生物质基乙酰丙酸乙酯混合燃料动力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能是一种可以收集、储存、运输和最接近常规化石燃料的可再生能源,从原料构成到理化特性均与煤炭等化石能源相似,其不仅是绿色的洁净能源,而且是可再生能源中唯一可以培育和转化为液体燃料的碳资源,在6种可再生能源中占有重要的地位。木质纤维素生物质是目前地球上最丰富、最廉价的生物质资源,我国每年可作能源利用的农林剩余物等木质纤维素生物质达7亿吨以上,折合标煤3.5亿吨左右。木质纤维素生物质转化为液体燃料,进而可作为柴油机替代燃料,其对于增强我国石油安全、缓解能源和资源压力、减轻生态环境污染、发展社会经济等具有现实意义。乙酰丙酸乙酯可由木质纤维素转化获得,在国外已有作为车用燃料的研究,但国内对其在柴油机上燃烧动力及排放性能的研究几乎为空白。因此,结合我国生物质资源状况,以玉米秸秆基乙酰丙酸乙酯为对象,分析其与柴油的混合燃料柴油机特性,找出适合我国柴油机使用的合理配比混合燃料,有利于生物质基乙酰丙酸乙酯的推广利用和我国生物质资源的合理化、规模化利用。
     本文研究了生物质中典型的玉米秸秆制取乙酰丙酸并进行酯化工艺方法和反应条件。分析了乙酰丙酸乙酯-柴油混合燃料的动力性性能,借助内燃机试验台架,进行了混合燃料的动力性、经济性及排放性试验,找到了适合我国柴油体系和柴油机系统的燃料混合范围。以乙酰丙酸乙酯为中心,结合乙酰丙酸乙酯和生物柴油的各自理化特性特点,开展了乙酰丙酸乙酯、生物柴油与柴油的多种燃料配方的理化特性研究,优选了满足国家标准的燃料配方,并对配方进行了柴油机动力性能验证。对玉米秸秆为原料的生物质基乙酰丙酸乙酯进行了生命周期能耗、环境排放和经济性分析,针对相关环节提出了一定的建议。结果表明:
     (1)玉米秸秆纤维素和半纤维含量都较高,灰分含量较小,在水解制取乙酰丙酸平台化合物方面具有较大的优势。玉米秸秆制取糠醛后的残渣可用于制取乙酰丙酸,其较好的反应温度、硫酸浓度、固液质量比、反应时间等条件下,乙酰丙酸产率的可达70%。极性较强的吸附剂对乙酰丙酸水解液的分离效果较好,在合适的乙酰丙酸浓度、流量、填充柱的高径比、洗脱盐酸浓度情况下,乙酰丙酸收率为82.2%。酯化反应时,选用固体酸催化剂,找到了乙酰丙酸与乙醇酯化反应V酸:V醇、反应时间、反应温度、M催化剂:M酸等优化条件。
     (2)合适比例的乙酰丙酸乙酯-柴油混合燃料可在水平单缸四冲程压燃式柴油发动机中正常工作;燃用这混合燃料与柴油的外特性的动力性变化趋势相同,转矩和功率较燃用纯柴油略小;混合燃料的燃油消耗率较柴油略大,能量消耗率却低于纯柴油;混燃燃料的NO_x、CO_2等排放在柴油机输出功率较大时较柴油排放浓度要高;CO和烟度排放在输出功率较大时,随乙酰丙酸乙酯含量的增加较为明显地降低。混合燃料柴油机利用过程中的油耗率受混合燃料的密度影响较大;NO_x、CO和CO_2等排放受混合燃料含氧量影响较大;HC排放和尾气烟度受混合燃料的运动粘度影响较大;混合燃料的含氧量是影响燃烧排放主要参数;尾气烟度受燃料特性变化影响最为明显。
     (3)以乙酰丙酸乙酯为中心,开展乙酰丙酸乙酯、生物柴油和柴油不同配比混合燃料的理化特性研究,具体包括互溶性、低温流动性、雾化及蒸发性、氧化安定性、防腐性、洁净性、发火性、热值等方面,研究配制了13种B5系列混合燃料配方,经试验分析,有10种配方的满足GB/T25199-2010生物柴油调合燃料(B5)的指标要求。理化特性试验表明,乙酰丙酸乙酯和生物柴油的配合有一定的协同、相互促进作用,以柴油为主体,同时合理比例添加乙酰丙酸乙酯和生物柴油能够使燃料配方具有与柴油十分接近的理化特性等,较好地满足替代柴油的理化特性。对筛选的4种混燃燃料进行了柴油机试验验证,结果表明,燃料配方在柴油机中燃烧的动力性基本不变,经济性略有提高,HC、CO、烟度等污染物排放比燃烧柴油有明显降低,实现了节能减排。
     (4)建立了玉米秸秆为原料制乙酰丙酸乙酯的生命周期能源消耗、排放和经济评价模型,考察了生物质的生长、收集、预处理、水解酯化、燃料运输分配及柴油机利用,详细讨论各个单元过程,定义了车用燃料生物质基乙酰丙酸乙酯生命周期的系统边界,进行了生物质转化乙酰丙酸乙酯的相关数据收集,整理和评价。生物质基乙酰丙酸乙酯生命周期中,乙酰丙酸乙酯的生产过程中水解和酯化过程的能耗最多,占到了总能耗的66%以上;玉米秸秆收集和预处理过程的能耗相当,分别占总能耗的16.0%和15.5%,提高水解和酯化效率是生物质转换为乙酰丙酸乙酯的主要节能途径和发展方向,减少玉米秸秆预处理和收集的能耗也是较为重要的节能途径。相比传统柴油,生物质基乙酰丙酸乙酯的环境污染物排放中NOx、PM10、SO2和温室气体均远低于传统柴油。随着乙酰丙酸乙酯价格和糠醛价格的升高,项目净现值增加;随着玉米秸秆价格、初投资费、乙醇费用、劳动力成本的增加,项目净现值减少。其中,对净现值影响最大的是乙酰丙酸乙酯价格。
Bioenergy is a kind of renewable energy which can be collected, stored, transported and isthe most similar to conventional fossil fuel. It is not only green clean energy, but also the onlykind of carbon resources of renewable energy that can be cultivated and converted into liquidfuels, and it thus plays an important role in the six kinds of renewable energy sources.Lignocellulosic biomass is the most abundant and cheapest biomass resources on the earth. Inchina, there is more than700million tons lignocellulosic biomass can be used as energy, suchas agricultural and forestry residues. Lignocellulosic biomass can be converted into liquid fuelsand then used as internal combustion engine alternative fuels, which is an importantdevelopment direction and has a practical significance for enhancing the oil security, alleviatingthe pressure of energy and resources, reducing environmental pollution, and developing thesocial economy. Ethyl leculinate (EL) can be gotten from lignocellulosic biomass, and EL hasbeen studied as a vehicle fuel abroad. But its power and emissions performance of diesel engineresearch has not been done domestic. Therefore, on the base of biomass resources in China, it isvery important to take corn stalk based EL as study object by analyzing performance of dieselengine with blended fuels of EL and diesel, so as to find the appropriate proportion of EL-dieselblended fuels. All of that is conducive to the promotion of biomass based EL, along withrational and large-scale utilization of biomass resource in China.
     In the paper, process and reaction conditions of transforming biomass such as corn stalk tolevulinic acid and EL were study. Dynamic performance of EL-diesel blended fuels wasanalyzed. The combustion, economy and emission characteristics of EL-diesel blended fuelswere investigated using engine bench tests. The range of EL-diesel blended fuels to suit fordiesel and diesel engine system of China was found. For taking EL as the key fuel, physical andchemical properties of different fuel formulas were studied according to EL, biodiesel and dieselproperties. The fuel formulas were optimized and selected in line with China National Standardsand Codes, and dynamic performance of the fuel formulas were verified on a diesel engine. Lifecycle energy consumption, environmental emission and economy of corn stalk based EL were analyzed, and several improvement to related units were given. The results shown that:
     (1)Corn stalk has a large advantage in producing potentially interesting derivatives oflevulinic acid by hydrolysis according to high content of cellulose and hemicellulose, lowcontent ash. Residue of corn stalk after producing furfural can be used to make levulinic acid,levulinic acid yield can be reached70%at the optimum condition of reaction temperature,concentration of sulfuric acid, ratio of liquid to solid, reaction time. Resin of polarizedadsorption has the better separation effect on levulinic acid, the levulinic acid yield was82.2%at the suitable condition of levulinic acid concentration, flow rate, ratio of height to diameter ofpacked column, concentration of hydrochloric acid. Solid acid catalyst was selected inesterification, the better condition of Vlevulinic acid:Vethanol, reaction time, reaction temperature, andMcatalyst:Msulfuric acidwere found, respectively.
     (2)An appropriate proportion of EL-diesel blended fuels can be normally used in ahorizontal single cylinder four stroke diesel engine, without any modification to the engine.EL-diesel blended fuels and diesel have the same trend in the dynamic changes of the externalcharacteristics. Torque and power of EL-diesel blended fuels were slightly lower than diesel.Brake specific fuel consumptions (BSFC) of EL-diesel blended fuels were slightly higher thandiesel, but energy consumptions were lower. Emissions of NOxand CO_2were higher than dieselwhen the output power became larger. Emissions of CO and smoke opacity were reduced withincreasing percentage of EL when the output power became larger. BSFC was influenced mostby the density of the blended fuels. NOx, CO, and CO_2emissions were influenced most by theoxygen content. The KV was the most influential parameter for HC emissions and the opacity ofthe blended fuels. The oxygen content was the foremost influential parameter. The influence ofthe blended fuels parameters on smoke opacity was the greatest.
     (3)For taking EL as the key fuel, physical and chemical properties including solubility,cold flow properties, atomization and evaporation, oxidation stability, anti-corrosion properties,cleanness, ignition properties, heat value of different fuel formulas of EL-biodiesel-diesel werestudied.13kinds of fuel formulas were gotten and10of them were in line with China NationalStandards and Codes: GB/T25199-2010biodiesel fuel blend(B5).The test of physical andchemical properties shown that the fuel formulas with EL and biodiesel have collaboration,mutual promotion. Physical and chemical properties of diesel with an appropriate proportion ofEL and biodiesel were similar to pure diesel and can be suit for diesel engine. Experimentalverification was taken in diesel engine with4selected fuel formulas, the results shown thatdynamic performance of the fuel formulas was almost the same as diesel, fuel economy wasbetter than diesel, emission of HC, CO and smoke opacity was significantly lower than diesel.Energy saving and emission reduction were realized.
     (4)The model of life cycle energy consumption, environmental emission and economy ofcorn stalk based ethyl leculinate was built. The unit processes of corn stalk growth, collection,transportation, pretreatment, hydrolysis and esterification, EL fuel transportation, andcombustion in engine were investigated. The system boundary of life cycle was defined. Theinterrelated data was collected, arranged and assessment. In the life cycle of biomass based EL,the most energy consumption was in process of corn stalk hydrolysis and esterification,accounting for more than66%of total consumption. The similar energy consumption was incorn stalk collection and pretreatment, accounting for16.0%and15.5%of the total,respectively. It is the major energy-saving way and development direction to improve efficiencyof corn stalk hydrolysis and esterification. It is also important to reducing energy consumptionin corn stalk collection and pretreatment. Compared to conventional diesel, NOx, PM10, SO2andgreenhouse gas of biomass based EL was much lower. NPV increased with an increase in ELand furfural price; NPV decreased with an increase in corn stalk price, capital cost, ethanol costand labour cost. The influence of the EL price on the change in NPV was the most significant.
引文
[1]李在峰,朱金陵,雷廷宙,等.秸秆成型燃料锅炉设计及试验研究[J].可再生能源,2012,30(7):79-82.
    [2]中国低碳经济的发展路径[EB/OL].2011.02.14.http://theory.gmw.cn/2011-02/14/content_1609926.htm.
    [3]李海滨,袁振宏,马晓茜.现代生物质能利用技术[M].北京:化学工业出版社,2012.
    [4]王孟杰,谭天伟,朱卫东.中国生物质液体燃料技术发展[J].中国科技产业,2006,(2):80-84.
    [5]人民网.关注我国能源对外依存度[EB/OL].2011.1.24.http://paper.people.com.cn/zgnyb/html/2011-01/24/content_731613.htm.
    [6]2012年中国原油进口量突破2.7亿吨[EB/OL].2013.1.14.http://www.in-en.com/finance/html/energy_08050805471695070.html.
    [7]我国石油对外依存度上升的挑战[EB/OL].2011.8.17.http://stock.jrj.com.cn/2011/08/17023910758299.shtml.
    [8]2020年中国对外原油依存度可能达到65%[EB/OL].2009.7.30.http://money.163.com/09/0730/10/5FFDLBHG002524SO.html.
    [9]原油依存度引爆新能源发展机会[EB/OL].2013.2.16.http://www.cpnn.com.cn/zdgc/201302/t20130216_557087.html.
    [10]《2012年国内外油气行业发展报告》发布[EB/OL].2013.1.31.http://www.askci.com/news/201301/31/319254258694.shtml.
    [11]国务院关于印发能源发展“十二五”规划的通知[EB/OL].2013.1.23.http://www.gov.cn/zwgk/2013-01/23/content_2318554.htm.
    [12]2012年7月份全国汽车保有量过亿辆[EB/OL].2012.7.23.http://www.chinairn.com/news/20120723/555309.html.
    [13]汽车销量2013超2000万辆,自主失守二三[EB/OL].2013.2.17.http://wulumuqi.auto.ifeng.com/xinwen/2013/0217/95.html.
    [14]姚栋伟.汽油机燃用乙醇汽油混合燃料的空燃比控制技术研究[D].杭州:浙江大学,2010.
    [15]任毅.柴油机燃用柴油_含氧化合物混合燃料燃烧与排放研究[D].西安:西安交通大学,2007.
    [16]尾气排放加剧雾霾,汽车时代能否与蓝天共存?[EB/OL].2013.2.1.http://news.xinhuanet.com/yzyd/energy/20130201/c_114582869_2.htm.
    [17]张传龙.地沟油制生物柴油及其柴油机燃烧模拟研究[D].中国农业大学,2006.
    [18]“柴油车”来了[EB/OL].2012.8.21.http://auto.qq.com/zt2012/news360_49/.
    [19]乘用车柴油化鼓励细则已送审,年内有望获批[EB/OL].2012.8.21.http://auto.qq.com/a/20120828/000361.htm.
    [20]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2005.
    [21]陈洪章.生物基产品过程工程[M].北京:化学工业出版社,2010.
    [22]钱伯章.生物质能技术与应用[M].北京:科学出版社,2010.
    [23]薛志忠,吴新海.国内外生物柴油研究进展[J].现代农业科技,2010,(16):293-297.
    [24]胡徐腾.纤维素乙醇研究开发进展[J].化工进展,2011,30(1):137-143.
    [25]吴英艳,薛群山.生物质热裂解液化技术的发展概况[J].化工科技市场,2008,31(7):12-15.
    [26]生物乙醇汽油消费量已占全国汽油消费量20%[EB/OL].2006.3.2.http://www.bioon.com/bioindustry/bioenergy/339767.shtml.
    [27]张宁,蒋剑春,李翔宇,等.我国非粮燃料乙醇产业发展现状及前景展望[J].生物质化学工程,2011,45(4):47-50.
    [28]吴逸民.我国生物质能产业发展现状及展望[J].生农业工程技术(新能源产业),2011,(8):20-22.
    [29] Sukumaran RK, Singhania RR, Mathew GM, et al. Cellulase production using biomass feed stockand its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy,2009,34(2):421-424.
    [30]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[R].2007.
    [31]王志伟,何晓峰,赵宝珠,等.生物质热解利用系统的实验研究[J].农机化研究,2009,31(3):150-153.
    [32]张全国,雷廷宙.农业废弃物气化技术[M].北京:化学工业出版社,2006.
    [33] Villanueva Perales A L, Reyes Valle C, Ollero P, et al. Technoeconomic assessment of ethanolproduction via thermochemical conversion of biomass by entrained flow gasification[J].Energy,2011,36(7):4097-4108.
    [34] Carlo N Hamelinck, Geertje van Hooijdonk, André PC Faaij. Ethanol from lignocellulosic biomass:techno-economic performance in short-, middle-and long-term[J].Biomass and Bioenergy,2005,28(4):384-410.
    [35] Chang Chun, Cen Peilin, Ma Xiaojian. Levulinic acid production from wheat straw[J]. BioresourceTechnology,2007,98(7):1448-1453
    [36] Sen S M, Henao C A, Braden D J, et al. Catalytic conversion of lignocellulosic biomass to fuels:process development and technoeconomic evaluation[J]. Chemical Engineering Science.2012,67(1):57-67.
    [37] Girisuta B, Janssen L P B M, Heeresa H J. Green chemicals a kinetic study on the conversion ofglucose to levulinic acid[J]. Chemical Engineering Research and Design,2006,84(A5):339-349.
    [38]林鹿,薛培俭,庄军平,等.生物质基乙酰丙酸化学与技术[M].北京:化学工业出版社,2009.
    [39]常春,马晓建,岑沛霖.新型绿色平台化合物乙酰丙酸的生产及应用研究进展[J].化工进展,2005,24(2):350-356.
    [40]张挺,常春.生物质制备乙酰丙酸酯类转化路径的研究进展.化工进展[J].2012,31(6):1224-1229.
    [41] Jean-Paul L, Wouter D, Rene JH. Conversion of furfuryl alcohol into ethyl levulinate using solidacid catalysts[J].Chemistry and Sustainability,2009,(2):437-441.
    [42] Fang Q, Hanna MA. Experimental studies for levulinic acid production from whole kernel grainsorghum[J].Bioresource Technology.2002,81(3):187-192.
    [43]常春.生物质制备新型平台化合物乙酰丙酸的研究[D].杭州:浙江大学,2006.
    [44] Biofine Incorporated. Production of levulinic acid from carbohydrated containing-materials[P].US5608105,1997.
    [45] Board of Regants, University of Nebraska Lincoln. Method and apparatus for production oflevulinic acid via reactive extrusion [P].US5859263,1999.
    [46] Rodriguez RE. Process for jointly producing furfural and levulinic acid from bagasse and otherlignocellulosic material[P]. S3701789,1972.
    [47] Arkenol, Inc. Method for the production of levulinic acid and its derivatives[P].US6054611,2000.
    [48]徐桂转,马俊军,岳建芝.生物质制备乙酰丙酸的影响因素研究[J].河南农业大学学报,2007,41(5):584-587.
    [49]常春,马晓建,岑沛霖.小麦秸秆制备新型平台化合物-乙酰丙酸的工艺研究[J].农业工程学报,2006,22(6):161-164.
    [50]李湘苏.WO3/ZrO2固体酸水解稻谷壳制备乙酰丙酸的优化研究[J].江苏农业科学,2012,40(9):267-268.
    [51]李静,王君,张晔,等.酸催化水解蔗糖制取乙酰丙酸[J].化工进展,2012,31(S):57-59.
    [52]刘焘,李利军,刘柳,等.固体超强酸催化剂S2O82-/ZrO2-TiO2-Al2O3制备乙酰丙酸[J].化工进展,2012,31(9):1975-1979.
    [53]李利军,刘焘,刘柳,等.固体超强酸催化剂S2O82-/聚乙二醇-TiO2-M1O3(M=Al,Cr)制备乙酰丙酸[J].工业催化,2012,20(5):64-68.
    [54]杨莉,刘毅.花生壳常压酸水解制备乙酰丙酸[J].花生学报,2012,41(3):27-32.
    [55] Rowley RL, Wilding WV, Oscarson JL, et al. DIPPR Data Compilation of Pure CompoundProperties. New York: Design Institute for Physical Properties AIChE,2004.
    [56]彭林才,林鹿,李辉.生物质转化合成新能源化学品乙酰丙酸酯[J].化学进展,2012,24(5):801-809.
    [57]邱建华.生物质稀酸水解制备乙酰丙酸的实验研究[D].郑州:郑州大学,2006.
    [58]何柱生,赵立芳.分子负载TiO2/SO42-催化合成乙酰丙酸乙酯的研究[J].化学研究与应用,2001,13(5):537-539.
    [59] Bart HJ, Reidetschlager J, Schatka K, et al. Kinetics of esterification of levulinic acid with n-butanolby homogeneous catalysis[J].Industrial and Engineering Chemistry Research,1994,33(1):21-25.
    [60]王树清,高崇,李亚芹.强酸阳离子交换树脂催化合成乙酰丙酸丁酯[J].上海化工,2005,30(4):14-16.
    [61] Yadav GD, Borkar IV. Kinetic modeling of immobilized lipase catalysis in synthesis of n-butyllevulinate[J].Industrial and Engineering Chemistry Research,2008,47(10):3358-3363.
    [62] Lee A, Chaibakhsh N, Rahman MBA, et al. Optimized enzymatic synthesis of levulinate ester insolvent-free system [J].Industrial Crops and Products,2010,32(3):246-251.
    [63] Dharne S, Bokade VV. Esterification of levulinic acid to n-butyl levulinate over heteropolyacidsupported on acid-treated clay [J].Journal of Natural Gas Chemistry,2011,20(1):18-24.
    [64] DIBANET. Production of Sustainable Diesel-Miscible Biofuels from the Residues and Wastes ofEurope and Latin America [EB/OL]. http://www.dibanet.org/links.php.
    [65]王贺宾,周龙保.含氧燃料添加剂对柴油机性能和排放的影响[J].内燃机学报,2001,19(1):1-4.
    [66] Windom BC, Lovestead TM, Mascal M, et al. Advanced distillation curve analysis on ethyllevulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel [J].Energy Fuels,2011,25:1878-1890.
    [67] Barabás I, Todoru A, B ldean D. Performance and emission characteristics of an CI engine fueledwith diesel–biodiesel–bioethanol blends [J].Fuel,2010,89(12):3827-3832.
    [68] Miyamoto N, Ogawa H, Nurun NM, et al. Smokeless, low NOx, high thermal efficiency, and lownoise diesel combustion with oxygenated agents as main fuel [A].International Congress&Exposition [C]. Detroit, MI, USA: February1998, Session: Diesel Engine Combustion Processes,Paper NO.980506.
    [69] Pahl G. Biodiesel: Growing a new energy economy [M].Vermont: Chelsea Green Publishing, WhiteRiver Junction,2005.
    [70] Buyukkaya E. Effects of biodiesel on a DI diesel engine performance, emission and combustioncharacteristics [J]. Fuel,2010,89(10):3099-3105.
    [71] Kousoulidou M, Fontaras G, Ntziachristos L, et al. Biodiesel blend effects on common-rail dieselcombustion and emissions [J]. Fuel,2010,89(11):3442-3449.
    [72] Rakopoulos DC, Rakopoulos CD, Kakaras EC, et al. Effects of ethanol–diesel fuel blends on theperformance and exhaust emissions of heavy duty DI diesel engine [J].Energy Conversion andManagement,2008,49(11):3155-3162.
    [73] Rakopoulos DC, Rakopoulos CD, Giakoumis EG, et al. Effects of butanol–diesel fuel blends on theperformance and emissions of a high-speed DI diesel engine [J].Energy Conversion andManagement,2010,51(10):1989-1997.
    [74] Luján JM, Bermúdez V, Tormos B, et al. Comparative analysis of a DI diesel engine fuelled withbiodiesel blends during the European MVEG-A cycle: Performance and emissions (II)[J].Biomassand Bioenergy,2009,33(6-7):948-956.
    [75] Huang J, Wang Y, Li S, et al. Experimental investigation on the performance and emissions of adiesel engine fuelled with ethanol-diesel blends [J].Applied Thermal Engineering,2009,29(11-12):2484-2490.
    [76] likten, Koca A, Arslan MA. Comparison of performance and emissions of diesel fuel, rapeseedand soybean oil methyl esters injected at different pressures [J].Renewable Energy,2010,35(4):814-820.
    [77] Sayin C. Engine performance and exhaust gas emissions of methanol and ethanol-diesel blends [J].Fuel,2010,89(11):3410-3415.
    [78] Qi DH, Chen H, Geng LM, et al. Effect of diethyl ether and ethanol additives on the combustion andemission characteristics of biodiesel-diesel blended fuel engine [J]. Renewable Energy,2011,36(4):1252-1258.
    [79] Peng CY, Yang HH, Lan CH, et al. Effects of the biodiesel blend fuel on aldehyde emissions fromdiesel engine exhaust [J]. Atmospheric Environment,2008,42(5):906-915.
    [80] O'Connery BD. Biodiesel Handling and Use Guide[M]. Nova Science Pubishing Incorporated,2010.
    [81] Mascal M, Nikitin EB. Dramatic advancements in the saccharide to5-(Chloromethyl) furfuralconversion reaction [J]. ChemSusChem,2009,(2):859-861.
    [82] Fitzpatrick SW. Lignocellulose degradation to furfural and levulinic acid [P]. U.S. Patent:4897497,1990.
    [83] Fitzpatrick SW. Production of levulinic acid from carbohydrate-containing materials [P]. U.S. Patent:5608105,1997.
    [84] Hayes MHB. Production of sustainable diesel-miscible biofuels from the residues and wastes ofEurope and Latin America [EB/OL]. Available at http://www.dibanet.org.
    [85] Joshi H, Moser BR, Toler J, et al. Ethyl levulinate: A potential bio-based diluent for biodiesel whichimproves cold flow properties [J]. Biomass and Bioenergy,2011,35(7):3262-3266
    [86]纪威,符太军,姚亚光,等.柴油机燃用乙醇-柴油-生物柴油混合燃料的试验研究[J].农业工程学报,2007,23(3):180-185.
    [87]汤东,李昌远,葛建林,等.柴油机掺烧生物柴油NOx和碳烟排放数值模[J].农业机械学报,2011,42(7):1-4.
    [88]马志豪,张小玉,王鑫,等.基于热重分析法的生物柴油-柴油发动机颗粒排放研究[J].农业机械学报,2011,42(9):26-29.
    [89]马林才,刘大学,周志国,等.生物柴油-柴油混合燃料的理化及排放特性研究[J].燃料化学学报,2011,39(8):600-605.
    [90]宋天一,雷廷宙,王志伟,等.生物柴油-柴油混合燃料性能和排放的实验研究[J].河南科学,2011,30(3):368-371.
    [91]王晓燕,李芳,葛蕴珊,等.甲醇柴油与生物柴油微粒排放粒径分布特性[J].农业机械学报,2009,40(8):7-12.
    [92]周颖超.甲醇柴油混合燃料理化性质及羰基污染物排放特性的研究[D].天津:天津大学,2007.
    [93]潘芝桂,邵毅明.单缸柴油机掺烧不同比例甲醇混合燃料的仿真研究[J].北京汽车,2011,(1):29-32.
    [94]周庆辉,纪威,王夺.甲醇-柴油混合燃料燃烧的数值模拟[J].小型内燃机与摩托车,2008,37(6):20-22.
    [95]向晋华.直喷式柴油机燃用甲醇-二甲醚混合燃料排放特性的研究[D].太原:太原理工大学,2006.
    [96]黄华.二甲醚-生物柴油混合燃料对柴油机性能与排放影响的试验研究[D].南宁:广西大学,2007.
    [97]郑尊清,尧命发,汪洋,等.二甲醚均质压燃燃烧过程的试验研究[J]燃烧科学与技术,2003,9(6):561-565.
    [98]张俊军.二甲醚发动机燃烧与排放特性及其性能优化[D].上海:上海交通大学,2009.
    [99]李玉琦.二甲醚-生物柴油及其混合燃料物性估算和缸内工作过程模拟研究[D].北京:北京交通大学,2008.
    [100] Hunt RG, Franklin WE. LCA-How it came about[J]. The International Journal of Life CycleAssessment,1996, l(l):4-7.
    [101]张亮.车用燃料煤基二甲醚的生命周期能耗、环境排放与经济性研究[D].上海:上海交通大学,2007.
    [102] Furuholt G. Life cycle assessment of gasoline and diesel[J]. Resources, Conservation andRecycling,1995,14(3-4):251-263
    [103] Kaltschmitt M, Reinhardt GA, Stelzer T. Life cycle analysis of biofuels under differentenvironmental aspects[J].Biomass and Bioenergy,1997,12(2):121-134.
    [104] Bull SR. Renewable alternative fuels: Alcohol production from lignocellulosic biomass[J].Renewable Energy,1994,5(5-8):799-806.
    [105] Camobreco V, Sheehan J, Duffield J, etc. Understanding the life-cycle costs and environmentalprofile of biodiesel and petroleum diesel fuel[J]. SAE Paper2000-01-1487.
    [106]孙柏铭,严瑞.生命周期评价方法及在汽车代用燃料中的应用[J].现代化工,1998,(7):34-39.
    [107]胡志远,张成,蒲耿强,等.木薯乙醇汽油生命周期能量、环境及经济性评价[J].内燃机工程,2004,25(1):13-16.
    [108]张艳丽,高新星,王爱华,等.我国生物质燃料乙醇示范工程的全生命周期评价[J].可再生能源,2009,27(6):63-68.
    [109]李小环,计军平,马晓明,等.基于EIO-LCA的燃料乙醇生命周期温室气体排放研究[J].可再生能源,2009,27(6):63-68.
    [110]邢爱华,马捷,张英皓,等.生物柴油环境影响的全生命周期评价[J].清华大学学报(自然科学版),2010,50(6):917-921.
    [111]朱祺.生物柴油的生命周期能源消耗、环境排放与经济性研究[D].上海:上海交通大学,2008.
    [112]胡志远,谭丕强,楼狄明,等.不同原料制备生物柴油生命周期能耗和排放评价[J].农业工程学报,2006,22(11):141-146.
    [113]易红宏,朱永青,王建昕,等.含氧生物质燃料的生命周期评价[J].环境科学,2005,26(6):28-32.
    [114]师新广,雷廷宙,王志伟,等.玉米秸秆基二甲醚的生命周期能耗和温室气体排放分析[J].可再生能源,2009,27(3):60-64.
    [115]刘仁庆.纤维素化学基础[M].北京:科学出版社,1985.
    [116]宋杰,侯永法.微晶纤维素的性质与应用[J].纤维素科学与技术,1995,3(3):1-10.
    [117]詹怀宇.纤维化学与物理[M].北京:科学出版社,2005.
    [118]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版社,2005.
    [119]孙立.生物质发电产业技术[M].北京:化学工业出版社,2011.
    [120]马隆龙.木质纤维素化工技术及应用[M].北京:科学出版社,2010.
    [121]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11(1):42-55.
    [122]农业部科技教育司.全国农作物秸秆资源调查与评价报告[R].2010.
    [123] Wang ZW, Lei TZ, Yan XY, et al. Assessment and utilization of agricultural residue resources inHenan province,China[J].BioResources,7(3):3847-3861.
    [124] Janssen A, Pischinger S, Muether M. Potential of cellulose-derived biofuels for soot free dieselcombustion[J].SAE Technical Paper,2010,3(1):70-84.
    [125] EU-Funded Project Targets Sustainable Production of Ethyl Levulinate from Biomass as DieselMiscibile Biofuel. http://www.ongreen.com.
    [126]周龙保.内燃机学[M].北京:机械工业出版社,1999.
    [127]张全长,尧命发,郑尊清,等.正丁醇对柴油机低温燃烧和排放的影响[J].燃烧科学与技术,2010,16(4):363-368.
    [128]邓聚龙.灰色理论基本方法[M].武汉:华中理工大学出版社,1996
    [129]周秀文.灰色关联度的研究与应用[D].长春:吉林大学,2007.
    [130] Lu IJ, Lin SJ, Lewis C.Grey relation analysis of motor vehicular energy consumption inTaiwan[J].Energy Policy,2008,36(7):2556–2561.
    [131] Lee WS, Lin YC. Evaluating and ranking energy performance of office buildings using Greyrelational analysis[J].Energy,2011,36(5):2551-2556.
    [132] Chang TC, Lin SJ. Grey relation analysis of carbondioxide emissions from industrial productionand energy uses in Taiwan[J].Journal of Environmental Management,1999,56(4):247-257.
    [133] Yuan CQ, Liu SF, Fang ZG, et al. The relation between Chinese economic development andenergy consumption in the different periods[J].Energy Policy,2010,38(9):5189-5198.
    [134] GB/T19147-2009车用柴油标准[S].北京:中华人民共和国国家质量监督检验检疫总局,2009.
    [135] GB/T25199-2010生物柴油调和燃料(B5)[S].北京:中华人民共和国国家质量监督检验检疫总局,2010.
    [136]魏宇彤,田松柏.直馏柴油馏分凝点、倾点、冷滤点的相关性研究[J].石油炼制与化工,2009,40(10):13-18.
    [137]张春化,吴占文,边耀璋,等.生物柴油性能标准分析及建立健全标准体系的建议[J].农业工程学报,2010,26(3):298-303.
    [138] SH/T0248-2006柴油和民用取暖油冷滤点测定法[S].北京:中华人民共和国国家发展和改革委员会,2006.
    [139] GB510-1991石油产品凝点测定法[S].北京:国家标准局,1983.
    [140]何学良,詹永厚,李疏松编著.内燃机燃料[M].北京:中国石化出版社,2004
    [141] GB/T6536-2010石油产品常压蒸馏特性测定法[S].北京:中华人民共和国国家质量监督检验检疫总局,2011.
    [142]何勇灵,徐斌(译).柴油机管理系统[M].北京:北京理工大学出版社,2010.
    [143] GB265-1988石油产品运动粘度测定法和动力粘度计算法[S].北京:中国石油化工总公司,1988.
    [144] GB/T1884-2000原油和液体石油产品密度实验室测定法(密度计法)[S].北京:国家质量技术监督,2000.
    [145]邢春鸿.直喷式柴油机燃用生物柴油的性能与排放研究[D].太原:太原理工大学,2007.
    [146] GB/T261-2008闪点的测定宾斯基-马丁闭口杯法[S].北京:中华人民共和国国家质量监督检验检疫总局,2008.
    [147] SH/T0175-2004馏分燃料油氧化安定性测定法(加速法)[S].北京:中华人民共和国国家发展和改革委员会,2004.
    [148]王文山.柴油发动机管理系统[M].北京:机械工业出版社,2009.
    [149] GB11139-1989馏分燃料十六烷指数计算法[S].北京:中国石油化工总公司,1989.
    [150]耿莉敏.生物柴油/柴油混合燃料的理化性能分析与喷雾特性改善[D].长安大学,2009.
    [151] GB264-1983石油产品酸值测定法[S].北京:国家标准局,1983.
    [152] GB380-1977石油产品硫含量测定法(燃灯法)[S].北京:国家标准计量局,1977.
    [153] GB5096-1985石油产品铜片腐蚀试验法[S].北京:国家标准局,1985.
    [154] GB260-1977石油产品水分测定法[S].北京:国家标准计量局,1977.
    [155] GB/T511-2010石油和石油产品及添加剂机械杂质测定法[S].北京:中华人民共和国国家质量监督检验检疫总局,2010.
    [156] GB508-1985石油产品灰分测定法[S].北京:国家标准局,1985.
    [157] GB268-1987石油产品残炭测定法(康氏法)[S].北京:中国石油化工总公司,1987.
    [158] GB384-1981石油产品热值测定法[S].北京:国家标准总局,1981.
    [159]傅立.灰色系统理论及其应用[M].北京:科学技术文献出版社,1992.
    [160]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.
    [161]杨建新,徐成,王如松.产品生命周期评价方法及应用[M].北京:气象出版社,2002.
    [162]邓南圣,王小兵.生命周期评价[M].北京:化学工业出版社,2003.
    [163] SETAC. A Technical Framework for Life Cycle Assessment. Washington, D.C.: Society forEnvironmental Toxicology and Chemistry,1993. http://www.setac.org.
    [164] ISO14040~14044: Environmental management life cycle assessment principles and framework[S].Geneva: International Organization for Standardization,1997.
    [165]利娜.基于LCA的生物柴油技术经济评价研究[D].天津:天津大学,2011.
    [166]邱彤,孙柏铭,洪学伦.燃料电池汽车氢源系统的生命周期EEE综合评估[J].化工进展,2003,22(4):448-453.
    [167]孙柏铭.生命周期评价方法及在汽车代用燃料中的应用[J].现代化工,1998,18(7):34-38.
    [168]朱丽娜.基于生命周期的替代汽车燃料方案的综合评价[D].重庆:重庆大学,2006.
    [169]冷如波.产品生命周期3E+S评价与决策分析方法研究[D].上海:上海交通大学,2007.
    [170]朱金陵,王志伟,师新广,等.玉米秸秆成型燃料生命周期评价[J].农业工程学报,2010,26(6):262-266.
    [171]许英武.生物柴油生命周期分析与发动机低温燃烧实验研究[D].上海:上海交通大学,2010.
    [172]董进宁.生物柴油制取的LCA及其技术经济性分析[D].广州:华南理工大学,2010.
    [173]日本能源学会(编),史仲平,华兆哲(译).生物质和生物能源手册[M].北京:化学工业出版社,2007.
    [174]李京京.中国生物质资源可获得性评价[M].北京:中国环境科学出版社,1998.
    [175]杨树华,雷廷宙,何晓峰,等.生物质致密冷成型原料最佳收集半径的研究[J].农业工程学报,2006(S):132-134.
    [176]陈丽能,林鸿,徐展峰,等.农村运输机械耗油量数学模型的研究[J].浙江大学学报(农业与生命科学版),2003,29(2):185-187.
    [177]祖力,王羽,郭栋,等.车载质量排放率测试系统开发与试验研究[J].长春理工大学学报(自然科学版),2010,33(1):89-92.
    [178] Ou XM, Yan XY, Zhang XL. Life-cycle energy consumption and greenhouse gas emissions forelectricity generation and supply in China[J]. Apply Energy,2011,88(1):289-297.
    [179]彭运芳.新编技术经济学[M].北京:北京大学出版社,2009.
    [180]贾小黎.秸秆直接燃烧供热发电项目-资源可供性调研和相关问题的研究(1)[J].太阳能,2006,(2):9-15.
    [181]张怀春.火力发电厂锅炉经济运行讨论及分析[J].锅炉技术,2011,42(4):38-40.
    [182] GB13271-2001锅炉大气污染物排放标准[S].北京:中华人民共和国环境保护局,2001.