鸡外周免疫器官中淋巴细胞发育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外周免疫器官起源于中胚层,形成于胎儿晚期,主要包括脾脏、淋巴结和消化道、呼吸道和泌尿生殖道的淋巴小结等,是免疫活性细胞定居、增殖和对抗原刺激发生免疫应答的场所。外周免疫器官中淋巴细胞由中枢免疫器官迁移而来,经抗原刺激而分化增殖,继而产生免疫学功能。外周免疫器官作为产生免疫应答的重要场所,是反映动物机体健康状况的晴雨表,其组织结构与功能随着免疫应答而发生变化。哺乳动物出生后通过口服母乳不断获得母源抗体,而雏鸡出壳后,母源抗体获得相对有限。在出壳初期,雏鸡如何保护自身不受病原体的侵扰,外周免疫器官如何发育、功能是否完善、能否提供及时有效的免疫保护呢?这些已成为目前亟待解决的重要研究课题。
     本研究选择9、11、13、15、18、20日龄鸡胚及1、4、7、14、21、35、56日龄雏鸡,每个时期分别采集5只鸡(胚)的脾脏、盲肠及食管与腺胃结合处等部位,并制作冰冻切片。利用HE染色方法观察雏鸡不同生长发育阶段外周免疫器官组织发育过程和结构特征;利用免疫组化法结合计算机图像分析技术研究不同生长发育阶段T、B淋巴细胞及其亚群在外周免疫器官中的出现、迁移、组织定位、增殖等一系列发育过程;利用图像分析软件和数据统计软件分析不同生长阶段外周免疫器官中T、B淋巴细胞及其亚群的比例、动态变化规律及相互关系。
     研究结果表明:
     1、在组织结构方面,脾脏实质内的白髓与红髓在胚胎18日龄后明显可辨,4日龄雏鸡脾脏中形成明显可辨的动脉周围淋巴鞘和椭球周围淋巴鞘;盲肠基部T、B淋巴细胞在胚胎20日龄时开始出现,即初步形成盲肠扁桃体;食管与腺胃结合处在4日龄时形成明显的隐窝结构,即食管扁桃体初步形成;14日龄时,三种器官中首次出现生发中心;随着日龄的增长,外周免疫器官特征结构不断发育成熟,脾脏在21日龄时达到成熟水平,盲肠扁桃体和食管扁桃体在35日龄时达到成熟水平。
     2、在T、B淋巴细胞出现时间方面,脾脏中IgM~+和IgA~+细胞在胚胎15日龄时开始出现,IgG~+细胞、CD3~+和CD8~+T淋巴细胞在胚胎18日龄时出现,CD4~+细胞在胚胎20日龄时出现;盲肠扁桃体中CD3~+、CD8~+和IgM~+细胞在胚胎20日龄时开始出现,而CD4~+、IgG~+和IgA~+细胞均在雏鸡出壳后1日龄时出现;食管扁桃体中CD3~+、CD4~+、CD8~+、IgM~+和IgG~+细胞均在胚胎20日龄时开始出现,而IgA~+细胞则在雏鸡出壳后1日龄时出现。
     3、在T、B淋巴细胞数量变化方面,外周免疫器官中T、B淋巴细胞的数量随日龄增长,整体均呈上升趋势。脾脏在21日龄时达到稳定,食管扁桃体和盲肠扁桃体均在35日龄时达到稳定;脾脏中T淋巴细胞亚群以CD8~+细胞为主,B淋巴细胞则以IgG~+细胞为主,并在7日龄后数量超过CD3~+T淋巴细胞;盲肠扁桃体中T淋巴细胞亚群以CD8~+细胞为主,B淋巴细胞以IgM~+细胞为主,并在35日龄后数量超过CD3~+T淋巴细胞;21日龄后,食管扁桃体中B淋巴细胞以IgA~+细胞为主,数量超过CD3~+细胞,CD4~+细胞的数量多于CD8~+细胞。
     4、在T、B淋巴细胞组织定位方面,脾脏中CD3~+、CD4~+和CD8~+T淋巴细胞主要分布在动脉周围淋巴鞘中,而IgM~+、IgG~+和IgA~+细胞主要分布在椭球周围淋巴鞘和生发中心中;4~7日龄时,盲肠扁桃体中T淋巴细胞主要分布在粘膜固有层的中下部区域,而B淋巴细胞则主要分布在中上部区域,随后各日龄T、B淋巴细胞均匀地分布在粘膜固有层中;在食管扁桃体的T淋巴细胞聚集物中,CD4~+细胞紧密排列,主要占据中央部位,CD8~+细胞主要散布在外周,同时B淋巴细胞又环绕在整个T淋巴细胞聚集物的外周;B淋巴细胞聚集物主要为生发中心,其中存在大量IgM~+、IgG~+和IgA~+细胞,同时T淋巴细胞又环绕在整个B淋巴细胞聚集物的外周。
     5、外周免疫器官的组织结构发育和淋巴细胞发生之间存在密切的关系,淋巴细胞迁入淋巴器官刺激组织结构的发育成熟,同时成熟的组织结构又为淋巴细胞发育成熟并行使功能活动提供场所。外周免疫器官的组织结构和淋巴细胞发育在35日龄均达到成熟水平,这也表明雏鸡外周免疫器官的免疫功能在35日龄时达到成熟。
     通过对鸡外周免疫器官的组织结构发育和淋巴细胞的发生进行深入研究,从而了解到雏鸡在胚胎期以及出壳初期的免疫状态,这将为禽类分子免疫学、病理生理学增添了新的内容,并为雏鸡适时免疫、致病机理和疾病防治等研究提供必要的理论基础。
The peripheral immune organs are the place where immune competent cells ecize, proliferate and generate immune response including spleen, lymphoid nodes and lymphatic nodules of alimentary canals, respiratory tracts and genitourinary tracts. They originated from mesoderm and form at the advanced stage of fetus. Lymphocytes in peripheral immune organs immigrate from center immune organ. These lymphocytes can proliferate and generate immunological function stimulated by antigens. The peripheral immune organs are the important place that can generate immune response and their structure and function change alone with the immune response. So it is the barometer which reflects the health status of organism. Postnatal mammals can obtain maternal antibody through breast milk. But the quantity of maternal antibody in chickens out of crust is limited. How the chickens out of crust at early stage can be protected against pathogens, how the peripheral immune organs grow and whether its function is perfect to provide effective protection? All these have become the urgent study topics at present.
     In this study, chicken embryos of 9, 11, 13, 15, 18, 20 days and chickens of 1, 4, 7, 14, 21, 35, 56 days were choosed. Spleen, appendix and the conjunction of esophago and stomachus glandularis of 5 chickens in every stage are collected and made frozen sections. Then observe the development process and structural feature of peripheral immune organs in chickens of different development stage by HE staining method. The emergence, immigration, tissue allocation and proliferation of T, B lymphocytes and their subpopulation of different development stage in peripheral immune organs were studied by Immunohistochemistry combine with computer image analysis technique. The proportion, kinesis variation rule and interrelationship of T, B lymphocytes and subpopulation of different development stage in peripheral immune organs were analyzed by image analysis and data statistics software.
     The results of study show:
     1. White pulp and red pulp in parenchyma of spleen of embryo can be obviously discerned after 18 days. Periarterial lymphoid sheath and ellipsoid periarterial lymphoid sheath also can be obviously discerned in spleen of 4 days chicken. T, B lymphocytes in appendix basement of embryo emerge after 20 days. It is the initial shape of cecal tonsil. Crypt structure of conjunction of esophago and stomachus glandularis form obviously at 4 days. It is the initial shape of esophago tonsil. The germinal center firstly emerges in these three organs at 14 days. With the increase of day age, the characteristic structure peripheral immune organs gradually develop mature. Spleen achieve mature at 21 days and cecal tonsil at 35 days.
     2. IgM~+ and IgA~+ cells in spleen of embryo emerge at 15 days. IgG~+ cell, CD3~+ and CD8~+T lymphocytes of embryo emerge at 20 days. CD3~+, CD8~+ and IgM~+ cells in cecal tonsil of embryo emerge at 20 days. However CD4~+, IgG~+ and IgA~+ cells all emerge in 1 day age chicken out of crust. CD3~+, CD4~+, CD8~+, IgM~+ and IgG~+ cells in esophago tonsil of embryo all emerge at 20 days. However IgA~+ cells emerge in 1 day age chicken out of crust.
     3. The amount of T, B lymphocytes in peripheral immune organs increase follow with the increase of day age, and hold an upgrade tendency. The amount of T, B lymphocytes in spleen achieved stabilization at 21 days, and in tonsil of esophago and appendix at 35 days. CD8~+ cell is the main T lymphocyte subset in spleen, and B lymphocyte mainly is IgG~+ cell, moreover the amount of these B lymphocytes could exceed CD3~+ T lymphocyte subset after 7 days. CD8~+ cell is the main T lymphocyte subset in tonsil of appendix, and B lymphocyte is IgM~+ cell, and the amount could exceed CD3~+ T lymphocytes after 35 days. After 21 days, B lymphocytes in esophago tonsil are the main IgA~+ cells and the amount exceeds CD3~+ lymphocytes. The amount of CD4~+ lymphocytes is more than CD8+ lymphocytes.
     4. CD3~+、CD4~+ and CD8~+ T lymphocytes in spleen mainly distribute in periarterial lymphoid sheath. However IgM~+、IgG~+ and IgA~+ cells mainly distribute in ellipsoid periarterial lymphoid sheath and germinal center. T lymphocytes in appendix tonsil mainly distribute in middle and inferior part of mucous and the B lymphocytes mainly in middle and mucous between 4~7 days. Whereafter T, B lymphocytes equably distribute in mucous. CD4~+ cells arrange tightly and mainly occupy the central part in aggregates of T lymphocytes in esophago tonsil and CD8~+ lymphocytes mainly distribute in periphery. Meanwhile B lymphocytes encircle the periphery of aggregates of T lymphocytes. The aggregates of B lymphocytes is mainly the germinal center with lots of IgM~+、IgG~+ and IgA~+ cells. Meanwihle T lymphocytes encircle the periphery of aggregates of B lymphocytes.
     5. There is an intimate relationship between the development of tissue structure of peripheral immune organs and lymphcytopoiesis. The maturation of tissue structure is stimulated by the immigration of lymphocytes and the mature tissue structure provides place where lymphocytes grow mature and functionate. Tissue structure and the development of lymphocytes in peripheral immune organs achieve mature at 35 days. This also indicated the immune function of chicken peripheral immune organs achieve mature at 35days.
     The tests carry out a deepgoing study on development of tissue structure and lymphocytic generation of chicken peripheral immune organs. Thus investigate the immune status of chicken in embryo and at early stage out of crust. All these increase new content for molecular immunology and pathophysiology of fowl and provide necessary theory foundation for research in suitable immunization, pathogenic mechanism and prevention and cure of disease of chicken.
引文
[1]Olah I,Nagy N,Magyar A,et al.Esophageal tonsil:a novel gut-associated lymphoid organ[J].Poult Sci,2003,82(5):767~770.
    [2]阴天榜,刘兴友,王杨伟,等.家禽免疫学[M].中国农业科技出版社:1999,第一版.13~16.
    [3]王绍琛,刘迎春,高怀涛,等.鸡胚免疫器官组织学发育过程观察[J].中国兽医科技,2004,34(8):57~61.
    [4]王水莲,刘进辉,孙志良,等.不同时期鸡法氏囊与脾脏的组织学观察[J].湖南农业大学学报,2005,31(2):199~202.
    [5]王秀梅,徐晓静,韩毅.驯鹿主要周围免疫器官的组织学研究[J].内蒙古兽医.2002,5:6~8.
    [6]杨银凤,赵艳芳,王永胜,等.鸡胚脾脏的组织发生[J].内蒙古农业大学学报,2001,22(3):28~30.
    [7]吴建设,呙于明,杨汉春,等.日粮铜水平对肉仔鸡生长性能和免疫功能影响的研究[J].畜牧兽医学报,1999,30(5):414~420.
    [8]成令忠,钟翠平,蔡文琴.现代组织学[M].上海科学技术文献出版社:2003,第1版.652~658.
    [9]沈霞芬.家畜组织学与胚胎学[M].中国农业出版社:2001,第3版:156~157.
    [10]白雪源.黏膜免疫进展[J].国外医学-免疫学分册,1999,22(5):255~259.
    [11]Dmv P.The gut as a lymphoid orgen[J].Clin Gastroenterology,1986,5:211~228.
    [12]Husband A J.Novel vaccination strategies for the control of mucosal infection[J].Vaccine,1993,11(2):107~112.
    [13]Lillehoj H S,Trout J M.Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites[J].Clin Microbiol Rev,1996,9(3):349~360.
    [14]Mast J,Goddeeris B M.Development of immunocompetence of broiler chickens[J].Vet Immunol Immunopathol,1999,70(3-4):245~256.
    [15]Naqi S A,Cook J,Sahin N.Distribution of immunoglobulin-bearing cells in the gut-associated lymphoid tissues of the turkey:effect of oral treatment with intestinal microflora[J].Am J Vet Res,1984,45(10):2193~2195.
    [16]Muir W I,Bryden W L,Husband A J.Immunity,vaccination and the avian intestinal tract[J].Dev Comp Immnnol,2000,24(2-3):325~342.
    [17]Rothwell L,Gramzinski R A,Rose M E,et al.Avian coccidiosis:changes in intestinal lymphocyte populations associated with the development of immunity to Eimeria maxima[J].Parasite Immunol,1995,17(10):525~533.
    [18]Klipper E,Sklan D,Friedman A.Immune responses of chickens to dietary protein antigens.I.Induction of systemic and intestinal immune responses following oral administration of soluble proteins in the absence of adjuvant[J].Vet Immunol Immunopathol,2000,74(3-4):209~223.
    [19] Friedman A, Al-sabbagh A, Santos L M, et al. Oral tolerance: a biologically relevant pathway to generate peripheral tolerance against external and self antigens[J]. Chem Immunol, 1994, 58: 259-290.
    [20] Sayegh C E, Demaries S L, Pike K A, et al. The chicken B-cell receptor complex and its role in avian B-cell development[J]. Immunol Rev, 2000,175: 187-200.
    [21] Jeurissen S H, Van R D, Janse E M. Absorption of carbon from the yolk into gut-associated lymphoid tissues of chickens[J]. Dev Comp Immunol, 1991,15(4): 437-442.
    [22] Gallego M, Del C E, Bascuas J A. Antigen-binding cells in the cecal tonsil and Peyer's patches of the chicken after bovine serum albumin administration[J]. Poult Sci, 1995, 74(3): 472-479.
    [23] Olah I, Glick B, Taylor R L. Meckel's diverticulum. II. A novel lymphoepithelial organ in the chicken[J]. Anat Rec, 1984, 208(2): 253-263.
    [24] Katanbaf M N, Dunnington E A, Siegel P B. Allomorphic relationships from hatching to 56 days in parental lines and F1 crosses of chickens selected 27 generations for high or low body weight[J]. Growth Dev Aging, 1988, 52(1): 11-21.
    [25] Palo P E, Sell J L, Piquer F J, et al. Effect of early nutrient restriction on broiler chickens. 1. Performance and development of the gastrointestinal tract[J]. Poult Sci, 1995, 74(1): 88-101.
    [26] Noy Y, Sklan D. Yolk utilisation in the newly hatched poult[J]. Br Poult Sci, 1998,39(3): 446-451.
    [27] Noy Y, Sklan D. Energy utilization in newly hatched chicks [J]. Poult Sci, 1999, 78(12): 1750-1756.
    [28] Uni Z, Noy Y, Sklan D. Posthatch development of small intestinal function in the poult[J]. Poult Sci, 1999, 78(2): 215-222.
    [29] Geyra A, Uni Z, Sklan D. The effect of fasting at different ages on growth and tissue dynamics in the small intestine of the young chick[J]. Br J Nutr, 2001, 86(1): 53-61.
    [30] Uni Z, Platin R, Sklan D. Cell proliferation in chicken intestinal epithelium occurs both in the crypt and along the villus[J]. J Comp Physiol, 1998,168(4): 241-247.
    [31] Jamroz D, Jakobsen K, Orda J, et al. Development of the gastrointestinal tract and digestibility of dietary fibre and amino acids in young chickens, ducks and geese fed diets with high amounts of barley[J]. Comp Biochem Physiol A Mol Integr Physiol, 2001, 130(4): 643-652.
    [32] Mcghee J R, Mestecky J, Dertzbaugh M T, et al. The mucosal immune system: from fundamental concepts to vaccine development[J]. Vaccine, 1992, 10(2): 75-88.
    [33] Blijlevens N M, Donnelly J P, De P B. Mucosal barrier injury: biology, pathology, clinical counterparts and consequences of intensive treatment for haematological malignancy: an overview[J]. Bone Marrow Transplant, 2000, 25(12): 1269-1278.
    [34] Kitagawa H, Imagawa T, Uehara M. The apical caecal diverticulum of the chicken identified as a lymphoid organ[J]. J Anat, 1996, 189 (3): 667-672.
    [35] Lacy B E, Weiser K. Gastrointestinal motility disorders: an update[J]. Dig Dis, 2006, 24(3-4): 228-242.
    [36]Honjo K,Hagiwara T,Itoh K,et al.Immunohistochemical analysis of tissue distribution of B and T cells in germfree and conventional chickens[J].J Vet Med Sci,1993,55(6):1031~1034.
    [37]Befus A D,Johnston N,Leslie G A,et al.Gut-associated lymphoid tissue in the chicken.I.Morphology,ontogeny,and some functional characteristics of Peyer's patches[J].J Immunol,1980,125(6):2626~2632.
    [38]Del C E,Gallego M,Sanz A,et al.Characterization of distal lymphoid nodules in the chicken caecum[J].Anat Rec,1993,237(4):512~517.
    [39]Lillehoj H S,Chung K S.Postnatal development of T-lymphocyte subpopulations in the intestinal intraepithelium and lamina propria in chickens[J].Vet Immunol Immunopathol,1992,31(3~4):347~360.
    [40]Vervelde L,Jeurissen S H.Postnatal development of intra-epithelial leukocytes in the chicken digestive tract:phenotypical characterization in situ[J].Cell Tissue Res,1993,274(2):295~301.
    [41]Gobel T W,Kaspers B,Stangassinger M.NK and T cells constitute two major,functionally distinct intestinal epithelial lymphocyte subsets in the chicken[J].Int Immunol,2001,13(6):757~762.
    [42]Wehkamp J,Schmid M,Stange E F.Defensins and other antimicrobial peptides in inflammatory bowel disease[J].Curr Opin Gastroenterol,2007,23(4):370~378.
    [43]Zhao C,Nguyen T,Liu L,et al.Gallinacin-3,an inducible epithelial beta-defensin in the chicken[J].Infect Immun,2001,69(4):2684~2691.
    [44]Bezuidenhout A J,Van A G.A light microscopic and immunocytochemical study of the gastrointestinal tract of the ostrich (Struthio camelus L.)[J].Onderstepoort J Vet Res,1990,57(1):37~48.
    [45]Evans E W,Beach G G,Wunderlich J,et al.Isolation of antimicrobial peptides from avian heterophils[J].J Leukoc Biol,1994,56(5):661~665.
    [46]Short M L,Nickel J,Schmitz A,et al.Lysozyme gene expression and regulation[J].EXS,1996,75:243~257.
    [47]Brockus C W,Jackwood M W,Harmon B G.Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow[J].Anim Genet,1998,29(4):283~289.
    [48]Lillehoj H S.Avian gut-associated immune system:implication in coccidial vaccine development[J].Poult Sci,1993,72(7):1306~1311.
    [49]Kajiwara E,Shigeta A,Horiuchi H,et al.Development of Peyer's patch and cecal tonsil in gut-associated lymphoid tissues in the chicken embryo[J].J Vet Med Sci,2003,65(5):607~614.
    [50]Forgacs I.Clinical gastroenterology[J].BMJ,1995,310(6972):113~116.
    [51]黄辉.乌骨鸡外周淋巴组织发生和结构[J].上海交通大学学报(农业科学版),2005,23(2):129~133
    [52]Bang B G,Bang F B.Localized lymphoid tissues and plasma cells in paraocular and paranasal organ systems in chickens[J].Am J Pathol,1968,53(5):735~751.
    [53]Glick B.Historical perspective:the bursa of Fabricius and its influence on B-cell development,past and present[J].Vet Immunol Immunopathol,1991,30(1):3~12.
    [54]Ratcliffe M J.B cell development in gut associated lymphoid tissues[J].Vet Inmunol Immunopathol,2002,87(3-4):337~340.
    [55]Masteller E L,Pharr G T,Funk P E,et al.Avian B cell development[J].Int Rev Immunol,1997,15(3-4):185~206.
    [56]金伯泉.细胞和分子免疫学[M].世界图书出版公司.1995,第一版:282~283.
    [57]汪堃仁,薛绍白,柳惠图.细胞生物学[M].北京师范大学出版社.1998,第二版:620~646.
    [58]Bernot A,Auffray C.Primary structure and ontogeny of an avian CD3 transcript[J].Proc Natl Acad Sci,1991,88(6):2550~2554.
    [59]Gobel T W,Chen C L,Shrimpf J,et al.Characterization of avian natural killer cells and their intracellular CD3 protein complex[J].Eur J Immunol,1994,24(7):1685~1691.
    [60]Bucy R P,Chen C L,Cooper M D.Development of cytoplasmic CD3~+/T cell receptor-negative cells in the peripheral lymphoid tissues of chickens[J].Eur J Immunol,1990,20(6):1345~1350.
    [61]Chow L M,Ratcliffe M J,Veillette A.tk1 is the avian homolog of the mammalian 1ck tyrosine protein kinase gene[J].Mol Cell Biol,1992,12(3):1226~1233.
    [62]Koskinen R,Lamminmaki U,Tregaskes C A,et al.Cloning and modeling of the first nonmammalian CD4[J].J Immunol,1999,162(7):4115~4121.
    [63]Luhtala M,Salomonsen J,Hirota Y,et al.Analysis of chicken CD4 by monoclonal antibodies indicates evolutionary conservation between avian and mammalian species[J].Hybridoma,1993,12(6):633~646.
    [64]胡青海,焦新安.鸡CD4和CD8分子研究进展[J].动物医学进展,2005,26(4):16~20.
    [65]Luhtala M.Chicken CD4,CD8alphabeta,and CD8alphaalpha T cell co-receptor molecules[J].Poult Sci,1998,77(12):1858~1873.
    [66]Koskinen R,Salomonsen J,Tregaskes C A,et al.The chicken CD4 gene has remained conserved in evolution[J].Immunogenetics,2002,54(7):520~525.
    [67]王重庆.分子免疫学基础[M].北京大学出版社.1997,第一版:121~135.
    [68]Luhtala M,Lassila O,Toivanen P,et al.A novel peripheral CD4~+ CD8~+ T cell population:inheritance of CD8alpha expression on CD4~+ T cells[J].Eur J Immunol,1997,27(1):189~193.
    [69]Tregaskes C A,Kong F K,Paramithiotis E,et al.Identification and analysis of the expression of CD8 alpha beta and CD8 alpha alpha isoforms in chickens reveals a major TCR-gamma delta CD8 alpha beta subset of intestinal intraepithelial lymphocytes[J].J Immunol,1995,154(9):4485~4494.
    [70]Chan M M,Chen C L,Ager L L,et al.Identification of the avian homologues of mammalian CD4 and CD8 antigens[J].J Immunol,1988,140(7):2133~2138.
    [71]Quere P,Cooper M D,Thorbecke G J.Characterization of suppressor T cells for antibody production by chicken spleen cells.I.Antigen-induced suppressor cells are CT8~+,TcR1~+ (gamma delta) T cells[J].Immunology,1990,71(4):517~522.
    [72]Yamamoto H,Hattori M,Ohashi K,et al.Characterization of extrathymic T cells of chickens[J].Vet Immunol Immunopathol,1996,49(4):375~386.
    [73]Groh V,Porcelli S,Fabbi M,et al.Human lymphocytes beating T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system[J].J Exp Med,1989,169(4):1277~1294.
    [74]桑学波,江宽林,史丽荣,等.影响鸡免疫应答因素分析[J].中国兽医杂志,2002,38(4):45~46.
    [75]陈龙,毛鑫智.血细胞免疫研究进展[J].国外畜牧科技,1999,26(4):33~37.
    [76]周同,江永娣,姚建,石学耕,史桂英,董德长.系统性红斑狼疮患者淋巴细胞粘附分子表达的观察[J].中华内科杂志,1995,34(8):545~547.
    [77]林学颜,张玲.现代细胞与分子免疫学[M].北京科学出版社:2000,第一版:19.
    [78]Le D N,Michel G,Baulieu E E.Studies of testosterone-induced involution of the bursa of Fabricius[J].Dev Biol,1980,75(2):288~302.
    [79]邬向东,谌南辉.禽法氏囊三肽囊素免疫生物学及其同功能单链抗体研究进展[J].动物医学进展,2002,23(2):19~21.
    [80]于善谦,王洪海,朱乃硕,等.免疫学导论[M].高等教育出版社:1999,第一版:101~102.
    [81]刘雨田,谌南辉,左万顺.B淋巴细胞的分化[J].江西畜牧兽医杂志,2000(4):1~3.
    [82]王彩云,王纯洁,斯日古楞,等.血液B淋巴细胞在鸡包涵体肝炎病中变化规律的研究[J].畜牧与饲料科学,2004(06):32~34.
    [83]王凤龙,葛金英,郝先谱,等.鸡包涵体肝炎病毒DNA探针的制备及其原位杂交的应用[J].中国预防兽医学报,2003,25(6):434~436.
    [84]刘建民,胡维华,徐福南,等.鸡包涵体肝炎免疫组织化学动态研究[J].畜牧兽医学报,2001,32(1):38~43.
    [85]郝先谱,王凤龙,顾玉芳,等.鸡包涵体肝炎的病理学研究(3)野毒株FAV—b实验感染鸡胚的病理学观察[J].内蒙古农业大学学报(自然科学版),1996,17(3):37~40.
    [86]朱国强,王永坤.禽免疫系统的结构与功能[J].预防兽医学进展.2001,3(1):27~30.
    [87]张有聪,刘淑英.T淋巴细胞和B淋巴细胞的研究进展[J].畜牧与饲料科学,2006(05):75~78.
    [88]Gomez D M,Fonfria J,Varas A,et al.Appearance and development of lymphoid cells in the chicken (Gallus gallus) caecal tonsil[J].Anat Ree,1998,250(2):182~189.
    [89]王世若,王兴龙,韩文瑜.现代动物免疫学[M].吉林科学出版社:2001,第二版:9~31.
    [90]Reynaud C A,Dahan A,Weill J C.Complete sequence of a chicken lambda light chain immunoglobulin derived from the nucleotide sequence of its mRNA.[J].Proc Natl Acad Sci U S A.1983,80(13):4099~4103.
    [91]Reynaud C A,Anquez V,Weill J C.The chicken D locus and its contribution to the immunoglobulin heavy chain repertoire.[J].Eur J Immunol.1991,21(11):2661~2670.
    [92]Tonegawa S.Somatic generation of antibody diversity.[J].Nature.1983,302(5909):575~581.
    [93]Mccormack W T,Thompson C B.Somatic diversification of the chicken immunoglobulin light-chain gene.[J].Adv Immunol.1990,48:41~67.
    [94]Kincade P W,Cooper M D.Development and distribution of immunoglobulin-containing cells in the chicken.An immunofluorescent analysis using purified antibodies to mu,gamma and light chains.[J].J Immunol.1971,106(2):371~382.
    [95]顾文艺,陈少莺,刘忠贵.早日龄雏鸡免疫功能探讨[J].中国预防兽医学报,1991,56(1):56~58.
    [96]Seto F.Early development of the avian immune system.[J].Poult Sci.1981,60(9):1981~1995.
    [97]Harvey S,Scanes C G.Half-life chicken growth hormone in the domestic fow (Gallus domesticus).[J].Horm Metab Res.1977,9(4):340~341.
    [98]Chen C L,Ager L L,Gartland G L,et al.Identification of a T3/T cell receptor complex in chickens.[J].J Exp Med.1986,164(1):375~380.
    [99]Sowder J T,Chen C L,Ager L L,et al.A large subpopulation of avian T cells express a homologue of the mammalian T gamma/delta receptor.[J].J Exp Med.1988,167(2):315~322.
    [100]Cihak J,Ziegler-heitbrock H W,Trainer H,et al.Characterization and functional properties of a novel monoclonal antibody which identifies a T cell receptor in chickens.[J].Eur J Immunol.1988,18(4):533~537.
    [101]Char D,Sanchez P,Chen C L,et al.A third sublineage of avian T cells can be identified with a T cell receptor-3-specific antibody.[J].J Immunol.1990,145(11):3547~3555.
    [102]Nishinaka S,Akiba H,Nakamura M,et al.Two chicken B cell lines resistant to ouabain for the production of chicken monoclonal antibodies.[J].J Vet Med Sci.1996,58(11):1053~1056.
    [103]Jeurissen S H,Janse E M,Ekino S,et al.Monoclonal antibodies as probes for defining cellular subsets in the bone marrow,thymus,bursa of fabricius,and spleen of the chicken.[J].Vet Immunol Immunopathol.1988,19(3-4):225~238.
    [104]Sinkora J,Rehakova Z,Sinkora M,et al.Early development of immune system in pigs.[J].Vet Immunol Immunopathol.2002,87(3-4):301~306.
    [105]Faldyna M,Sinkora J,Knotigova P,et al.Lymphatic organ development in dogs:major lymphocyte subsets and activity.[J].Vet Immunol Immunopathol.2005,104(3-4):239~247.
    [106]王纯洁,斯日古楞,贾德刚,等.雏鸡淋巴细胞变化规律的流式细胞仪检测研究[J].畜牧兽医学报,2005,36(8):828~831.
    [107]Erf G F,Bottje W G,Bersi T K.CD4,CD8 and TCR defined T-cell subsets in thymus and spleen of 2-and 7-week old commercial broiler chickens.[J].Vet Immunol Immunopathol.1998,62(4):339~348.
    [108]Khan M Z,Hashimoto Y,Iwami Y,et al.Postnatal development of B lymphocytes and immunoglobulin-containing plasma cells in the chicken oviduct:studies on cellular distribution and influence of sex hormones.[J].Vet Immunol Immunopathol.1997,56(3-4):329~338.
    [109]Yoshimura Y,Okamoto T,Tamura T.Localisation of MHC class Ⅱ,lymphocytes and immunoglobulins in the oviduct of laying and moulting hens.[J].Br Poult Sci.1997,38(5):590~596.
    [110]Dunon D,Cooper M D,Imhof B A.Migration patterns of thymus-derived gamma delta T cells during chicken development.[J].Eur J Immunol.1993,23(10):2545~2550.
    [111]Vainio O,Lassila O,Cihak J,et al.Tissue distribution and appearance in ontogeny of alpha/beta T cell receptor (TCR2) in chicken.[J].Cell Immunol.1990,125(1):254~260.
    [112]Imagawa T,Kitagawa H,Uehara M.Appearance of T cell subpopulations in the chicken and embryo retina.[J].J Vet Med Sci.2003,65(1):23~28.
    [113]Paramithiotis E,Ratcliffe M J.B cell emigration directly from the cortex of lymphoid follicles in the bursa of Fabricius.[J].Eur J Immunol.1994,24(2):458~463.
    [114]Khan M Z,Hashimoto Y.An immunohistochemical analysis of T-cell subsets in the chicken bursa of Fabricius during postnatal stages of development.[J].J Vet Med Sci.1996,58 (12):1231~1234.
    [115]Joling P,Bianchi A T,Kappe A L,et al.Distribution of lymphocyte subpopulations in thymus,spleen,and peripheral blood of specific pathogen free pigs from 1 to 40 weeks of age.[J].Vet Immunol Immunopathol.1994,40(2):105~117.
    [116]Pallares F J,Seva J,Bernabe A,et al.Characterization and distribution of B cells in the lymphoid organs of goats.[J].Anat Histol Embryol.1999,28(3):171~176.
    [117]Wilson R A,Zolnai A,Rudas P,et al.T-cell subsets in blood and lymphoid tissues obtained from fetal calves,maturing calves,and adult bovine.[J].Vet Immunol Immunopathol.1996,53(1-2):49~60.
    [118]Press C M,Hein W R,Landsverk T.Ontogeny of leucocyte populations in the spleen of fetal lambs with emphasis on the early prominence ofB cells.[J].Immunology.1993,80(4):598~604.
    [119]Macdonald H R.NK1.1~+ T cell receptor-alpha/beta~+ cells:new clues to their origin,specificity,and function.[J].J Exp Med.1995,182(3):633~638.
    [120]Hammond K J,Pelikan S B,Crowe N Y,et al.NKT cells are phenotypically and functionally diverse.[J].Eur J Immunol.1999,29(11):3768~3781.
    [121]Godfrey D I,Hammond K J,Poulton L D,et al.NKT cells:facts,functions and fallacies.[J].Immunol Today.2000,21(11):573~583.
    [122]Mrozek E,Anderson P,Caligiuri M A.Role of interleukin-15 in the development of human CD56~+ natural killer cells from CD34~+ hematopoietic progenitor cells.[J].Blood.1996,87(7):2632~2640.
    [123]Ohteki T,Yoshida H,Matsuyama T,et al.The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1~+ T cell receptor-alpha/beta~+ (NK1~+ T) cells,natural killer cells,and intestinal intraepithelial T cells.[J].J Exp Med.1998,187(6):967~972.
    [124]Rumbo M,Anderle P,Didierlaurent A,et al.How the gut finks innate and adaptive immunity.[J].Ann N Y Acad Sci. 2004,1029: 16-21.
    [125] Yasuda M, Fujino M, Nasu T, et al. Histological studies on the ontogeny of bovine gut-associated lymphoid tissue: appearance of T cells and development of IgG~+ and IgA~+ cells in lymphoid follicles.[J]. Dev Comp Immunol. 2004, 28(4): 357-369.
    [126] Tamura A, Soga H, Yaguchi K, et al. Distribution of two types of lymphocytes (intraepithelial and lamina-propria-associated) in the murine small intestine.[J]. Cell Tissue Res. 2003,313(1): 47-53.
    [127] Zuckermann F A, Gaskins H R. Distribution of porcine CD4/CD8 double-positive T lymphocytes in mucosa-associated lymphoid tissues.[J]. Immunology. 1996, 87(3): 493-499.
    [128] Olivier M, Berthon P, Salmon H. [Immunohistochemical localization in the intestine of swine of the cellular and humeral components of the immune response][J]. Vet Res. 1994,25(1): 57-65.
    [129] Vega-lopez M A, Telemo E, Bailey M, et al. Immune cell distribution in the small intestine of the pig: immunohistological evidence for an organized compartmentalization in the lamina propria.[J], Vet Immunol Immunopathol. 1993,37(1): 49-60.
    [130] Jahnsen F L, Farstad I N, Aanesen J P, et al. Phenotypic distribution of T cells in human nasal mucosa differs from that in the gut.[J]. Am J Respir Cell Mol Biol. 1998,18(3): 392-401.
    [131] Grooms D L, Bolin S R, Coe P H, et al. Fetal protection against continual exposure to bovine viral diarrhea virus following administration of a vaccine containing an inactivated bovine viral diarrhea virus fraction to cattle.[J]. Am J Vet Res. 2007,68(12): 1417-1422.
    [132] Sharma J M. Overview of the avian immune system.[J]. Vet Immunol Immunopathol. 1991, 30(1): 13-17.
    [133] Fagerland J A, Arp L H. Distribution and quantitation of plasma cells, T lymphocyte subsets, and B lymphocytes in bronchus-associated lymphoid tissue of chickens: age-related differences.[J]. Reg Immunol. 1993, 5(1): 28-36.
    [134] Scott T R, Savage M L, Olah I. Plasma cells of the chicken Harderian gland.[J]. Poult Sci. 1993, 72(7): 1273-1279.
    [135] Muir W I, Bryden W L, Husband A J. Investigation of the site of precursors for IgA-producing cells in the chicken intestine.[J]. Immunol Cell Biol. 2000, 78(3): 294-296.
    [136] Kaul D, Ogra P L. Mucosal responses to parenteral and mucosal vaccines.[J]. Dev Biol Stand. 1998, 95: 141-146.
    [137] Bucy R P, Chen C L, Cihak J, et al. Avian T cells expressing gamma delta receptors localize in the splenic sinusoids and the intestinal epithelium.[J]. J Immunol. 1988, 141(7): 2200-2205.
    [138] Dunon D, Cooper M D, Imhof B A. Thymic origin of embryonic intestinal gamma/delta T cells.[J]. J Exp Med. 1993, 177(2): 257-263.
    [139] Dunon D, Courtois D, Vainio O, et al. Ontogeny of the immune system: gamma/delta and alpha/beta T cells migrate from thymus to the periphery in alternating waves.[J].J Exp Med.1997,186(7):977~988.
    [140]Suzuki K,Oida T,Hamada H,et al.Gut cryptopatches:direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis.[J].Immunity.2000,13(5):691~702.
    [141]Arstila T P,Toivanen P,Lassila O.Helper activity of CD4~+ alpha beta T cells is required for the avian gamma delta T cell response.[J].Eur J Immunol.1993,23(8):2034~2037.
    [142]Kasahara Y,Chen C H,Cooper M D.Growth requirements for avian gamma delta T cells include exogenous cytokines,receptor ligation and in vivo priming.[J].Eur J Immunol.1993,23(9):2230~2236.
    [143]Berin M C,Mckay D M,Perdue M H.Immune-epithelial interactions in host defense.[J].Am J Trop Med Hyg.1999,60(4):16~25.
    [144]Berin M C,Yang P C,Ciok L,et al.Role for IL-4 in macromolecular transport across human intestinal epithelium.[J].Am J Physiol.1999,276(5):1046~1052.
    [145]Akaki C,Simazu M,Baba T,et al.Possible migration of harderian gland immunoglobulin A bearing lymphocytes into the caecal tonsil in chickens.[J].Zentralbl Veterinarmed B.1997,44(4):199~206.
    [146]Kim S Y,Doh H J,Ahn J S,et al.Induction of mucosal and systemic immune response by oral immunization with H.pylori lysates encapsulated in poly(D,L-lactide-co-glycolide) microparticles.[J].Vaccine.1999,17(6):607~616.
    [147]Lai H C,Duke G E.Colonic motility in domestic turkeys.[J].Am J Dig Dis.1978,23(8):673~681.
    [148]Brummermann M,Braun E J.Effect of salt and water balance on colonic motility of white leghorn roosters.[J].Am J Physiol.1995,268(3):690~698.
    [149]Lamouse-smith E S,Furuta G T.Eosinophils in the gastrointestinal tract.[J].Curt Gastroenterol Rep.2006,8(5):390~395.
    [150]Noy Y,Sklan D.Yolk utilisation in the newly hatched poult.[J].Br Poult Sci.1998,39(3):446~451.
    [151]Yamamoto H,Watanabe H,Mikami T.Distribution of immunoglobulin and secretory component containing cells in chickens.[J].Am J Vet Res.1977,38(8):1227~1230.
    [152]Mansikka A,Veromaa T,Vainio O,et al.B-cell differentiation in the chicken:expression of immunoglobulin genes in the bursal and peripheral lymphocytes.[J].Scand J Immunol.1989,29(3):325~331.
    [153]Sorvari T,Sorvari R,Ruotsalainen P,et al.Uptake of environmental antigens by the bursa of Fabricius.[J].Nature.1975,253(5488):217~219.
    [154]Sorvari R,Naukkarinen A,Sorvari T E.Anal sucking-like movements in the chicken and chick embryo followed by the transportation of environmental material to the bursa of Fabricius,caeca and caecal tonsils.[J].Poult Sci.1977,56(5):1426~1429.
    [155]Sorvari R,Sorvari T E.Bursal fabricii as a peripheral lymphoid organ.Transport of various materials from the anal lips to the bursal lymphoid follicles with reference to its immunological importance.[J]. Immunology.1978,32(4):499~505.
    [156]Bockman D E,Cooper M D.Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius,appendix,and Peyer's patches.An electron microscopic study.[J].Am J Anat.1973,136(4):455~477.
    [157]Naukkarinen A,Sorvari T E.Morphological and histochemical characterization of the medullary cells in the bursal follicles of the chicken.[J].Acta Pathol Microbiol Immunol Scand [C].1982,90(4):193~199.
    [158]Glick B,Whatley S.The presence of immunoglobulin in the bursa of Fabricius.[J].Poult Sci.1967,46(6):1587~1589.
    [159]Bar-shira E,Sklan D,Friedman A.Establishment of immune competence in the avian GALT during the immediate post-hatch period.[J].Dev Comp Immunol.2003,27(2):147~157.
    [160]陈文华,张映.免疫组织化学技术在神经生长因子研究中的应用[J].中国畜牧兽医,2006,33(11):61~64.
    [161]Pink J R,Rijnbeek A M.Monoclonal antibodies against chicken lymphocyte surface antigens.[J].Hybridoma.1983,2(3):287~296.
    [162]Delanney.On the chick spleen:origin patten of normal development and their experimental modifications[J].Contrib Embryol.1962,255:57~86.
    [163]Yassine F,Fedecka-bruner B,Dieterlen-lievre F.Ontogeny of the chick embryo spleen-a cytological study.[J].Cell Differ Dev.1989,27(1):29~45.
    [164]鲍恩东,陈万芳.鸡胚免疫系统器官组织学变化观察[J].中国兽医科技.1996,26(2):26~27.
    [165]Jeurissen S H.The role of various compartments in the chicken spleen during an antigen-specific humoral response.[J].Immunology.1993,80(1):29~33.
    [166]Dunon D,schwager J D J.T cell migration during development:homing is not related to TCR repertoire selection[J].EMBO J.1994,13:808~815.
    [167]Tomohiro H.Appearance of T cell subpopulation in the chicken and embryo retina[J].J Vet Med Sci.2003,65(1):23~28.
    [168]L C C.Surface markers on avian immune cells[J].Avian cellular Immunology.1991,11:1~22.
    [169]Parmentier H K,Kreukniet M B,Goeree B,et al.Differences in distribution of lymphocyte antigens in chicken lines divergently selected for antibody responses to sheep red blood cells.[J].Vet Immunol Immunopathol.1995,48(1-2):155~168.
    [170]Ewald S J,Lien Y Y,Li L,et al.B-haplotype control of CD4/CD8 subsets and TCR V beta usage in chicken T lymphocytes.[J].Vet Immunol Immunopathol.1996,53 (3-4):285~301.
    [171]李博,刘群,蒋金书.雏鸡免疫柔嫩艾美耳球虫早熟株和毒株的细胞免疫反应[J].中国农业大学学报,2004,9(2):57~62.
    [172]Lowenthal J W,Connick T E,Mcwaters P G,et al.Development of T cell immune responsiveness in the chicken.[J].lmmunol Cell Biol.1994,72(2):115~122.
    [173]周小鸽.免疫组织化学染色的干扰因素及其处理[J].临床与实验病理学杂志,2006,22(4):389~392.
    [174]蒋书东,章孝荣,李福宝,等.血管活性肠肽在皖西白鹅间脑内的定位分布[J].中国兽医学报,2005,25(5):502~504.
    [175]胡守萍,郑世民,王笑梅,等.鸡贫血病-法氏囊病联合免疫母鸡后子代雏鸡免疫器官T细胞和抗体生成细胞数量的动态变化[J].中国预防兽医学报,2001,23(5):332~336.
    [176]Kon-ogura T,Kon Y,Onuma M,et al.Distribution of T cell subsets in chicken lymphoid tissues.[J].J Vet Med Sci.1993,55(1):59~66.
    [177]Glick B,Holbrook K A,Olah I,et al.An electron and light microscope study on the caecal tonsil:the basic unit of the caecal tonsil.[J].Dev Comp Immunol.1981,5(1):95~104.
    [178]Jeurissen S H,Janse E M,Koch G,et al.Postnatal development of mucosa-associated lymphoid tissues in chickens.[J].Cell Tissue Res.1989,258(1):119~124.
    [179]Asheg A,Levkut M,Revajova V,et al.T lymphocyte subpopulations and B lymphocyte cells in caecum and spleen of chicks infected with Salmonella enteritidis.[J].Acta Histochem.2002,104(4):435~439.
    [180]Berndt A,Methner U.B cell and macrophage response in chicks after oral administration of Salmonella typhimurium strains.[J].Comp Immunol Microbiol Infect Dis.2004,27(4):235~246.
    [181]Albini B,Wick G.Delineation of B and T lymphoid cells in the chicken.[J].J Immunol.1974,112(2):444~450.
    [182]Hoshi H,Mori T.Identification of the bursa-dependent and thymus-dependent areas in the tonsilla caecalis of chickens.[J].Tohoku J Exp Med.1973,111(4):309~322.
    [183]Buoy R P,Chen C H,Cooper M D.Ontogeny of T cell receptors in the chicken thymus.[J].J Immunol.1990,144(4):1161~1168.
    [184]Vainio O,Veromaa T,Eerola E,et al.Antigen-presenting cell-T cell interaction in the chicken is MHC class Ⅱ antigen restricted.[J].J Immunol.1988,140(9):2864~2868.
    [185]Boyd R L,Ward H A.Lymphoid antigenic determinants of the chicken:ontogeny of bursa-dependent lymphoid tissue.[J].Dev Comp Immunol.1984,8(1):149~167.
    [186]Del C E,Gallego M,Sanz A,et al.Characterization of distal lymphoid nodules in the chicken caecum.[J].Anat Rec.1993,237(4):512~517.
    [187]Dolfi A,Bianchi F,Lupetti M.Distribution of B-lymphocytes in the areas of bursal and cloacal lymphoid infiltration.[J].J Anat.1988,160:201~210.
    [188]Nagy N,Magyar A,Toth M,et al.Quail as the chimeric counterpart of the chicken:morphology and ontogeny of the bursa of Fabricius.[J].J Morphol.2004,259(3):328~339.
    [189]Kum S,Eren U S M.Alpha-naphtyl acetate esterase (ANAE) activity and plasma cells in the oesophageal tonsils of chickens[J].Revue Med Vet.2006,157(6):326~330.
    [190]Guy-grand D,Cerf-bensussan N,Malissen B,et al.Two gut intraepithelial CD8~+ lymphocyte populations with different T cell receptors:a role for the gut epithelium in T cell differentiation.[J].J Exp Med.1991,173(2):471~481.
    [191]Viney J L,Kilshaw P J,Macdonald T T.Cytotoxic alpha/beta~+ and gamma/delta~+ T cells in murine intestinal epithelium.[J].Eur J Immunol.1990,20(7):1623~1626.
    [192]Boismenu R,Havran W L.Modulation of epithelial cell growth by intraepithelial gamma delta T cells.[J].Science.1994,266(5188):1253~1255.
    [193]Kolbjornsen O,Press C M,Moore P F,et al.Lymphoid follicles in the gastric mucosa of dogs.Distribution and lymphocyte phenotypes.[J].Vet Immunol Immunopathol.1994,40(4):299~312.
    [194]Driessen A,Van G C,Creemers J,et al.Histological and immunohistochemical study of the lymphoid tissue in the normal stomach of the gnotobiotic pig.[J].Virchows Arch.2002,441(6):589~598.
    [195]Nair P N,Schroeder H E.Duct-associated lymphoid tissue (DALT) of minor salivary glands and mucosal immunity.[J].Immunology.1986,57(2):171~180.
    [196]Matsuda M,Ina K,Kitamura H,et al.Demonstration and organization of duct-associated lymphoid tissue (DALT) of the main excretory duct in the monkey parotid gland.[J].Arch Histol Cytol.1997,60(5):493~502.