysis of Official Analytical Chemists International, 16th edn. Association of Official Analytical Chemists, Arlington, VA.
    [320]WILSON RP, HARDING DE, GARLING DL JR. Effect of dietary pH on amino acid utilization and the lysine requirement of fingerling channel catfish [J].J. Nutr.,1977,107, 166-170.
    [321]庄平,宋超,章龙珍,等.黄斑篮子鱼肌肉营养成分与品质的评价[J].水产学报,2008,32(1):77-83.
    [322]FUENTES, A., FERNANDEZ-SEGOVIA I., SERRA, J.A., et al. Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality [J]. Food Chemistry,2010,119,1514-1518.
    [323]SANT'ANA L.S., DUCATTI C., RAMIRES D.G. Seasonal variations in chemical composition and stable isotopes of farmed and wild Brazilian freshwater fish [J].Food Chemistry,2010,122,74-77.
    [324]NAKAMURA Y.N., ANDO M., SEOKA M., et al. Changes of proximate and fatty acid compositions of the dorsal and ventral ordinary muscles of the full-cycle cultured Pacific bluefin tuna Thunnus orientalis with the growth [J]. Food Chemistry,2007,103,234-241
    [325]KAYA, Y., ERDEM, M.E. Seasonal comparison of wild and farmed brown trout (Salmo trutta forma fario L.,1758):crude lipid, gonadosomatic index and fatty acids [J]. Int. J. Food Sci. Nutr,2009,60,413-423.
    [326]VIDAL, N.P., MANZANOS, M.J., GOICOECHEA, E. et al. Quality of farmed and wild sea bass lipids studied by H NMR: Usefulness of this technique for differentiation on a qualitative and a quantitative basis [J]. Food Chemistry,2012,135,1583-1591.
    [327]HAARD, N. F. Control of chemical composition and quality attributes of cultured fish [J]. Food Research International,1992,25,289-307.
    [328]COX, D.H., KARAHADIAN, C. Evaluation of microbial counts, nucleotide degradation, and sensory attributes of cultured and wild yellow perch(Perca flavescens) during refrigerated storage [J]. Journal of Aquatic and Food Production Technology,1998,7,5-26.
    [329]FAO/WHO. Energy and protein requirements. Technical Report Series No.522.WHO, Geneva, Switzerland.1973.
    [330]JIANG J.F., HAN X.Q., FU Z.R., et al. Comparative Analysis of the Main Nutritional Components in Muscle and Skin of Male and Female Silurus asotus [J]. Journal of Jimei University (Natural Science),2012,17,6-12.
    [331]TAO N.P., WANG L.Y., GONG X., et al. Comparison of nutritional composition of farmed pufferfish muscles among Fugu obscurus, Fugu flavidus and Fugu rubripes [J]. J. Food Compos. Anal,2012,28,40-45.
    [332]GOMES, H.M., ROSA, E. Free amino acid composition in primary and secondary inflorescences of 11 broccoli (Brassica oleraceavar italica) cultivars and its variation between growing seasons [J]. J. Sci. Food Agric,2000,295-299.
    [333]SILVERSAND C, NORBERG B, HAUX C. Fatty-acid composition of ovulated eggs from wild and cultured turbot, Scophthalmus maximus in relation to yolk and oil globule lipids [J]. Marine Biology,1996,125,269-278.
    [334]HARREL R M, WOODS L C. Comparative fatty acid composition of eggs from domesticated and wild striped bass, Morone saxatilis [J]. Aquaculture,1995,133,225-233.
    [335]GAO, J., KOSHIO, S., NGUYEN, B., et al. Comparative studies on lipid profiles and amino acid composition of wild and cultured Dojo loach Misgurnus anguillicaudatus obtained from southern Japan [J]. Fish Sci,2012,78:1331-1336
    [336]KOIZUMI, K., HIRATSUKA, S. Fatty acid compositions in muscles of wild and cultured ocellate puffer Takifugu rubripes [J]. Fish Sci,2009,75,1323-1328.
    [337]ACKMAN RG, TAKEUCHI T. Comparison of fatty acid and lipids of smolting hatchery fed and wild Atlantic salmon(Salmo salar) [J].Lipids,1986; 21,117-120.
    [338]BLANCHET, C., LUCAS, M., JULIEN, P., et al. Fatty acid composition of wild and farmed Atlantic salmon(Salmo salar) and rainbow trout(Oncorhynchus mykiss) [J]. Lipids,2005, 40,529-531.
    [339]VALFRE, F., CAPRINO, F. & TURCHINI, G.M. The health benefit of seafood [J]. Vet. Res. Commun,2003,27,507-512.
    [340]KIM, L.O, LEE, S.M. Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish, Pseudobagrus fulvidraco [J].Aquaculture,2005,243,323-329.
    [341]MEYER G, FRACALOSSI D.M. Protein requirement of jundia fingerlings, Rhamdia quelen, at two dietary energy concentrations [J]. Aquaculture,2004,240,331-343.
    [342]周兴华,王友慧,郑曙明,等.饲料蛋白质和能量水平对齐口裂腹鱼生长、体组成和蛋白质利用的影响[J].水生生物学报,2007,31(3):431-436.
    [343]孙丽,郭贵良,闫先春,等.东北六须鲶对蛋白质的最适需求量[J].饲料工业,2009,30(12):33-35.
    [344]吴建开,朱邦科,雍文岳,等.黄颡鱼幼鱼对蛋白质和能量的需要量.中国畜牧兽医学会动物营养学分会----第九届学术研讨会论文集,2004,p257.
    [345]蒋蓉,宋学宏,叶元土,等.黄颡鱼饲料中适宜的蛋白质含量和能量蛋白比[J].大连水产学院学报,2004,19(4):252-257.
    [346]ADRIAN E, SHIM K F. Growth response of juvenile Barbodes altus fed isocaloric diets with variable protein levels [J]. Aquaculture,1997,158,321-329
    [347]SHIMENO, S, SHIKATA, T. Regulation of carbohydrate metabolism in fish.13. Seasonal changes in carbohydrate-metabolizing enzyme activity and lipid content of carp reared outdoors [J]. Nippon Suisan Gakkaishi,1993,59,653-659.
    [348]PRATHER, E.E., LOVELL, R.T. Response of intensively fed channel catfish to diets containing various protein-energy ratio. Proc. Anm. Conf. Southeast. Assoc. Game Fish Comm.,1973,27,455-459.
    [349]REIS L.M., REUTEBUCH E.M., LOVELL R.T. Protein-to energy ratios in production diets and growth, feed conversion and body composition of channel catfish [J]. Aquaculture 1989, 76,1-7.
    [350]YUAN, Y C., GONG, S Y., LUO, Z., et al. Effects of dietary protein to energy ratios on growth and body composition of juvenile Myxocyprinus asiaticus [J]. Aquac. Nutr.,2010,16; 205-212
    [351]SALHI, M., BESSONART, M., CHEDIAK, G., et al. Growth, feed utilisation and body composition of black catfish, Rhamdia quelen fry fed diets containing different protein and energy levels [J]. Aquaculture,2004,231,435-444.
    [352]DE SILVA, S.S., GUNASEKERA, R.M., COLLINS, R.A., INGRAM, B.A.,2002. Performance of juvenile Murray cod, Maccullochella peelii peelii (Mitchell), fed with diets of different protein to energy ratio [J]. Aquac. Nutr.8,79-85.
    [353]BALLESTRAZZI, R., LANARI, D., DAGARO, E. et al. The dietary effect of protein level and source on growth, body composition, total ammonia and reactive phosphate excretion og growing seabass(Dicentrarchus labrax) [J]. Aquaculture,1994,127,197-206.
    [354]刘永坚,刘栋辉,田丽霞,等.饲料蛋白质和能量水平对红姑鱼生长和鱼体组成的影响[J].水产学报,2002,26(3):242-246.
    [355]叶元土.2004.水产动物的营养与饲料研究评价指标体系[J].饲料广角,20:19-21
    [356]LANARI D., POLI B.M., BALLESTRAZZI R., et al. The effects of dietary fat and NFE levels on growing European seabass. Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency [J]. Aquaculture 1999,179,351-364.
    [357]CAO J M, CHEN Y, ZHU X, et al. A study on dietary L-lysine requirement of juvenile yellow catfish Pelteobagrus fulvidraco [J]. Aquac Nutr,2012,18(1):35-45.
    [358]ZHOU, X.J., XIE, S.Q., XIE, C.X., et al. The utilization and requirement of dietary lysine for juvenile gibel carp [J]. Acta Hydrobiologica Sinica,2006,30,247-255.
    [359]ZHOU, Q.C., WU, Z.H., CHI, S.Y., et al. Dietary lysine requirement for juvenile cobia (Rachycentron canadum) [J]. Aquaculture,2007,273,634-640.
    [360]MARCOULI, P.A., ALEXIS, M.N., ANDRIOPOULOU A. Dietary lysine requirement of juvenile gilthead seabream Sparus aurata L [J]. Aquac Nutr,2006 12; 25-33.
    [361]LUO, Z., LIU, Y.J., MAI, K.S., et al. Quantitative L-lysine requirement of juvenile grouper Epinephelus coioides [J]. Aquac. Nutr.2006,12,165-172.
    [362]RUCHIMAT, T., MASUMOTO, T., HOSOKAWA, H., et al. Quantitative lysine requirement of yellowtail (Seriola quinqueradiata) [J]. Aquaculture,1997,158,331-339.
    [363]TANTIKITTI, C., CHIMSUNG, N. Dietary lysine requirement of freshwater catfish(Mystus nemurus Cuv. & Val.) [J]. Aquac. Res.2001,32,135-141.
    [364]YANG, S.D., LIU, F.G., LIOU C.H. Assessment of dietary lysine requirement for silver perch (Bidyanus bidyanus) juveniles [J]. Aquaculture,2011,312,102-108
    [365]严全根,解绶启,雷武,等.许氏平触幼鱼的赖氨酸需求量[J].水生生物学报,2006,30(4):459-465.
    [366]WANG, S., LIU, Y.J., TIAN, L.X., et al. Quantitative dietary lysine requirement of juvenile grass carp Ctenopharyngodon idella [J]. Aquaculture,2005,249,419-429.
    [367]解绶启,贺锡勤,杨云霞.长吻鮠幼鱼的赖氨酸需要量[J].水生生物学报,1997,21(1):1-7.
    [368]FAGBENRO, O.A., BALOGUN, A.M., FASAKIN, E.A, et al. Dietary lysine requirement of the African catfish, Clarias gariepinus [J]. J. Appl. Aquac,1998,8,71-77.
    [369]PERES, H., OLIVA-TELES A. Lysine requirement and efficiency of lysine utilization in turbot (Scophthalmus maximus) juveniles [J]. Aquaculture,2008,275,283-290
    [370]ZHOU, X.Q., ZHAO, C.R., JIANG, J., et al. Dietary lysine requirement of juvenile Jian carp (Cyprinus carpio var. Jian) [J].Aquac. Nutr.2008 14,381-386
    [371]DENG, D.F., DOMINY, W., JU, Z.Y., et al. Dietary lysine requirement of juvenile Pacific threadfin [Polydactylus sexfilis) [J]. Aquaculture,2010,308,44-48
    [372]BICUDO, A.J.A., SADO, R.Y., CYRINO, J.E.P. Dietary lysine requirement of juvenile pacu Piaractusmesopotamicus (Holmberg,1887) [J]. Aquaculture,2009,297,151-156.
    [373]ZHOU, F., SHAO, J., XU, R., et al. Quantitative L-lysine requirement of juvenile black sea bream (Spaus macrocephalus) [J]. Aquac. Nutr.2010 16; 194-204
    [374]GRISDALE-HELLAND, B., HATLEN, B., MUNDHEIM H., Dietary lysine requirement and efficiency of lysine utilization for growth of Atlantic cod [J]. Aquaculture,2011,315, 260-268
    [375]FAGBENRO O.A., BALOGUN A.M, FASAKIN E.A. Dietary methionine requirement of the African catfish, Clarias gariepinus [J]. Journal of Applied Aquaculture,1998,8,47-54.
    [376]RAVI, J., DEVARAJ, K. V. Quantitative essential amino acid requirements for growth of catla, Catla catla (Hamilton) [J].Aquaculture,1991,96,281-291
    [377]HIDALGO, F., ALLIOT, E., THEBAULT, H.,1987. Methionine-and cystinesupplemented diets for juvenile sea bass (Dicentrarchus labrax) [J]. Aquaculture 64,209-217.
    [378]YAN Q, XIE S Q, ZHU X, et al. Dietary methionine requirement for juvenile rockfish, Sebastes schegelc [J]. Aquac. Nutr,2007,13,163-169.
    [379]RUCHIMAT, T, MASUMOTO, T, HOSOKAWA, H, et al. Quantitative methionine requirement of yellowtail (Seriola quinqueradiata) [J]. Aquaculture,1997,150,113-122.
    [380]ALAM, M, TESHIMA, S, ISHIKAWA, M., et al. Methionine requirement of juvenile Japanese flounder Paralichthys olivaceus by the oxidation of radioactive methionine [J]. Aquac. Nutr,2001,7:201-209
    [381]BORLONGAN, I.G, COLOSO, R.M. Requirements of juvenile milkfish (Chanos chanos Forsskal) for essential amino acids [J]. J. Nutr.,1993,123:125-132
    [382]KHAN, M. A, JAFRI, A. K. Quantitative dietary requirement for some indispensable amino acids in the Indian major carp, Labeo rohita (Hamilton) fingerling [J]. J. Aquacult. Trop, 1993,8:67-80
    [383]KIM, K. I., KAYES, T. B, AMUNDSON, C. H. Requirements for sulphur amino acids and utilization of D-methionine by rainbow trout (Oncorhynus mykiss) [J]. Aquaculture,1992, 101,95-103
    [384]HARDING, D.E., ALLEN, JR. O.W., WILSON A.P. Sulfur Amino Acid Requirement of Channel Catfish:L-Methionine and L-Cystine [J]. J. Nutr.,1977,107:2031-2035.
    [385]TWIBELL R.G., WILSON K.A, BROWN P.B. Dietary sulphur amino acid requirement of juvenile yellow perch fed the maximum cystine replacement value for methionine [J]. J. Nutr.,2000,130:612-616.
    [386]MOON, H.Y., GATLIN Ⅲ, D.M. Total sulfur amino acid requirement of juvenile red drum, Sciaenops ocellatus [J]. Aquaculture,1991,95,97-106.
    [387]GOFF, J.B., GATLIN III, D.M. Evaluation of different sulfur amino acid compounds in the diet of red drum, Sciaenops ocellatus, and sparing value of cystein for methionine [J]. Aquaculture 2004,241,465-477.
    [388]COLOSO R.M, MURILLO-GURREA D.P, BORLONGAN I.G, et al. Sulphur amino acid requirement of juvenile Asian sea bass Lates calcarifer [J]. J. Appl. Ichthyol,1999,15, 54-58.
    [389]GRIFFIN, M.E., WHITE, M.R., BROWN, P.B. Total sulfur amino acid requirement and cystein replacement value for juvenile hybrid striped bass (M. chrysops×M. saxatilis) [J]. Comp. Biochem. Physiol.1994,108A,423-429.
    [390]SIMMONS L, MOCCIA R D, BUREAU D P. Dietary methionine requirement of juvenile Arctic charr Salvelinus alpinus (L) [J]. AquaC Nutr,1999.5:93-110
    [391]周贤君.异育银鲫对晶体赖氨酸和蛋氨酸的利用及需要量研究.[硕士学位论文].武汉:华中农业大学,2005
    [392]KAUSHIK S J, LUQUET P. Influence of bacterial protein incorporation and of sulphur amino acid supplementation to such diets on growth of rainbow trout(Salmo gairdneri R.) [J]. Comp Biochem Physiol,1980,73B:17-24
    [393]RONNESTAD I, CONCEICAO L E C, ARAGAO C, et al. Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval Senegal sole (Solea senegalensis)[J ].Nutrition,2000,130:2809-2812.
    [394]林仕梅,麦康森,谭北平.实用饲料中添加结晶蛋氨酸对罗非鱼生长、体组成的影响[J].水生生物学报,2008,32,742-749.
    [395]ESPE M, HEVROY E M., LIASET B., et al. Methionine intake affect hepatic sulphur metabolism in Atlantic salmon, Salmo salar [J]. Aquaculture,2008,274(1):132-141.
    [396]Al, Q.H, XIE, X.J. Effects of replacement of fish meal by soybean meal and supplementation of methionine in fish meal/soybean meal-based diets on growth performance of the Southern catfish Silurusm eridionalis [J]. J.World Aquac.Society,2005,36 (4):498-507.
    [397]CHOU, R.L., HER, B.Y., SU, M. S, et al. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum [J]. Aquaculture,2004,229:325-333.
    [398]WANG, Y., KONG, L.J., LI, C., et al. Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum (Nibea miichthioides) [J]. Aquaculture,2006,261,1307-1313.
    [399]OLLI, J.J., KROGDHL, A., VABENO, A. Dehulled solvent extracted soybean meal as a protein source in diets for Atlantic salmon Salmo salar L [J]. Aquac.Res,1995,26,167-174.
    [400]VENOU, B., ALEXIS, M.N., FOUNTOULAKI, E., et al. Effects of extrusion and inclusion level of soybean meal on diet digestibility, performance and nutrient utilization of gilthead sea bream (Spaus aurata) [J]. Aquaculture,2006,261,343-356.
    [401]TOMAS, A., DE LA GANDARA, F., GARCIA-GOMEZ, A., et al. Utilization of soybean meal as an alternative protein source in the Mediterranean yellowtail, Seriola dumerili [J]. Aquae. Nutr.2005,11,333-340.
    [402]LIM, S.R., CHOI, S.M., WANG, X.J et al. Effects of dehulled soybean meal as a fish meal replacer in diets for fingerling and growing Korean rockfish Sebastes schlegeli [J]. Aquaculture,2004,231,457-468.
    [403]KIKUCHI K. Use of defatted soybean meal as a substitute for fish meal in diets of Japanese flounder (Paralichthys olivaceus) [J]. Aquaculture,1999,179:3-11.
    [404]HERNANDEZ, M.D., MARTINEZ, F.J., JOVER, M, et al. Effects of partial replacement of fish meal by soybean meal in sharpsnout seabream (Diplodus puntazzo) diet [J].Aquaculture, 2007,263,159-167.
    [405]KHAN, M.A., JAFRI, A.K., CHADHA, N.K. et al. Growth and body composition of rohu (Labeo rohita) fed diets containing oilseed meals:partial or total replacement of fish meal with soybean meal [J]. Aquac.Nutr,2003,9,391-396.
    [406]WEBSTER, C.D, GOODGAME-TIU, L.S, TIDWELL, J.H. Total replacement fish meal by soybean meal, with various percentages of supplemental L-methionine, in fish diets for blue catfish, Ictalurus furcatus (Leseur) [J]. Aquac.Res.1995,26,299-306
    [407]WEBSTER, C. D., YANCEY, D. H., TIDEWELL, J. H. Effect of partially or totally replacing fish meal with soybean meal on growth of blue catfish (Ictalurus furcatus) [J]. Aquaculture,1992,103:141-152.
    [408]MOHSEN, A.A., LOVELL, R.T. Partial substitution of soybean meal with animal protein sources in diets for channel catfish [J]. Aquaculture,1990,90:303-311.
    [409]OPSTVEDT, J., AKSNES, A., HOPE, B., et al. Efficiency of feed utilization in Atlantic salmon (Salmo salar L.) fed diets with increasing substitution of fish meal with vegetable proteins [J]. Aquaculture,2003,221,365-379.
    [410]MUNDHEIM, H., AKSNES, A., HOPE, B. Growth, feed efficiency and digestibility in salmon (Salmo salar L.) fed different dietary proportions of vegetable protein sources in combination with two fish meal qualities [J]. Aquaculture,2004,237,315-331.
    [411]BONALDO, A., ROEM, A.J, PECCHINI, A, et al. Influence of dietary Soybean meal levels on growth, feed utilization and gut histology of Egyptian sole (Solea aegyptiaca) juveniles [J]. Aquaculture,2006,261:580-586
    [412]GALLAGHER, M. L. The use of soybean meal as a replacement for fish meal in diets for hybrid striped bass (Morone Saxatilis xM chrysops) [J]. Aquaculture,1994,126:119-127.
    [413]SCHUHMACHER, A., WAX, C., GROPP, J. Plasma amino acids in rainbow trout (Oncorhynchus mykiss) fed intact protein or a crystalline amino acid diet [J]. Aquaculture 1997,151,15-28.
    [414]SEGOVIA-QUINTERO, M.A, REIGH, R.C. Coating crystalline methionine with tripalmitin-polyvinyl alcohol slows its absorption in the intestine of Nile tilapia, Oreochromis niloticus [J]. Aquaculture,2004,238:355-367.
    [415]LANGAR, H., GUILLAUME, J., METAILLER, R et al. Augmentation of protein synthesis and degradation by poor dietary amino acid balance in European sea bass (Dicentrarchus labrax) [J]. J. Nutr.1993,123,1754-1761.
    [416]REFSTIE S, KORSOEN O, STOREBAKKEN T, et al. Differing nutritional responses to dietary soybean meal in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar [J]. Aquaculture,2000,190,45-63.
    [417]STOREBAKKEN, T., SHEARER, K.D., ROEM, A.J. Availability of protein, phosphorus and other elements in fish meal, soy protein concentrate and phytase treated soy protein concentrate based diets to Altantic salmon, Salmo salar [J]. Aquaculture,1998,161,365-379.
    [418]ZEITLER, M.H., KIRCHGESSNER, M., SCHWARZ, F.J. Effects of different protein and energy supplies on carcass composition of carp (Cyprinus carpio L.) [J]. Aquaculture 1984, 36,37-48.
    [419]PERES, H., LIM, C., KLESIUS, P.H. Nutritional value of heat-treated soybean meal for channel catfish (Ictalurus punctatus) [J]. Aquaculture,2003,225,67-82.
    [420]OLIVA-TELES, A., GOUVEIA, A., GOMES, E., et al. The effect of different processing treatment on soybean meal utilization by rainbow trout [J]. Aquaculture,1994,124,343-349.
    [421]ALARCON, F.L, GARCIA-CARRENO, NAVARRETE, D.A. Effects of plant protease inhibitors on digestive proteases in two fish species, Lutjanus argentiventris and L.novemfasciatus [J]. Fish Physiology and Biochmistry,2001,24:179-189.
    [422]STRUTHERS, B.J., MACDONALD, J.R., DAHLGREN, R.R., et al Effects on the monkey, pig, and rat pancreas of soy products with varying levels of trypsin inhibitor and comparison with the administration of cholecystokinin [J]. J. Nutr,1983,113:86-97.
    [423]姜光丽,周小秋.大豆分离蛋白对幼建鲤肝胰脏发育及消化道蛋白酶活力的影响[J].大连水产学院学报,2005,20(3):198-202
    [424]MILLIKIN, M.R. Qualitative and quantitative nutrient requirements of fish:a review [J].Fish. Bull,1982,80:655-686.
    [425]YOKOYAMA M, NAKAZOE J. Utilisation of methionine supplemented to diet in rainbow trout [J]. Nippon Suisan Gakkaishi,1992,58:1347-1349
    [426]林仕梅,麦康森,谭北平.实用饲料中添加结晶蛋氨酸对罗非鱼生长、体组成的影响[J].水生生物学报,2008,32(5):741-749
    [427]王桂芹,周洪琪,陈建明,等.饲料蛋白对翘嘴鲌氮排泄的影响[J].华南农业大学学报,2008,29(1): 92-96
    [428]VIOLA, S, MOKADY, S, RAPPAPORT, U, et al. Partial and complete replacement of fish meal by soybean meal in feeds for intensive culture of carp Cyprinus carpio [J], Aquaculture 1982,26,223-236.
    [429]CHENG, Z.J., HARDY, R.W., USRY, J.L. Plant protein in gredients with lysine supplementation reduce dietary protein level in rainbow trout diets, and reduce ammonia nitrogen and soluble phosphorus excretion [J]. Aquaculture,2003,218:553-565.
    [430]VIELMA, J., MAKINENJ, T., EKHOLM, P., et al. Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout Oncorhynchus mykiss and algal availability of phosphorus load [J]. Aquaculture,2000,183,349-362.
    [431]JAHAN, E., WATANABE, T., SATOH, S., et al. Formulation of law phosphorus loading diets for carp Cprinus carpio L [J]. Aquac. Res,2001,32 (Suppl),361-368.
    [432]SAJJADI, M., CARTER, C.G. Dietary phytase supplementation and the utilization of phosphorus by Atlantic salmon (Salmo salar L.) fed a canola-meal-based diet [J]. Aquac. Nutr,2004,240:417-431.
    [433]CAO, L., WANG, W.M., YANG, C.T., et al. Application of microbial phytase in fish feed [J]. Enzyme Microb. Technol.2007,40,497-507.
    [434]KOPRUCU, K., OZDEMIR,Y. Apparent digestibility of selected feed ingredients Nile tilapia (Oreochromis niloticus) [J]. Aquaculture,2005,250,308-316.
    [435]STOREBAKKEN, T., REFSTIE, S., RUYTER, B. Soy products as fat and protein source in fish feed for intensive aquaculture. In:Draekley, J.K.(Ed.) Soy in Nutritional Fed. Anim. Sci. Soc, Savy, IL, USA,2000, PP.127-170
    [436]LANARI, D., AGARO, E.D., TURRI, C. Use of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout Oncorhynchus mykiss [J]. Aquaculture,1998,161,345-356.
    [437]PONGMANEERAT J,.WATANABE T. Utilisation of soybean meal as protein source in diets for rainbow trout [J]. Nippon. Suisan. Gakkaishs,1992,58:1983-1990
    [438]STOREBAKKEN, T., SHEARER, K.D., ROEM, A.J.Growth, uptake and retention of nitrogen and phosphorus, and absorption of other minerals in Atlantic salmon Salmo salar fed diets with fish meal and soy-protein concentrate as the main sources of protein [J]. Aquac. Nutr.2000,6,103-108.