若干非线性Schr(o|¨)dinger方程及其相关问题的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对微分方程数值解法的研究不仅是计算数学的重要内容,而且在其它学科领域也具有广泛应用,如计算物理、化学、生物等。在现实世界中,绝大部分问题所对应的数学模型是非线性微分方程,其中之一就是非线性Schr(o|¨)dinger(NLS)方程。NLS方程在物理学的很多领域都发挥着重要作用。所以,本文围绕NLS方程及其相关问题用数值方法进行求解和研究。本文主要采用的数值方法有正交样条配置(OSC)方法、有限差分法和分裂步方法等。
     本文首先为带波动算子的NLS方程和耦合非线性Klein-Gordon-Schr(o|¨)dinger方程构造了时间离散OSC方法。从理论上严格证明了格式的守恒性、收敛性和稳定性,并用数值实验检验了理论结果。
     分裂步方法能与有限差分法、谱方法、有限元方法等相结合形成有效的数值方法,但是分裂步方法与OSC方法相结合的工作却没有找到。所以,本文将这两种方法结合起来形成新的数值方法,称为分裂步OSC(SSOSC)方法。将此方法用于数值求解一维耦合NLS方程,并与其它三种时间离散OSC格式相比较,发现SSOSC方法最有效。如此,分裂步方法与OSC方法的结合是可行的。
     鉴于SSOSC方法的可信性和有效性,此方法又被推广到求解多维NLS方程上。经大量数值实验的检测,本次推广也是成功的。由于用OSC方法求解三维问题的研究工作还没有发现,本文的这部分工作也算是振奋人心的。另外,考虑到NLS方程中依赖于时间的势函数有时候是不能关于时间变量精确积分的,这样就减弱了分裂步方法的优势。本文用数值积分方法解决了这个问题,而且没有降低原方法的精度阶数。值得一提的是,本文采用的数值积分方法不仅对SSOSC方法有效,对分裂步有限差分方法和分裂步Fourier谱方法也同样有效。
     Ginzburg-Landau(GL)方程是比NLS方程更复杂的模型,其方程系数都是复数类型的。Kuramoto-Tsuzuki方程从形式来看是一个一维三次GL方程,本文用有限差分法来数值求解该方程,从理论上论证了非线性差分格式与线性化差分格式的关系,并通过数值算例进行验证。对二维三次GL方程,本文构造了一个分裂步有限差分格式和一个分裂步交替方向隐式格式,分析了两个格式之间的关系,用方程的平面波解来研究格式的性质,并用线性化分析方法讨论格式的稳定性。数值实验检测了格式的数值性能。对多维三次-五次GL(CQGL)方程,本文用分裂步紧有限差分(SSCFD)方法来数值求解。首先,将CQGL方程分裂成两个非线性子问题和一个或多个线性子问题,用紧有限差分格式求解线性子问题。由于非线性子问题不能像通常情况那样直接精确积分求解,导致常规的SSCFD方法失效。在此情形下,本文采用Runge-Kutta方法来数值求解,但并未降低原方法的精度阶数。经大量数值实验验证这种数值方法是可行且有效的。即使是对那些非线性子问题可以精确求解的情形,本文的数值方法仍能表现得与常规SSCFD方法一样好。这也说明了非线性子问题必须精确求解这个要求并不总是必须的。这是对分裂步方法的推广和发展。
The study on numerical methods for partial differential equations is not only an important branch of computational mathematics, but also has extensive applications in many other fields, such as computational physics, chemistry, biology, et al. Most models describing various phenomena in the world are nonlinear differential equations. One of them is the nonlinear Schrodinger (NLS) equation which plays a key role in many fields of physics. Therefore, some nonlinear Schrodinger equations and their related issues are numerically resolved and studied in this thesis. The main numerical methods applied are the orthogonal spline collocation (OSC) method, the finite difference method, and the split step technique.
     Firstly, discrete-time OSC schemes are proposed for the NLS equation with wave operator and the coupled nonlinear Klein-Gordon-Schrodinger equation. The conservation, convergence and stability of the schemes are strictly proved in theory. Numerical experiments are carried out to verify the theorical results.
     The split step method is efficiently combined with the finite difference method, the spectral method, or the finite element method and so on. Surprisingly, the combination of the split step method and the OSC method is missed. Therefore, the combination is tried in this thesis for the coupled NLS equation in one dimension. The new method is named as split-step OSC (SSOSC) method by the author. The SSOSC method is compared with three other discrete-time OSC schemes, and the new method is superior. Thus, the first step is successful.
     As the SSOSC method is reliable and efficient, it is extended to multidimensional NLS equations. And this extension is also successful, which is examed by many numerical tests. Since no research on three-dimensional problems by the OSC method has been found, this step is really inspiring. Moreover, sometimes the time-dependent potential in the NLS equation cannot be integrated exactly which weakens the advantage of the split step method, so numerical integration is utilized by the author. The approximate strategy is efficient and does not reduce the original accuracy. It is worth noting that this approximation is efficient not only for the SSOSC method, but also for the split-step finite difference method and the split-step Fourier spectral method.
     Ginzburg-Landau (GL) equations are more complicated than the NLS ones. Finite difference schemes are presented for the Kuramoto-Tsuzuki equation which is a one-dimensional cubic GL equation in form. The relation between the nonlinear schemes and the linearized ones is discussed in theory, and also verified by numerical examples. For the two-dimensional cubic GL equation, a split-step finite difference (SSFD) scheme and a split-step alternating direction implicit (ADI) scheme are proposed. The connection between the two schemes is discussed, and the plane wave solution of the equation is used to analyze the schemes. Linearized analysis is applied to discuss the stability, and numerical tests are also carried out to examine the schemes. Split-step compact finite difference schemes are constructed for the multi-dimensional cubic-quintic GL (CQ GL) equations. Firstly, the split step method is applied, and the CQ GL equations are separated into two nonlinear subproblems and one or several linear ones. The linear subproblems are resolved by the compact finite difference schemes. As the nonlinear subproblems cannot be integrated exactly as usual, the normal split-step compact finite difference (SSCFD) method is failed. Theorefore, the author utilizes the Runge-Kutta method, and the accuracy order is not reduced. Extensive numerical experiments are carried out to show that the proposed numerical approximation is successful and efficient. And even for the situations that the nonlinear subproblems can be integrated exactly, the present method is still as good as the usual SSCFD one. It implies that the requirement of integrating the nonlinear subproblems exactly may be not always necessary. This is an extension and improvement of the split step method.
引文
[1]石钟慈.第三种科学方法:计算机时代的科学计算.北京:清华大学出版社;广州:暨南大学出版社,2000.
    [2]陈传淼.科学计算概论.北京:科学出版社,2007.
    [3]顾昌鑫,朱云伦,丁培柱.计算物理学.上海:复旦大学出版社,2010.
    [4]Ciordano N J, Nakanishi H.计算物理(第二版影印本).北京:清华大学出版社,2007.
    [5]郭纯孝.计算化学.北京:化学工业出版社,2004.
    [6]哈廷讷G J.数值天气预报(北京大学地球物理系气象专业译).北京:科学出版社,1975.
    [7]李立康,於崇华,朱政华.微分方程数值解法.上海:复旦大学出版社,1999.
    [8]胡健伟,汤怀民.微分方程数值方法.北京:科学出版社,2007.
    [9]Quarteroni A, Valli A偏微分方程的数值近似法.北京:世界图书出版公司,1998.
    [10]Larsson S, Thomee V.偏微分方程与数值方法(影印本).北京:科学出版社,2006.
    [11]Sulem C, Sulem P L. The nonlinear Schrodinger equation:self-focusing and wave collapse. New York:Springer-Verlag,1999.
    [12]刘适式,刘适达.物理学中的非线性方程.北京:北京大学出版社,2000.
    [13]Matsuuchi K. Nonlinear interactions of counter-travelling waves. J Phys Sco Japan,1980,48(5):1746-1754.
    [14]郭柏灵,梁华湘.具波动算子的一类非线性Schrodinger方程组的数值计算问题.数值计算与计算机应用,1983,4:176-182.
    [15]Zhang F, Perez-Garcia V M, Vazquez L. Numerical simulation of nonlinear Schrodinger systems:a new conservative scheme. Appl Math Comput,1995,71:165-177.
    [16]张鲁明,李祥贵.一类带波动算子的非线性Schrodinger方程的一个守恒差分格式.数学物理学报,2002,22A(2):258-263.
    [17]Zhang L, Chang Q. A conservative numerical scheme for a class of nonlinear Schrodinger equation with wave operator. Appl Math Comput,2003,145:603-612.
    [18]Wang T, Zhang L. Analysis of some new conservative scheme for nonlinear Schrodinger equation with wave operator. Appl Math Comput,2006,182:1780-1794.
    [19]Wang J. Multismplectic Fourier Pseudospectral method for the nonlinear Schrodinger equations with wave operator. J Comput Math,2007,25(1):31-48.
    [20]郭柏灵,复Schrodinger场和实Klein-Gordon场相互作用下一类方程组某些定解问题的 整体解,中国科学(A辑),1982,2:97-107.
    [21]郭柏灵,苗长兴,Klein-Gordon-Schrodinger方程解的整体存在性及其渐进性,中国科学(A辑),1995,25(7):705-714.
    [22]Miao C, Xu G, Global solutions of the Klein-Gordon-Schrodinger system with rough data in R2+1, J. Differential Equations,2006,227:365-405。
    [23]夏静娜,韩淑霞,王明亮,Klein-Gordon-Schrodinger方程组的精确孤立波解,应用数学和力学,2002,23(1):52-58.
    [24]Xia J, Han S, Wang M. The exact solitary wave solutions for the klein-Gordon-Schrodinger equations. Applied Mathematics and Mechanics,2002,23(1):58-64.
    [25]Wang M, Zhou Y. The periodic wave solution for the Klein-Gordon-Schrodinger equations. Physics Letters A,2003,318:84-92.
    [26]Li X, Yang S, Wang M. The periodic wave solutions for the (3+1)-dimensional Klein-Gordon-Schrodinger equations. Chaos, Solitons and Fractals,2005,25:629-636.
    [27]Li X, Li X, Wang M. Extended F-expansion method and periodic wave solutions for Klein-Gordon-Schrodinger equations. Commun Theor Phys,2006,45:9-14.
    [28]张辉群,耦合Klein-Gordon-Schrodinger方程的孤立波解.数学物理学报,2002,22A(3):332-335.
    [29]Li J. Solitary and periodic traveling wave solutions in Klein-Gordon-Schrodinger equations云南大学学报(自然科学版),2003,25(3):176-180.
    [30]Darwish A, Fan E G. A series of new explicit exact solutions for the coupled Klein-Gordon-Schrodinger equations. Chaos, Solitons and Fractals,2004,20:609-617.
    [31]Yomba E. On exact solutions of the coupled Klein-Gordon-Schrodinger and the complex coupled KdV equations using mapping method. Chaos, Solitons and Fractals,2004,21:209-229.
    [32]Liu S, Fu Z, Liu S, etal. The periodic solutions for a class of coupled nonlinear Klein-Gordon equations, Physics Letters A,2004,323:415-420.
    [33]周钰谦,张健,刘倩.耦合Klein-Gordon-Schrodinger方程显示解的统一构造.四川师范大学学报(自然科学版),2006,29(2):166-170.
    [34]张鲁明,常谦顺.复Schrodinger场和实Klein-Gordon场相互作用下一类方程组守恒差分格式的收敛性和稳定性.高等学校计算数学学报,2000,4:362-370.
    [35]Zhang L. Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrodinger equations in one space dimension. Appl Math Comput,2005,163:343-355.
    [36]Kong L, Liu R. Numerical simulation of interaction between Schrodinger field and Klein-Gordon field by multisymplectic method. Appl Math Comput,2006,181:342-350.
    [37]Bao W, Yang L. Efficient and accurate numerical methods for the Klein-Gordon-Schrodinger equations. Journal of Computational Physics,2007,225:1863-1893.
    [38]Wadati M, Iizuka T, Hisakado M. A coupled nonlinear Schrodinger equation and optical solitons. J Phys Soc Jpn,1992,61:2241-2245.
    [39]Menyuk C R. Nonlinear pulse propagation in birefringent optical fibers. IEEE J Quantum Electron,1987, QE-23:174-176.
    [40]Menyuk C R. Stability of solitons in birefringent optical fibers.Ⅱ. Arbitrary amplitudes. J Opt Soc Am B,1988,5:392-402.
    [41]Ueda T, Kath W L. Dynamics of coupled solitons in nonlinear optical fibers. Phys Rev A,1990,42(1):563-571.
    [42]Kaup D J, Malomed B A. Soliton trapping and daughter waves in the Manakov model. Phys Rev A,1993,48:599-604.
    [43]Ismail M S, Taha T R. Numerical simulation of coupled nonlinear Schrodinger equation. Math Comput Simulat,2001,56:547-562.
    [44]Ismail M S, Taha T R. A linearly implicit conservative scheme for the coupled nonlinear Schrodinger equation, Math Comput Simulat,2007,74:302-311.
    [45]Reichel B, Leble S. On convergence and stability of a numerical scheme of coupled nonlinear Schrodinger equations. Comput Math Appl,2008,55:745-759.
    [46]Sun J, Gu X, Ma Z. Numercial study of the soliton waves of the coupled nonlinear Schrodinger system. Physica D,2004,196:311-328.
    [47]Wang T, Nie T, Zhang L. Analysis of a symplectic difference scheme for a coupled nonlinear Schrodinger system. J Comput Appl Math,2009,231:745-759.
    [48]Sweilam N H, Al-Bar R F. Variational iteration method for coupled nonlinear Schrodinger equations. Comput Math Appl,2007,54:993-999.
    [49]Ismail M S. Numerical solution of coupled nonlinear Schrodinger equation by Galerkin method. Math Comput Simulat,2008,78:532-547.
    [50]Ismail M S. A fourth-order explicit schemes for the coupled nonlinear Schrodinger equation, Appl Math Comput,2008,196:273-284.
    [51]Aydin A, Karasozen B. Symplectic and multi-symplectic methods for coupled nonlinear Schrodinger equation with periodic solutions. Comput Phys Commun,2007,177:566-583.
    [52]Wang H. Numerical studies on the split-step finite difference method for nonlinear Schrodinger equations. Appl Math Comput,2005,170:17-35.
    [53]Robinson M P, Fairweather G. Orthogonal spline collocation methods for Schrodinger-type equations in one space variable. Numer Math,1994,68:355-376.
    [54]Robinson M P. The solution of nonlinear Schrodinger equations using orthogonal spline collocation. Comput Math Appl,1997,33(7):39-57.
    [55]Taha T R, Ablowitz M J. Analytical and numerical aspects of certain nonlinear evolution equations.Ⅱ. Numerical, nonlinear Schrodinger equation. J Comput Phys,1984,55:203-230.
    [56]Bao W, Jin S, Markowich P A. On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime. J Comput Phys,2002,175:487-524.
    [57]Bao W, Jaksch D. An explicit unconditionally stable numerical method for solving damped nonlinear Schrodinger equations with a focusing nonlinearity. SIAM J Numer Anal,2003,41(4):1406-1426.
    [58]Bao W, Sun F, Wei G. Numerical methods for the generalized Zakharov system. J Comput Phys,2003,190:201-228.
    [59]Jin S, Markowich P A, Zheng C X. Numerical simulation of a generalized Zakharov system. J Comput Phys,2004,201:376-395.
    [60]Chang Q, Wong Y, Lin C. Numerical computations for long-wave short-wave interaction equations in semi-classical limit. J Comput Phys,2008,227:8489-8507.
    [61]Manickam A V, Moudgalya K M, Pani A K. Second-order splitting combined with orthogonal cibic spline collocation method for the Kuramoto-Sivashinsky equation. Comput Math Appl,1998,35(6):5-25.
    [62]Manickam S A V, Pani A K, Chung S K. A second-order splitting combined with orthogonal cubic spline collocation method for the Rosenau equation. Numer Meth Part D E,1998,14:695-716.
    [63]Danumjaya P, Pani A M. Orthogoanl cubic spline collocation method for the extended Fisher-Kolmogorov equation. J Comput Appl Math,2005,174:101-117.
    [64]Danumjaya P, Nandakumaran A K. Orthogonal cubic spline collocation method for the Cahn-Hilliard equation. Appl Math Comput,2006,182:1316-1329.
    [65]Bao W, Jaksch D, Markowich P A. Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J Comput Phys,2003,187:318-342.
    [66]Fairweather, Khebchareon M. Numerical methods for Schrodinger-type problems. Siddiqi A H, Kocvara, Trends in Industrial and Applied Mathematics, Netherlands: Kluwer Academic,2002:219-250.
    [67]Li B, Fairweather G, Bialecki B. Discrete-time orthogonal spline collocation methods for Schrodinger equations in two space variables. SIAM J Numer Anal,1998,35(2):453-477.
    [68]Li B. Discrete-time orthogonal spline collocation methods for Schrodinger-type problems,[PhD thesis]. Kentucky:University of Kentucky,1998.
    [69]Aranson I S, Kramer L. The world of the complex Ginzburg-Landau equation. Rev Mod Phys,2002,74:99-143.
    [70]Akhmediev N, Ankiewicz (Eds.). Dissipative solitons. Berlin:Springer-Verlag,2005.
    [71]Akhmediev N, Ankiewicz A (Eds.). Dissipative solitons:from optics to biology and medicine. Berlin:Springer-Verlag,2008.
    [72]Tsertsvadze G Z. On the convergence of difference schemes for the Kramoto-Tsuzuki equation and for systems of reaction-diffusion type. Zh Vychisl Mat Mat Fiz,1991,31:698-707.
    [73]Sun Z. On Tsertsvadze's difference scheme for the Kuraoto-Tsuzuki equation. J Comput Appl Math,1998,98:289-304.
    [74]Sun Z. A linearized difference scheme for the Kuramoto-Tsuzuki equation. J Comput Math,1996,14:1-7.
    [75]孙志忠.数值求解Kuramoto-Tsuzuki方程的广义Box格式.东南大学学报,1996,26(1):87-92.
    [76]Wang T, Guo B. A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation. J Comput Appl Math,2009,233:878-888.
    [77]Xu Q, Chang Q. Difference methods for computing the Ginzburg-Landau equation in two dimensions. Numer Meth Part D E,2011,27(3):507-528.
    [78]Wang T, Guo B. Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation. Numer Meth Part D E,2011,27(5):1340-1363.
    [79]Towers I, Buryak A B, Sammut R A, et al. Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation. Phys Lett A,2001,288:292^298.
    [80]Agrawal G P. Nonlinear fiber optics(第四版影印本).北京:世界图书出版公司,2009.
    [81]Petviashvili V I, Sergeev A M. Spiral solitons in active media with an excitation threshold. Sov Phts Dokl,1984,29(6):493-495.
    [82]Akhmediev N, Afanasjev V V. Novel arbitrary-amplitude soliton solutions of the cubic-quintic complex Ginzburg-Landau equation. Phys Rev Lett,1995,75(12):2320-2323.
    [83]Akhmediev N N, Afanasjev V V. Singulariies and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation. Phys Rev E,1996,53(1):1190-1201.
    [84]Crasovan L-C, Malomed B A, D Mihalache. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation. Phys Rev E,2000,63:016605.
    [85]Shi Y, Dai Z, Li D. Application of Exp-function method for the2D cubic-quintic Ginzburg-Landau equation. Appl Math Comput,2009,210:269-275.
    [86]Skarka V, Aeksic N B. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. Phys Rev lett,2006,96:013903.
    [87]Mihalache D, Mazilu D, Lederer F, et al. Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation. Phys Rev A,2007,75:033811.
    [88]Mihalache D, Mazilu D. Ginzburg-Landau spatiotemporal dissipative optical solitons. Rom Rep Phys,2008,60(3):749-761.
    [89]Mihalache D, Mazilu D, Lederer F, et al. Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation. Phys Rev A,2008,77:033817.
    [90]Mihalache D, Mazilu D. Three-dimensional Ginzburg-Landau solitons:collision secenarios. Rom Rep Phys,2009,61(2):175-189.
    [91]Soto-Crespo J M, Akhmediev N N, Afanasjev V V. Stability of pulselike solutions of the quintic complex Ginzburg-Landau equation. J Opt Soc Am B,1996,13(7):1439-1449.
    [92]Dehghan M, Taleei A. A compact split-step finite difference method for nonlinear Schrodinger equations with constant and variable coefficients. Comput Phys Commun,2010,181:43-51.
    [93]Zhang Y, Bao W, Du Q. Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrodinger equation. Eur J Appl Math,2007,18:607-630.
    [94]Wang H. An efficient Chebyshev-Tau spectral method for Ginzburg-Landau-Schrodinger equations. Comput Phys Commun,2010,181:325-340.
    [95]Goldman D, Sirovich L. A novel method for simulating the complex Ginzburg-Landau equation. Quart Appl Math,1995,53(2):315-333.
    [96]Degond P, Jin S, Tang M. On the time splitting spectral method for the complex Ginzburg-Landau equation in the large time and space scale limit. SIAM J Sci Comput,2008,30(5):2466-2487.
    [97]Wainblt G, Malomed B A. Interactions between two-dimensional solitons in the diffractive-diffusive Ginzburg-Landau equatin with the cubic-quintic nonlinearity. Phys D,2009,238:1143-1151.
    [98]郭本瑜.偏微分方程的差分方法.北京:科学出版社,1988.
    [99]Varah J M. Alternate row and column elimination for solving certain linear systems. SIAM J Numer Anal,1976,13(1):71-75.
    [100]Diaz J C, Faireather G, Keast P. FORTRAN packages for solving certain almost blick diagonal linear systems by modified alternate row and column elimination. ACM Trans Math Software,1983,9(3):358-375.
    [101]Diaz JC, Fairweather G, Keast P. Algorithm603COLROW and ARCECO:FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination. ACM Trans Math Software,1983,9(3):376-380.
    [102]Fairweather G, Meade D. A survey of spline collocation methods for the numerical solution of differential equations. Diaz J C, Mathematics for large scale computing lecture notes in pure and applied mathematics (Vol120), New York:Marcel Dekker,1989,297-341.
    [103]Bialecki B, Fairweather G. Orthogonal spline collocation methods for partial differential equations. J Comput Appl Math,2001,128:55-82.
    [104]De Boor C, Swartz B. Colloction at Gaussian points. SIAM J Numer Anal,1973,10(4):582-606.
    [105]Douglas Jr J, Dupont T. A finite element collocation method for quasilinear parabolic equations. Math Comput,1973,27(121):17-28.
    [106]Douglas Jr J, Dupot T. Collocation methods for parabolic equation in a single space variable. New York:Springer-Verlag,1974.
    [107]Greenwell-Yanik C E, Fairweather G. Ananlyses of spline collocation methods for parabolic and hyperbolic problems in two space variables. SIAM J Numer Anal,1986,23(2):282-296.
    [108]Bialecki B, Fernandes R I. Orthogonal spline collocation Laplace-modified and alternating-direction methods for parabolic problems on rectangles. Math Comput,1993,60(202):545-573.
    [109]Fernandes R I. Efficient orthogonal spline collocation methods for solving linear second order hyperbolic problems on rectangles. Numer Math,1997,77:223-241.
    [110]Bialecki B, fernandes R I. An orthogonal spline collocation alternating direction implicit Crank-Nicolson method for linear parabolic problems on rectangles. SIAM J Numer Anal,1999,36(5):1414-1434.
    [111]Bialecki B, Fernandes R I. An alternating-direction implicit orthogonal spline collocation scheme for nonlinear parabolic problems on rectangular polygons. SIAM J Sci Comut,2006,28(3):1054-1077.
    [112]Yu S, Zhao S, Wei G W. Local spectral time splitting method for first-and second-order partial differential equations. J Comput Phys,2005,206:727-780.
    [113]Strang G. On the construction and comparison of difference schemes. SIAM J Numer Anal,1968,5(3):506-517.
    [114]YoshidaH. Construction of higher order symplectic integrators. Phys Lett A,1990,150:262-268.
    [115]Bandrauk A D, Shen H. High-order split-step exponential methods for solving coupled nonlinear Schrodinger equations. J Phys A:Math Gen,1994,27:7147-7155.
    [116]Lee J, Fornberg B. A split step approach for3-D Maxwell's equations. J Comput Appl Math,2003,158:485-505.
    [117]Peaceman D W, Rachford Jr H H. The numerical solution of parabolic and elliptic differential equations. SIAM J,1955,3(1):28-41.
    [118]Douglas Jr J. On the numerical integration of ((?)2u)/((?)x2)+((?)2u)/((?)2y2)=((?)u)/((?)t) by implicit methods. SIAM J,1955,3(1):42-65.
    [119]Yanenko N N. The method of fractional steps:The solution of problems of mathematical physics in several variables. New York-Berlin:Springer-Verlag,1971.(中译本:雅宁柯N N.分数步法——数学物理中的多变量问题的解法(周宝熙,林鹏译).北京:科学出版社,1992.)
    [120]Ames W F. Numerical methods for partial differential equations (second ed.). New York:Academic press,1977.
    [121]Mitchell A R. Computational methods in partial differential equations. London: Wiley,1969.
    [122]Gourlay A R. Splitting methods for time dependent partial differential equations. Jacobs D, The state of the art in numerical nalysis. New York:Academic Press,1977:757-796.
    [123]Hardin R H, Tappert F D. Applications of the slit-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equation. SIAM Rev,1973, Chronicle15:423.
    [124]Tappert F D. Numerical solutions of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method. Lect Appl Math Am Math Soc,1974,15:215-216.
    [125]Taha T R, Ablowitz M J. Analytical and numerical aspects of certain nonlinear evolution equations.Ⅲ. Numerical, Korteweg-de Vries equation. J Comput Phys,1984,55:231-253.
    [126]Weideman J A C, Herbst B M. Split-step methods for the solution of the nonlinear Schrodinger equation. SIAM J Numer Anal,1986,23(3):485-507.
    [127]Bai D, Zhang L. Numerical studies on a novel split-step quadratic B-spline finite element method for the coupled Schrodinger-KdV equations. Commun Nonlinear Sci Numer Simulat,2011,16:1263-1273.
    [128]戴嘉尊,邱建贤.微分方程数值解法.南京:东南大学出版社,2002.
    [129]Y Zhou. Application of discrete functional analysis to the finite difference methods. Beijing:International Academic Publishers,1990:1-27.
    [130]匡继昌.常用不等式.济南:山东科学技术出版社,2004:136-137.
    [131]戴嘉尊.数学物理方程.南京:东南大学出版社,2002:32-34.
    [132]McOwen R C偏微分方程——方法及应用(影印本).北京:清华大学出版社,2004.
    [133]Guo B, Pascual P J, Rodriguez M J, et al. Numerical solution of the sine-Gordon equation. Appl Math Comput,1986,18:1-4.
    [134]Zhang F, Vazquez. Two energy conserving numerical schemes for the sine-Gordon equation. Appl Math Comput,1991,45:17-30.
    [135]Delfour M, Fortin M, Payre G. Finite-difference solutions of a non-linear Schrodinger equation. J Comput Phys,1981,44:277-288.
    [136]Akrivis G D. Finite difference discretization of the cubic Schrodinger equation. IMA J Numer Anal,1993,13:115-124.
    [137]Chang Q, Jia E, Sun W. Difference schemes for solving the generalized nonlinear Schrodinger equation. J Comput Phys,1999,148:379-415.
    [138]Muslu G M, Erbay H A. A split-step Fourier method for the complex modified Korteweg-de Vries equation. Comput Math Appl,2003,45:503-514.
    [139]Yang J. Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics. Phys Rev E,1999,59(2):2393-2405.
    [140]陈传璋,金福临,朱学炎,等.数学分析止册).北京:高等教育出版社,1983,285-286.
    [141]Burden R L, Faires J D数值分析(第七版影印本).北京:高等教育出版社,2002.
    [142]Kress R. Numerical analysis. New York:Springer-Verlag,1998:189-224.
    [143]李庆扬,王能超,易大义.数值分析(第四版).北京:清华大学出版社,2002.
    [144]Ascher U, Pruss S, Russell R D. On spline basis selection for solving differential equations. SIAM J Numer Anal,1983,20(1):121-142.
    [145]廖洪林.发展方程高阶差分方法的误差估计,[博士学位论文].南京:东南大学,2010.
    [146]徐利治,王兴华.数学分析的方法及例题选讲.北京:高等教育出版社,1983.
    [147]陈传璋,金福临,朱学炎,等.数学分析(下册).北京:高等教育出版社,1983,78-89.
    [148]波尔戈夫BA,等.吉米多维奇数学5000题(第二卷)(米天林,许康,何灿芝,等译)长沙:湖南科学技术出版社,1988,295-306,357-360.
    [149]LeVeque R J, Oliger J. Numerical methods based on additive splittings for hyperbolic partial differential equations. Math Comput,1983,40(162):469-497.