不同年龄阶段泛素蛋白在神经组织表达特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:神经系统常见的神经退行性疾病如阿尔茨海默病(Alzheimer’s Disease,AD)、帕金森病(Parkinson’s Disease,PD)、亨廷顿病(Huntington’s Disease,HD)和肌萎缩侧索硬化(Amyotrophic lateral sclerosis,ALS)等病因大多不明,发病机制和病理表现复杂,临床表现各异。但此类疾病的共同特点是中老年人发病,其发病率随年龄的增加而增高;而且共同的病理特征为在特异性神经元中存在异常蛋白聚集体和/或包涵体,并且这些异常蛋白聚集体或包涵体呈泛素阳性反应。因此,了解泛素在人类老化过程中的表达特征无疑对研究神经变性疾病有重要的意义。
     泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)是细胞内蛋白质降解的主要途径,降解80%以上的细胞内错误折叠蛋白或其他突变蛋白。研究认为泛素蛋白酶体降解通路失调可导致异常蛋白在细胞内积聚,并进一步引起细胞功能紊乱及变性。UPS功能异常可以发生于UPS途径的任何一个环节,如泛素化过程中泛素量的失衡,泛素结合过程中泛素活化酶E1,泛素结合酶E2,泛素连接酶E3功能失调,蛋白酶体降解水平失调或去泛素化水平失调等。观察泛素蛋白酶体降解系统在神经退行性疾病易感组织及不同年龄阶段的表达具有重要的意义。以往对于泛素蛋白表达与年龄相关性的研究较少,国内尚无此类研究。因此本实验旨在观察泛素蛋白在中枢神经退行变性疾病易感区及不同年龄阶段的表达及分布特点,探讨泛素蛋白水平与神经变性疾病相关性,从而为理解神经变性疾病的年龄相关性提供理论依据。
     方法:年龄分别为3个月、6个月、9个月、12个月的正常健康ICR小鼠各3只,雌雄不限,10%水合氯醛350mg/kg腹腔注射麻醉后,心脏灌注4%多聚甲醛固定20min,分别冠状切取嗅球后至视交叉前脑组织、冠状切取视交叉后1mm至中脑下丘之前的脑组织、切取脊髓腰膨大及部分肝脏组织(作为对照组织),均以4%多聚甲醛固定48h,梯度酒精脱水,二甲苯透明,石蜡包埋,常规组织切片(5μm厚)。5μm厚的石蜡切片用于免疫组织化学方法检测泛素蛋白的表达及分布特点。
     采用真彩色医学图像分析软件(Midia Cybernet公司Image-pro Plus5.0图像分析系统)和人工计数方法对小鼠大脑运动皮层Betz大锥体细胞层、海马CA1区锥体细胞层、中脑黒质致密部、腰膨大脊髓前角及肝脏组织进行图像采集、光密度分析和泛素蛋白阳性细胞计数。
     结果:
     1泛素蛋白阳性区域平均积分光密度(MIOD)
     大脑运动皮层Betz大锥体细胞层、海马CA1区锥体细胞层、中脑黒质致密部、肝脏组织泛素蛋白阳性区域的平均积分光密度均未随增龄而有明显变化(P>0.05);脊髓前角泛素蛋白阳性区域平均积分光密度随增龄存在统计学差异(P<0.05),其中6个月月龄组与3个月月龄组相比,平均积分光密度明显降低(P<0.05),9个月月龄组与6个月月龄组相比,平均积分光密度亦有明显降低(P<0.05),12个月月龄组与9个月月龄组相比,平均积分光密度无差别(P>0.05)。
     2泛素蛋白阳性细胞计数
     2.1大脑运动皮层Betz大锥体细胞层3个月月龄组、6个月月龄组、9个月月龄组、12个月月龄组相邻组之间相比,泛素蛋白阳性神经元数目均无明显变化(P>0.05);而12个月月龄组与6个月月龄组相比,与3个月月龄组相比,泛素蛋白阳性神经元数目明显减少(P<0.05);9个月月龄组与3个月月龄组相比泛素蛋白阳性神经元数目亦明显减少(P<0.05)。
     2.2海马CA1区锥体细胞层6个月月龄组与3个月月龄组相比泛素蛋白阳性神经元数目无明显变化(P>0.05);6个月、9个月、12个月三个月龄组之间相比泛素蛋白阳性神经元数目明显减少(P<0.05)。
     2.3中脑黒质致密部6个月月龄组与3个月月龄组相比泛素蛋白阳性神经元数目无明显变化(P>0.05);9个月月龄组与6个月月龄组相比,与3个月月龄组相比泛素蛋白阳性神经元数目均有明显减少(P<0.05);12个月月龄组与6个月月龄组相比,与3个月月龄组相比泛素蛋白阳性神经元数目均有明显减少(P<0.05)。2.4腰膨大脊髓前角9个月、12个月月龄组分别与3个月月龄组相比泛素蛋白阳性神经元数目均有明显减少(P<0.05);9个月、12个月月龄组分别与6个月月龄组相比,泛素蛋白阳性神经元数目均有明显减少(P<0.05),12个月月龄组与9个月月龄组相比,泛素蛋白阳性神经元数目无明显变化(P>0.05)。
     2.5肝脏组织各月龄组泛素蛋白阳性细胞数未见明显变化(P>0.05)。
     结论:随着年龄增长,大脑运动皮层、海马、黒质及腰膨大脊髓前角神经退行性疾病易感区内泛素蛋白表达阳性神经元数目逐渐减少;而除了腰膨大脊髓前角,泛素蛋白表达在神经元内含量均不随年龄增长而减少。
Objective: Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS) are very common in clinic, most of which are unclear in etiology, complex in pathogenesis and pathology, and vary in clinical manifestations. However, there are two common features of these diseases. The onset stage of these diseases is in old age and its incidence increases with aging; The common pathological hallmark of many neurodegenerative diseases is the presence of ubiquitin-positive, intra or extracellular inclusion bodies in affected regions of the brain. So people pay close attention to the role of the ubiquitin-proteasome system in the neurodegenerative diseases.
     Ubiquitin-proteasome system (UPS) is the main path of the protein degradation within cells, which can degrade 80% of the intracellular misfolded protein or mutein. Previous studies suggested that disorders of ubiquitin-proteasome degradation pathway can lead to the accumulation of abnormal proteins in cells, leading to cell dysfunction and degeneration. UPS dysfunction can occur in any part of UPS pathway, such as the imbalance in the quantity of ubiquitin, dysfunction of E1, E2 or E3 in ubiquitin-binding process, disorder of proteasome degradation or deubiquitination. Therefore, it is significant to observe the expression of ubiquitin-proteasome system in the areas of liability to neurodegenerative diseases in different age stages.
     The study for the correlation of ubiquitin protein expression and age is less in the past, and there is no such reaserch in this field in our country. Therefore, this experiment aims to observe the expression and distribution features of the ubiquitin protein in susceptible areas of neurodegenerative diseases in different age stages, approach the correlation of the level of ubiquitin protein and neurodegenerative diseases and thus provide a theoretical basis for understanding age-relateness of neurodegenerative diseases.
     Methods: 3 healthy ICR mice were used in each group of aged 3 months, 6 months, 9 months and 12 months. After anesthesia, animal tissues were fixated via heart perfusion by 4% paraformaldehyde for 20min. Brain tissue from posterior of olfactory bulb to anterior of optic chiasma, brain tissue from 1mm after optic chiasma to midbrain inferior colliculus were cut coronarily; intumescentia lumbalisa of spinal cord and a part of liver tissue(as control group tissue) were cut. All the tissues cut above were fixated in 4% paraformaldehyde for 48h. Then they were dehydrated by gradient ethanol, transparentized by xylene, embedded by paraffin and made into conventional histological sections futher (5μm thick). 5μm thick paraffin sections were used to Immunohistostain for detection of ubiquitin-protein expression and distribution.
     True color medical image analysis software (Midia Cybernetic Corpo- ration Image-pro Plus5.0 image analysis system) and manual counting methods were used to capture images from Betz's cell layer of cerebral motor cortex, hippocampal CA1 pyramidal cell layer, the pars compacta of midbrain nigral, spinal cord anterior horn of lumbar intumescentia and the liver tissue, to analysis optical density and to counts ubiquitin-positive cell.
     Results:
     1 Mean integral opitcal density (MIOD) of Ubiquitin-positive staining region
     The MIOD values of the ubiquitin-positive region of Betz's cell layer of cerebral motor cortex, hippocampal CA1 pyramidal cell layer, the pars compacta of midbrain nigral and liver tissue showed that there was no significant differencese (P>0.05). The MIOD values of ubiquitin-positive region in spinal cord anterior horn of lumbar intumescentia were decreased with aging (P<0.05). The MIOD value of the 12 months old group was significantly lower than that of 3 months old group (P<0.05), 6 months old group and 9 months old group. 9 months old group was also significantly lower than the 3 months old group (P<0.05).
     2 Count of ubiquitin-positive cell
     2.1 The Betz's cell layer of cerebral motor cortex
     There was no significant diference in number of ubiquitin-positive cell between the adjacent groups of 3 months old group, 6 months old group, 9 months old group and 12 months old group (P>0.05); 12 months old group was lower than 6 months old group and 3 months old group (P<0.05). 9 months old group was lower than 3 months old group (P<0.05).
     2.2 The pyramidal cell layer of hippocampal CA1 subfield
     Comparisons showed significantly and gradually decrease in the number of ubiquitin-positive cell among 3 months old group, 6 months group, 9 months group and 12 months group (P<0.05).
     2.3 The pars compacta of midbrain nigral
     There was no significant diference in number of ubiquitin-positive cell between 6 months old group and 3 months old group (P>0.05). 9 months old group was significantly lower in the number of ubiquitin-positive cell compared with both 6 months old group (P<0.05) and 3 months old group (P<0.05). 12 months old group was significantly lower in the number of ubiquitin-positive cell compared with both 6 months old group (P<0.05) and 3 months old group (P<0.05).
     2.4 Spinal cord anterior horn of lumbar intumescentia
     There was no significant diference in number of ubiquitin-positive cell between 6 months old group and 3 months old group (P>0.05). 9 months old group was significantly lower in the number of ubiquitin-positive cell compared with both 6 months old group (P<0.05) and 3 months old group (P<0.05). 12 months old group was significantly lower in the number of ubiquitin-positive cell compared with both 6 months old group (P<0.05) and 3 months old group (P<0.05).
     2.5 Liver tissue
     The ubiquitin-positive cell number of each month age group showed no significant difference (P>0.05).
     Conclusions:
     The number of ubiquitin-positive cell in the areas of liability to neurodegenerative diseases, such as cerebral motor cortex, hippocampus, midbrain nigral and spinal cord anterior horn of lumbar intumescentia, decreased with aging. The MOID of reservated ubiquitin-positive neuron has no significant difference except the spinal cord anterior horn of lumbar intumescentia.
引文
1 George P, Charles W. The Rat Brain—in stereotaxic coordinates. Academic Press, 1998
    2肖向建,刘卫刚,马征等.大脑运动区脑片培养及皮层锥体细胞的组化鉴定.脑与神经疾病杂志.2005,13(1):9-11
    3何宏文,姚志斌,陈以慈.海马CA1区锥体细胞的衰老性变化—超微结构定量分析.广州解剖学通报,1995,17(1):38-41
    4张建枝,丁艳霞,刘洪梅等.大鼠黒质发育的形态学研究.徐州医学院学报,2005,25(2):95-99
    5 Schwartz AL, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Phar- macol Toxicol, 2009, 49: 73-96
    6 Yi JJ, Ehlers MD. Ubiquitin and protein turnover in synapse function. Neuron, 2005, 47(5): 629-632
    7 Vissers JH, Nicassio F, van Lohuizen M, et al. The many faces of ubiquitinated histone H2A: insights from the DUBs. Cell Div, 2008, 3: 8
    8 Grant EP, Michalek MT, Goldberg AL, et al. Rate of antigen degradation by the ubiquitin-proteasome pathway influences MHC class I presentation. J Immunol, 1995, 155(8): 3750-3758
    9 Liu YC. Ubiquitin ligases and the immune response. Annu Rev Immunol, 2004, 22: 81-127
    10 Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol, 2005, 6(1): 79-87
    11 Demartino GN, Gillette TG. Proteasomes: machines for all reasons. Cell,2007, 129(4): 659-662
    12 Yi JJ, Ehlers MD. Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev, 2007, 59(1): 14-39
    13 Ciechanover A, Brundin P. The ubiquitin proteasome system in neurode- generative diseases: sometimes the chicken, sometimes the egg. Neuron, 2003, 40(2): 427-446
    14 Bedford L, Hay D, Paine S, et al. Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease? Biochim Biophys Acta, 2008, 1782(12): 683-690
    15 Golab J, Bauer TM, Daniel V, et al. Role of the ubiquitin-proteasome pathway in the diagnosis of human diseases.Clin Chem Acta, 2004, 340(1-2): 27-40
    16 Wakabayashi K, Engeleender S, Yoshimoto M, et al. Synphilin-1 is present in Lewy bodies in Parkinson’s Disease. Ann Neurol, 2000, 47(4): 521-523
    17 Spillantini MG, Crowther RA, Jakes R, et al. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s Disease and dementia with Lewy bodies.Proc Natl Acad Sci USA, 1998: 95(11), 6469-6473
    18 Gomez-Tortosa E, Newell K, Irizarry MC, et al. Alpha-Synuclein immunoreactivity in dementia with Lewy bodies:morphological staging and comparison with ubiquitin immunostaining. Acta Neuropathol, 2000, 99(4): 352-357
    19 Irizarry MC, Growdon W, Gonmez-Isla T, et al. Nigral and cortial Lewy bodies and dystrophic nigral neuritiea in Parkinson’s Disease and cortical Lewy body disease contain alpha-Synuclein immunoreactivity. J Neuro- pathol Exp Neurol, 1998, 57: 334-337
    20 Gai WP, Yuan HX, Li XQ, et al. In situ and in vitro study of colocalization and segregation of alpha-Synuclein, ubiquitin, and lipids in Lewy bodies. Exp Neurol, 2000, 166: 324-333
    21 Periquet M, Fulga T, Myllykangas L, et al. Aggregatedα-Synuclein mediates dopaminergic neurotoxicity in vivo. J Neurocsi, 2007, 27: 3338- 3346
    22 Arima K, Hirai S, Sunohara N, et al. Cellular co-localization of phos phorylated tau- and NACP/ alpha-Synuclein-epitopes in Lewy bodies in sporadic Parkinson’s Disease and in dementia with Lewy bodies. Brain Res, 1999, 843: 53-61
    23 Giorgi FS, Bandettini di Poggio A, Battaglia G, et al. A short overview on the role of alpha2synuclein and proteasome in experimental models of Parkinson’s disease. J Neural Transm Suppl, 2006, (70) : 105-109
    24 Clarke CE. Parkinson’s disease. BMJ, 2007, 335: 441-445
    25 Sun F, Anantharam V, Latchoumycandane C, et al. Dieldrin induces ubiquitin-proteasome dysfunction in alpha-synuclein overexpressing dopaminergic neuronal cells and enhances susceptibility to apoptotic cell death. J Pharm acol Exp Ther, 2005, 315: 69-79
    26 BovéJ, Prou D, Perier C, et al. Toxin-induced models of Parkinson′s disease. Neuro Rx, 2005, 2: 484-494
    27 Zeng BY, Iravani MM, Lin ST, et al. MPTP treatment of common marmosets impairs proteasomal enzyme activity and decreases expression of structural and regulatory elements of the 26S proteasome.Euro J Neurosci, 2006, 23: 1766-1774
    28 Biasini E, Fioriti L, Ceglia I, et al. Proteasome inhibition and aggregation in Parkinson′s disease: a comparative study in untransfected and transfected cells. J Neurochem, 2004, 88: 545-553
    29 Moore DJ, Dawson VL, Dawson TM. Role for the ubiquitin-proteasome system in Parkinson′s disease and other neurodegenerative brain amyloidoses. Neuromolecular Med, 2003, 4: 35-84
    30 Kinoshita A, Tomimoto H, Suenaga T, et al. Ubiquitin-related cytoskeletal abnormality in frontotemporal dementia: immnohistochemical and im- munoelectron microscope studies. Acta Neuropathol, 1997, 94: 67-72
    31张巍,袁云,王鲁宁等.泛素阳性包涵体在运动神经元病的表达.中华神经科杂志,2001,34(1):23-25
    32 Ardley HC, Robinson PA. The role of ubiquitin-protein ligases in neuro- degenerative disease. Neurodegenerative Dis, 2004, 1(1): 71-87
    33 Cheroni C, Marino M, Tortarolo M, et al. Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. Hum Mol Genet, 2009, 18: 82-96
    34 Urushitani M, Kurisu J, Tsukita k, et al. Proteasomal inhibition by mis- folded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem, 2002, 83: 1030-1042
    35 Cristina C, Marianna M, Massimo T, et al. Functional alterations of the ubiquitin-proteasome systerm in motor neurons of a mouse model of familial amyotrophic lateral sclerosis.Human Molecular Genetics, 2009, 18(1): 82-96
    36 Wang CE, Tydlacka S, Orr AL, et al. Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington’s disease. Hum Mol Genet 2008, 17: 2738-2751
    37 Wang J, Wang CE, Orr A, et al. Impaired ubiquitin-proteasome system activity in the synapses of Huntington’s disease mice. J Cell Biol, 2008, 180: 1177-1189
    38 Casey C, Jennifer G, Judith D, et al. Aging Is Not Associated with Pro- teasome Impairment in UPS Reporter Mice. PloS ONE, 2009, 4(6): 5881-5888
    39 Valera AG, Diaz-Hernandez M, Hernandez F, et al. The biquitin- proteasome system in Huntington’s disease. Neuroscientist, 2005, 11: 583-594
    40 Satoh J, Kuroda Y. A polymorphic variation of serine to tyrosine at codon
    18 in the ubiquitin C-terminal hydrolase-L1 gene is associated with a reduced risk of sporadic Parkinson’s disease in a Japanese population. J Neurol Sci, 2001, 189(122): 113-117
    41 Setsuie R, Wada K. The functions of UCH-L1 and its relation to neuro-degenerative diseases. Neurochem Int, 2007, 51 ( 2-4 ): 105-111
    42 Tank EM, True HL. Disease-associated mutant ubiquitin causes pro- teasomal impairment and enhances the toxicity of protein aggregates. PLoS Genet, 2009, 5: 382-391
    43 Yikoski R, Salonen O, Mantyla R. Hippocampal and temporal lobe and age-related decline in memory. Acta Neurol Ssnd, 2000, 101(4): 273-278
    44刘昌,李德明.大脑老化研究及其进展.自然杂志,1996,18(5):286-290
    45 Ingram DK, Jucker M. Developing mouse models of aging: a con- sideration of strain differences in age-related behavioral and neural parameters. Neurobiology of Aging, 1999, 20: 137-145
    1 Yamada M, Furukawa Y, Hirohata M. Amyotrophic lateral sclerosis: frequent complications by cervical spondylosis. J Orthop Sci, 2003, 8(6): 878-881
    2刘明生,崔丽英,汤晓芙,等.肌萎缩侧索硬化症90例胸锁乳突肌肌电图的特点.中华神经科杂志, 2002, 35(6): 361-364
    3孙宇,陆琪宏.第二届颈椎病专题座谈会纪要.中华外科杂志, 1993, 31(8): 472-476
    4 Jean P, Jean-philippe A, Francoise BT, et al. The Diagnosis of Amyotrophic Lateral Sclerosis. Pathogenesis and Therapy of Amyotrophic Lateral Sclerosis. Neurology, 1995, 68(1): 143-152
    5 Elisabeth S, Louwerse, Pater AE, et al. Differential diagnosis of sporadic amyotrophic lateral sclerosis, progressive spinal muscular atrophy and progressive bulbar palsy in adults. Handbook of Clinical Neurology, 1991, (1)59: 383-423
    6 Ting ML, Simon JD, Eva Alberman, et al. Differential diagnosis of mo toneurone disease from other neurological conditions. The Lancet, 1986, 2: 73-76
    7康德,王宣,樊东升.胸锁乳突肌肌电图在鉴别肌萎缩侧索硬化与颈椎病性脊髓病的研究.中国神经精神疾病杂志,1994,20(1):5-7
    8潘旭东,韩仲岩,潘自清.运动神经元疾病与脊髓型颈椎病的误诊和病因探讨.中国脊柱脊髓杂志,1995,5:145-148
    9余家阔,汪发贵.实验性颈椎应力应变分布改变对颈椎组织结构的影响.中华外科杂志,1993,31(8):456-460
    10姜凤英,薛一帆,丁铭臣.肌萎缩侧索硬化与颈椎病鉴别诊断方法的评估.临床神经病学杂志,2000,13(6):342-344
    11 Ting ML, Simon JD, Eva Alberman, et al. Differentialdiagnosis of mo- toneurone disease from other neurological conditions. The Lancet, 1986, 2: 731
    12潘旭东,韩仲岩,潘自清.运动神经元疾病与脊髓型颈椎病的误诊和病因探讨.中国脊柱脊髓杂志,1995,5:145-148
    13贾连顺.颈椎病研究的现状进展和展望.中国矫形外科杂志,2001, 8(8):733-734
    14刘成.脊髓型颈椎病的诊断及进展.骨与关节损伤杂志,2002,17(1): 74-76
    15 Boman K and Meurman T. Prognosis of amyotrophic lateral sclerosis. Acta Neurol Scand, 1967, 43: 489
    16许春林,周鹏,高雪梅.脊髓型颈椎病的MRI改变及其临床意义.实用医学影像杂志,2006,7(4):232-234
    17庄立,汤晓芙,樊东升等.肌萎缩侧索硬化患者膈肌运动诱发电位.中华内科杂志,2002,41(4):241-243
    18 Veldink JH, Kalmijn S, Groeneveld GJ, et al. Physical activity and the association with sporadic ALS. Neurology, 2005 ,64(2): 241-245
    19崔丽英.神经电生理检查在脊髓型颈椎病与肌萎缩侧索硬化症中的应用价值.中国脊柱脊髓杂志, 2000,10(4):254-256
    20刘明生,崔丽英,汤晓芙等.肌萎缩侧索硬化症90例胸锁乳突肌肌电图的特点.中华神经科杂志,2002,35(6):361-364
    21王春芝,丁卫江,徐丽君.神经电图与肌电图评估肌萎缩侧索硬化症与脊髓型颈椎病患者的神经电生理差异.中国临床康复,2009,9(29): 230-232
    22 Truffert A, Rosler KM, Magistris MR, et al. Amyotrophic lateral sclerosisversus cervical spondylotic myelopathy: a study using transcranial magnetic stimulation with recordings from the trapezius and limb muscle. Clinical Neurophysiology, 2000, 111(6): 1031-1038
    23诸兴明,万琦,杜宇平.肌电图在脊髓型颈椎病诊断与鉴别诊断中的应用.脊柱外科杂志,2008,6(4):214-216
    24齐华光,张来康,程永贤.脊髓型颈椎病与肌萎缩性侧索硬化的电生理研究.中华物理医学与康复杂志,2004,26(12):758-759
    25樊东升,康德瑄.上肢DSSEPs对ALS与CSM鉴别诊断的研究.中国神经精神疾病杂志,1993,19(1):9-11
    26崔丽英,汤晓芙,刘明生等.单纤维肌电图在68例运动神经元病患者中的研究.中华神经科杂志,2002,35(5):290-293
    27张为西,吕建敏.运动神经元病的单纤维肌电图的研究.中国神经精神疾病杂志,1997,23(6):341-343
    28 Brooks BR, Lewis D, Rawling J, et al. The natural history of amyotrophic lateral sclerosis in Motor neuron disease. Chapman & Hall Medical, 1994, 1: 31
    29王振虎,彭阿钦.脊髓型颈椎病的治疗进展.实用骨科杂志,2008,14(4): 221-224
    30 Rao RD, Gourab K, David KS, et al. Operative treatment of cervical spondylotic myelopathy. The journal of bone and joint surgery, 2006,88(7): 1619-1640
    31 Chagas H, Domingues F, Aversa A. Cervical spondylotic myelopathy: 10 years of prospective outcome analysis of anterior decompression and fusion. Surgical Neurology, 2005, 64(1): 30-35
    32 Jankowitz BT, Gerszten PC. Decompression for cervical myelopathy. The Spine Journal, 2006, 6(6): 317-322
    33 Yamada M, Furukawa Y, Hirohata M. Amyotrophic lateral sclerosis: frequent complications by cervical spondylosis. J Orthop Sci, 2003, 8(6): 878-881
    34肖岚,张付峰,姜海燕等.肌萎缩侧索硬化合并颈椎病的临床特点分析.中国临床神经科学,2007,15(1):64-67
    35吴相春,来静,李铮等.肌萎缩侧索硬化症与脊髓型颈椎病相互关系的探讨.脑与神经疾病杂志,2003,11(2):111