塔里木盆地二氧化碳地质储存潜力评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室效应对全球气候的影响,使人类的生存环境正遭受着严重的威胁。哥本哈根世界气候大会以后,世界各国都意识到二氧化碳减排的重要性。我国作为负责任的发展中国家,做出承诺:到2020年,单位国内生产总值的二氧化碳排放量要比2005年下降40%~45%。
     二氧化碳地质储存技术是近年来兴起的能有效减少CO2排量最有利的途径。随着该技术的成熟,我国政府部门、相关组织和学者进行了理论和实验等相关方面的研究。本论文就是在中国地质调查局水文地质环境地质调查中心的牵头下,进行塔里木盆地二氧化碳地质储存潜力评价,是评价我国主要沉积盆地二氧化碳地质储存潜力的重要组成部分。
     本论文是在研究了二氧化碳地质储存的地质条件要求、储存机理等技术基础之后,搜集了塔里木盆地的相关地质资料,包括区域地质、构造地质、油气地质、水文地质,以及地层岩性和物性参数等,整理并分析了盆地各一级构造单元内发育的圈闭构造和深部咸水含水层等储、盖层组合,并进行二氧化碳地质储存潜力计算和适宜性评价,得出了以下结论:
     1、塔里木盆地的二氧化碳地质储存潜力很大,各一级构造单元都分布有适宜的储、盖层组合。盆地内1500m~6500m深度范围的所有油气田和深部咸水含水层中,可进行的二氧化碳地质储量约为501.05×108t。
     2、塔里木盆地二氧化碳地质储存潜力主要分布在北部坳陷和中央隆起,储量约占整个盆地的56.2%;库车坳陷和塔北隆起的面积虽小,但储层分布多,岩石物性较好,储量约占33.9%;而西南坳陷和塔东南区储层分布较少,岩石物性较差,二氧化碳的储量也较小。
     3、塔里木盆地二氧化碳储层主要分布在碳酸盐岩和碎屑岩中。其中碳酸盐岩储层埋深较深,岩石物性相对较差,平均孔隙度一般在10%左右,岩石的孔、洞、缝较发育,均一性较差,储存体空间较大;碎屑岩储层埋深较浅,岩石物性相对较好,平均孔隙度一般在20%左右,岩层渗透性较好。可见,塔里木盆地的碳酸盐岩和碎屑岩储层都适于二氧化碳地质储存,且碎屑岩储层相对较好。
Because of the greenhouse effect on global climate impact, the environmenthuman existed is suffering severe threat. After the World Climate Conference openedin Copenhagen, All countries have realized the importance of carbon dioxideemissions. China, a responsible developing country, has made the commitment ofcarbon dioxide emissions: By 2020, unit of gross domestic product of carbon dioxideemissions will reduce 40% ~ 45% percent compared with 2005.
     Carbon dioxide Geological Storage (CGS), the developing technology in recentyears, is the most lucrative way to reduce carbon dioxide emissions effectively. As thetechnology growing. Our government departments、relevant organizations andscholars had carried on the related research in theory and experiment. This thesis isleaded by Centre for Hydrogeology and Environmental Geology, precedes theevaluation of geological storage potential carbon dioxide for Tarim Basin, and is theimportant component of evaluation of geological sedimentary basin in main storagepotential carbon dioxide.
     In order to the paper study, I'm a wide range of learning the Carbon dioxideGeological Storage technology ,such as: the required geological conditions, thestorage mechanism; and collect the related geological data of Tarim Basin, includingregional geological, tectonic geology, oil and gas geology, hydrology geology, andstratigraphic lithology and physical parameter etc. Then sort out these material andanalyze the trap structure and deep salty water aquifers developing in the basinfirst-order tectonic units, find out the store—cap rock combination for carbongeological storage potential calculation and suitability assessment. Make thefollowing conclusions:
     1、The geological storage potential of carbon dioxide in Tarim Basin is great.Each first-order tectonic units are distributed a suitable reservoir and cap rockcombination. The carbon dioxide geological reserves can be approximately about501.05×10~8t,in all oil-gas fields and deep salty water aquifers within the depth rangeof 1500m~6500m.
     2、Carbon dioxide geological storage potential in Tarim Basin mainly distributed in the Northern Downwarped and the Central Uplift, the reserves accounts for 56% of the whole basin. Although the area of Kuche Depression and Northern Uplift is small, the reservoir develops well, the petrophysical is more appropriate, the reserves accounts for 33.9%; the reservoir distribution of Southwest Downwarped and Southeast Area is less, the reservoir develops badly, the carbon dioxide reserves is relatively less.
     3、The carbon dioxide geological reservoir in Tarim Basin mainly distributed in the carbonate rocks and clastic rocks. The depth of carbonate reservoir is deeper. It's petrophysical relatively poor, the average porosity is generally in 10%.The rock porosity、caves and crack developed well, and the uniformity is poorer, but the storage body space is large; The clastic reservoir is shallower. Its petrophysical is relatively well, the average porosity general at 20% and the rock permeability is better. So the carbonate and clastic reservoirs developed in Tarim Basin are suitable for carbon dioxide geological storage, especially, the clastic reservoir is relatively well.
引文
Bachu S,Adams J J. Sequestration of CO2 in geological media in response to climate change:Capacity of deep saline aquifers to sequester CO2 in solution [J]. Energy Conversion and Management. 2003. 44(20):3151-3175
    Bachu S. Evaluation of the CO2 sequestration capacity in oil and gas reservoirs at depletion and the effect of underlying aquifers-Journal [J]. Petroleum Technology. 2003, 42(9):51-61
    Daniel P. Schrag. Preparing to capture carbon [J]. Science. 2007(315):812-813
    Gentzis T. Subsurface sequestration of carbon dioxide—an overview from an Alberta Canada perspective [J ] . International Journal of Coal Geology .2000 .43
    Guichun,Y. Deshun,L. Tianbao,W. et al. CO2 capture and utilization for enhanced oil recovery (EOR) and underground storage,A case study in Jilin Oil Field,China [J]. Advances in Chemical Conversions for Mitigating Carbon Dioxide 114. 1998.(S):201-206
    Hendriks C,Graus W,van Bergen F. Global carbon dioxide storage potential and costs[R]. [s. l.]:[s. n.]. 2004. 24-25
    IEA Information Paper. Carbon Dioxide Capture and Storage Issues-accounting and Baselines under the UNFCCC [R]. Paris:May 2004
    Koide H,Tazaki Y,Noguchi S,et al. Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs[J]. Energy Conversion and Management. 1992. 33(5-8):619-626
    Kross B M,van Bergen F,Gensterblum Y,et al. High Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture Equilibrate Pennsylvanian Coals[J]. International journal of coal geology. 2002. 51:69-92
    Li X,Ohsumia T,Koide H,et al. Near-future perspective of CO2 aquifer storage in Japan:site selection and capacity[J]. Energy. 2005.30(11-12):2360-2369
    Winter EM. Availability of depleted oi1 and gas reservoirs for disposal of carbon dioxide in the United States [J]. Energy Conversion and Management. 2001.34(6):1177-1187
    Xu Tianfu,John A Apps,Karsten Pruess. Mineral sequestration of carbon dioxide in a sandstone-shale system[J].Chemical Geology. 2005. 217:295-318
    Zhou Di,Yao Bochu,Tectonics and Sedimentary Basins of the South China Sea: Challenges and Progresses [J]. Journal of Earth Science. 2009. February. 20(1):1-12
    巢清尘,陈文颖.碳捕获和存储技术综述及对我国的影响[J],地球科学进展,2006.21(3):291-298
    戴富贵,杨克绳,刘东燕.塔里木盆地地震剖面地质解释及其构造演化[J],中国地质,2009.36(4):747-760
    丁道桂,汤良杰,钱一雄,等.塔里木盆地形成与演化[M].南京:河海大学出版社,1996
    顾家裕,朱筱敏,贾进华,等.塔里木盆地沉积与储层[M].北京:石油工业出版社,2003
    贾承造,王良书,邵学钟,等.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社. 1997
    江怀友,沈平平,李相方,等.世界地质储层二氧化碳理论埋存量评价技术研究[J].中外能源. 2008.13(2):93-99
    江怀友,沈平平,宋新民,等.世界气候变暖及二氧化碳埋存现状与展望[J].古地理学报. 2008.10(3):323-328
    康玉柱,黄有元,黎邦荣,等.塔里木盆地古生代海相油气田[M].武汉:中国地质大学出版社. 1992
    李国玉,吕鸣岗,赵俭成,等.中国含油气盆地图集[M].北京:石油工业出版社,2002
    李小春,刘延锋,白冰,等.中国深部咸水含水层CO2储存优先区域选择[J].岩石力学与工程学报. 2006.25(5):963-968.
    李小地,张光亚,田作基,等.塔里木盆地油气系统与油气分布规律[M].北京:地质出版社.2000
    刘延锋,李小春,白冰.中国CO2煤层储存容量初步评价[J].岩石力学与工程学报,2005.24(16):2947-2952
    刘延锋,李小春,方志明,等.中国天然气田CO2储存容量初步评估[J].岩土力学,2006.27 (12):2277-2281
    马宝林,温常庆,朱连芳,等.塔里木沉积岩形成演化与油气[M].北京:科学出版社.1991
    曲希玉,刘立,胡大千. CO2流体对含片钠铝石砂岩改造作用的实验研究[J],吉林大学学报,2007.37(4):690-697
    沈平平,廖新维.二氧化碳地质埋存与提高石油采收率技术[M].北京:石油工业出版社,2009
    沈平平,廖新维,刘庆杰.二氧化碳在油藏中埋存量计算方法[J].石油勘探与开发. 2009,36(2):216~220
    沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1999
    孙枢. CO2地下封存的地质学问题及其对减缓气候变化的意义[J].中国基础科学,2006.3:17-22
    刘斌,门国发,王占和,等.塔里木盆地地下水勘查[M].北京:地质出版社,2008
    巫润建,李国敏,黎明,等.松辽盆地咸含水层埋存CO2储存容量初步估算[J].工程地质学报.2009.17(1):100-104
    王黎栋.塔中地区T_7~4界面碳酸盐岩古岩溶储层形成机理与分布预测[博士学位论文] [D].北京:中国地质大学(北京),2007.
    王秋明,雍天寿,郑德森,等.中国石油地质志(卷十五)塔里木、吐(鲁番)—哈(密)及其它主要盆地[M].北京:石油工业出版,1995
    许天福.通往地下的烟囱[J].百科知识. 2005(1):34-35
    杨克绳.塔里木盆地的构造演化[J].海洋地质动态. 2005. 21(2):25-29
    曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层的排放——二氧化碳地下储存研究[J]. 中国科学基金. 2004(4),196~200
    张水昌,梁狄刚,张宝民,等.塔里木盆地海相油气的生成[M].北京:石油工业出版社,2004
    张炜,李义连,郑艳,等.二氧化碳地质封存中的储存容量评估:问题和研究进展[J],地球科学进展,2008.23(10):1061-1069
    周蒂. CO2的地质存储——地质学的新课题[J].自然科学进展. 2005. 15 (7):782-787
    周兴熙,张光亚,李洪辉,等.塔里木盆地库车油气系统的成藏作用[M].北京:石油工业出版社,2002
    周志毅,赵治信,胡兆珣,等.塔里木盆地各纪地层[M].北京:科学出版社,2001
    朱筱敏,顾家裕,贾进华,等.塔里木盆地重点层系储盖层评价[M].北京:石油工业出版社,2003