北京盆地结构对长周期地震动加速度反应谱的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于城市人口的快速增多以及地价飞涨等原因,高层建筑已经大量涌现于各个城市之中,并且数量仍在继续攀升。另一方面,许多城市均建造于盆地内部,同时具有发生大地震的构造背景,如我国的北京、银川、西安、呼和浩特等。历史上多次大地震中的建筑震害特征表明,盆地对地震动的长周期成分有显著的放大效应,可以对城市中的高层建筑产生很强的破坏作用。因此,盆地内高层建筑的抗震设防问题日显重要。然而在我国现行的建筑抗震设计规范以及地震安全性评价技术规范中,还尚未就盆地对地震动的放大效应做出明确解释和规定,这给城市的震害防御以及合理的未来规划埋下了隐患。
     北京市作为我国的政治、经济和文化中心,其地位的重要性毋庸置疑。同时,从科学研究角度来看,一则北京市坐落于典型盆地构造的范围内,且具有发生大地震的构造背景;二则数千栋25层以上的高层住宅和100米以上的超高层商用建筑已经建成,并有加速建造的趋势。这些建筑的自振周期通常在3秒以上,有的甚至可长达10秒。地震时,它们易与3-10秒长周期地震动形成共振而产生巨大的地震破坏。此外,强烈的地面晃动也可引发火灾等次生灾害。这些都将导致大量人员伤亡和财产损失,也加大了地震应急救援的难度。因此,研究北京盆地结构对3-10秒长周期地震动加速度反应谱的放大效应,可以明确北京盆地内高层建筑合理的抗震设防要求,给盆地内城市的未来规划、新建高层建筑抗震设计、高层建筑的震害防御、应急救援提供科学的依据。
     针对北京盆地内强地面运动记录严重不足的现状,本文采用并行有限差分地震动数值模拟方法,研究了北京三维盆地结构对3~10秒长周期地震动加速度反应谱的放大效应。主要内容和结论包括以下几个方面:
     1、阐述了有限差分模拟长周期地震动的基本原理及其并行化计算的实施方案,介绍了用于地震动模拟的并行计算平台。
     2、通过对地震勘探资料、地质资料、钻孔资料、波速测试资料及其它调查资料的收集与整理,在既有北京盆地模型的基础上叠加了地形条件,建立了含起伏地形的盆地地下介质三维速度结构模型。通过对北京盆地内五级以上历史地震和活动断层活动特征的分析,建立了符合北京盆地地震构造背景的强震震源模型,为有限差分地震动模拟提供了正确的震源参数。
     3、通过对七个震源输入下的地震动模拟,分析了北京盆地结构对地震动加速度反应谱的放大特征,指出虽然不同震源参数会在一定程度上造成盆地放大效应的差异,但盆地结构一直是控制3-10秒长周期地震动加速度反应谱放大的主导因素。盆地对加速度反应谱的放大系数与盆地内沉积物的厚度之间关系密切,近地表的第四系和第三系的厚度都对盆地放大效应有很大的影响,其中第四系的影响程度更为突出。
     4、提出了“盆地等效沉积物厚度”的概念,给出了盆地结构对3-10秒长周期地震动加速度反应谱的平均放大系数与盆地等效沉积物厚度之间的相关函数。结果表明:盆地放大效应不能简单地用乘以某一系数来表征,它与盆地内等效沉积物厚度有很强的相关性,随着等效沉积物厚度增加而增加,相关性函数可回归为清晰的二项式方程。
     5、当等效沉积物厚度大于200m时,在3-10秒周期范围内,盆地结构对3秒周期地震动加速度反应谱的放大作用最为显著,随着周期增大,放大作用逐渐减弱;当等效沉积物厚度和反应谱周期一定时,盆地结构对水平分量加速度反应谱的平均放大系数大于竖向分量,而在两个水平分量中,盆地结构对平行断层分量加速度反应谱的平均放大系数要大于垂直断层分量。
     6、对比了盆地放大效应与地表土层放大效应。当盆地等效沉积物厚度不大于500m时,盆地对周期T≥3s的加速度反应谱的放大系数与地表土层放大率大致相当;但在盆地等效沉积物厚度较大的区域,盆地放大效应明显大于地表土层放大效应。
     7、基于回归统计结果,将北京盆地结构对地震动加速度反应谱的平均放大系数进行了分区,为北京市的震害防御和未来规划等提供了科学的参考。
     8、统计了北京市25层以上高层住宅和100米以上超高层商用建筑的分布、层数及高度等信息,计算了这些建筑结构的自振周期。根据不同周期时盆地对加速度反应谱的放大系数的分区结果:(1)探讨了现有这些高层建筑的地震致灾风险水平与盆地结构的关系。指出城市东部CBD及以东地区的大部分建筑、西二环到西三环之间南半段内的建筑、以及北五环以北地区的部分建筑受到盆地放大效应的影响最为突出,在大地震中可能产生较为严重的地震灾害,是今后地震应急准备和地震救援工作中应着重考虑的对象;(2)指出顺义凹陷、大厂凹陷的中心区域,盆地放大效应非常明显。在城市未来规划时,该区域应尽量避免建造同类高层建筑:(3)在盆地放大系数较小的其它地区建造同类高层建筑时,建议参考本论文的研究结果,根据建筑结构自振周期的大小,适当提高建筑物的抗震设防标准。
With the rapid growth of urban population and soaring land price, a lot of high-rise buildings have been built in the city, and the numbers continue to rise. On the other hand, many cities, such as Beijing, Yinchuan, Xian, Hohhot in China, are built in basins, and also have tectonic background prone to major earthquakes. Earthquake disaster characteristics of buildings in several major historical earthquakes indicate that basins can amplify the long-period ground motion significantly, and cause many high-rise buildings to be destroyed. So, the seismic fortification of high-rise buildings built in the basins becomes more and more important. However, in our current Code for Seismic Design of Buildings and Code for Seismic Safety Evaluation, basin amplification effect on ground motion is still not specified. It brings potential risk to city seismic disaster prevention and future planning.
     As our country's political center, economic center and cultural center, Beijing city has a very important position. From view of science research, firstly, Beijing city is located in the basin, and has tectonic background prone to major earthquakes. Secondly, thousands of high-rise residential buildings over25stories and super high-rise commercial building over100meters have been or will be built. The natural periods of these buildings are usually longer than three seconds, and some of them are even10seconds. Because of the resonance effect with3-10-second ground motion, these buildings are prone to be ruined when major earthquake occurs. Besides, strong ground shaking can cause fire. These will not only cause a severe casualty and property loss, but also make earthquake emergency and rescue very hard. So, studying Beijing basin's amplification effect on3-10-second ground motion acceleration response spectrum is very urgent, because it can help us to understand reasonable seismic fortification requirement of high-rise building in basins, and provide scientific reference for city future planning, seismic design for new high-rise buildings, seismic disaster prevention of high-rise building, earthquake emergency and rescue.
     In view of the shortage of strong ground motion records in Beijing basin, this paper uses parallel-computing finite difference method to simulate ground motion, and studied how3D basin structure of Beijing amplifies3-10-second ground motion acceleration response spectrum. The main work and conclusions include the followings:
     1. Basic principle and parallel-computing implementation plan of long-period ground motion simulation by finite difference method are explained in detail, and parallel-computing platform is introduced.
     2. On the basis of collecting and sorting of seismic exploration data, geological data, drill data, seismic velocity data, and other investigation data, we have modified the existing basin model of Beijing, and set up a new3D velocity structure model including topography. Through analyzing the historical earthquake with M>5and activity characteristics of active fault, we have modeled reasonable seismic sources which generally consist with seismic tectonics environment of Beijing basin, and provided right seismic inputs for simulating ground motion by finite difference method.
     3. Through simulating ground motions with seven seismic sources, basin structure's amplification effect on acceleration response spectrum is analyzed. The research demonstrates that the amplification effect on3-10-second ground motion acceleration response spectrum is mainly controlled by basin structure, although different seismic sources may lead to the deviation to a certain extent. Obviously, it is connected with the thicknesses of both Quaternary and Tertiary, especially the thicknesses of Quaternary.
     4. The new conception called "equivalent sediment thickness" is proposed. The function relationship between equivalent sediment thickness and basin amplification factor of3-10-second ground motion acceleration response spectrum is given. The result tells us:Basin amplification factor is not a constant. It is in good correlation with equivalent sediment thickness, and increase with equivalent sediment thickness. A binomial formula can be satisfied very well with the function relationship.
     5. At a place where equivalent sediment thickness is larger than200meters, and in3-10second period range, basin amplification effect on3-second acceleration spectrum is strongest, and then decreases with period. When equivalent sediment thickness and period keep constant, the average basin amplification factor on horizontal acceleration spectrum is larger than that on vertical acceleration spectrum. Additionally, for the two horizontal components, the average basin amplification factor on fault-parallel acceleration spectrum is larger than that on fault-perpendicular acceleration spectrum.
     6. Basin amplification effect and surface soil amplification effect are compared. In the areas where equivalent sediment thicknesses are not larger than500meters, basin amplification coefficients on T>3-second acceleration response spectrum are basically equivalent to surface soil amplification coefficients. However, in other areas where equivalent sediment thicknesses are larger than500meters, basin amplification effect has larger values than surface soil amplification effect.
     7. Based on the functional relationship between average basin amplification coefficient and equivalent sediment thickness, zonation of basin amplification effect is made. It gives some scientific advice for seismic disaster prevention and future planning of Beijing city.
     8. Distribution, layer and height information of both high-rise residential buildings over25stories and super high-rise commercial buildings over100meters are statistically analyzed, and their natural periods are calculated. According to the zonation of basin amplification coefficient on acceleration response spectrum, we can do the following things:(1) The relationship between risk level of seismic disaster of existing high-rise buildings and basin structure is discussed. CBD (Central Business District), the eastern region to CBD, the south region between the West Second Ring Road and the West Third Ring Road, and the northern region to the North Fifth Ring should be key considerations in earthquake emergency preparedness and rescue, because severe seismic disaster perhaps happens in these regions.(2) The centers of Shunyi depression and Dachang depression are pointed out to be the places where basin amplification effect is strongest, and should be avoided to build the same kind of high-rise buildings in the future.(3) When building high-rise buildings in other regions where amplification factor are smaller, the seismic fortification criterion should be improved according to the natural period of the building structures and our research results.
引文
包世华,方鄂华.1989.高层建筑结构设计(第二版).清华大学出版社.
    陈纯森.2002.台湾集集大地震高层建筑倒塌破坏与混凝土施工之探讨.建筑结构,32(1):41-45.
    陈达生.1984.地震引起的地表破裂长度与震级之间的经验关系.华北地震科学,2(2):26-32.
    陈运泰等.2000.数字地震学.地震出版社.
    邓起东,于贵华,叶文华.1992.地震地表破裂参数与震级关系的研究.见:
    国家地震局地质研究所编.活动断裂研究(2).北京:地震出版社,247-264.
    付长华,高孟潭,陈鲲.2012.北京盆地结构对长周期地震动反应谱的影响.地震学报,34(3):374-382.
    高孟潭,俞言祥,张晓梅,等.2002.北京地区地震动的三维有限差分模拟.中国地震,18(4):356-364.
    高文学,马瑾.1993.首都圈地震地质环境与地震灾害.北京:地震出版社.
    郭恩,周锡元.2010.汶川地震盆地效应的思考与建议.防灾减灾工程学报,30(4):459-465.
    郭增建,秦保燕.1979.震源物理.北京:地震出版社,104-158.
    国家地震局《深部物探成果》编写组.1986.中国地壳上地幔地球物理探测成果.地震出版社.
    郝敏,谢礼立,李伟.2005.从集集地震看建筑物震害与地震动参数的关系.地震工程与工程振动,25(6):12-15.
    何仲太,马保起,卢海峰,等.2009.北京东北旺——小汤山断裂存在的证据.地震地质,31(2):233-246.
    胡进军,谢礼立.2010.地震超剪切破裂研究现状.地球科学进展,26(1):39-47.
    胡平,罗华春,孟勇琦,等.2000.从顺义地表破裂带分析顺义——良乡断裂北段的活动性.地震地质,22(2):123-128.
    胡世德.2002.北京近年高层建筑发展探讨.建筑技术,33(11):808-811.
    胡世德.2004.北京地区建筑层数的发展分析.建筑技术,35(9):706-707.
    胡世德.2004.北京建筑的特点和发展(续1).建筑技术,35(2):145-147.
    胡世德.2004.北京建筑的特点和发展.建筑技术,35(1):64-66.
    胡世德.2005.北京近年高层建筑发展分析.建筑技术,36(6):408-411.
    金安蜀,刘福田,孙永智.1980.北京地区地壳和上地幔的三维P波速度结构.地球物理学报,23(2):172-182.
    李鼎容,彭一民,刘清泗,等.1979.北京平原区上新统-更新统的划分.地质科学,(4):342-350.
    李龚健,王庆飞,王必任,等.2010.北京南口地区构造特征与虎峪水坝渗流稳定性分析.现代地质,24(4):727-734.
    李雪强.2011.沉积盆地地震效应研究.中国地震局工程力学研究所硕士学位论文.
    李忠华,苏有锦,蔡明军,等.1999.云南地区震源破裂长度与震级的经验关系.西北地震学报,21(3):331-333.
    笠原庆一.1984.地震力学(赵忠和等译).地震出版社.
    笠原庆一(郑斯华,庄灿涛译).1992.防灾工程学中的地震学.地震出版社.
    廖仲远.1997.中外大城市灾例对比研究系列报告(四)——墨西哥地震和洛杉矶(北岭)地震.灾害学,12(1):64-71.
    刘昌铨,杨健.1982.京津及其外围地区地壳速度结构的初步探测.地震学报,4(3):217-226.
    刘广平,辛鑫,候建军,等.2001.北京南口山前活动断层的分段性研究.东北地震研究,17(4):9-16.
    龙锋,闻学泽,徐锡伟.2006.华北地区地震活断层的震级一破裂长度、破裂面积的经验关系.地震地质,28(4):511-535.
    孟宪梁,柱春涛,王瑞,等.1983.1679年三河——平谷大震的地震断裂带.地震,3:20-25.
    钮泽蓁.1991.1985年墨西哥地震高层建筑的地震表现.建筑结构,(1):58-62.
    潘波,许建东,关口春子,等.2006.北京地区近断层强地震动模拟.地震地质,28(4):623-634.
    潘波,许建东,刘启方.2009.1679年三河——平谷8级地震近断层强地震动的有限元模拟.地震地质,31(4):69-83.
    彭一民,李鼎容,谢振钊,等.1981.北京平原区同生断裂的某些特征及其研究意义.地震地质,3(2):57-64.
    沈建文,邱瑛.越志贺.1990.震级——破裂长度关系与断层破裂模型.地球物理学报,33(2):242-248.
    宋松岩,周雪松,张先康,等.1997.泰安——忻州剖面S波资料解释及其与邢台地震的相关性分析.地震学报,19(1):13-21.
    孙若昧,赵燕来,吴丹.1996.京津唐地区地壳结构与强震的发生——Ⅱ.S波速度结构.地球物理学报,39(3):347-355.
    孙振凯,张洪由.2001.2001年1月26日印度古吉拉特邦7.8级地震综述.国际地震动态,(3):18-24.
    王夫运,张先康,陈棋福,等.2005.北京地区上地壳三维细结构层析成像.地球物理学报,48(2):359-366.
    王广军,樊水荣.1989.建筑自振周期经验公式的述评(上).世界地震工程,(3):P33-42.
    王广军,樊水荣.1989.建筑自振周期经验公式的述评(下).世界地震工程,(4):P35-43.
    王广军,王玉朋,陈德彬.1990.建筑自振周期经验公式一些问题的探讨.建筑科学,(4):21-27.
    王广军.1992.不同振动幅值时建筑自振周期值的差异及统计关系.地震学刊,(1):19-29.
    王挺梅,李建平.1982.北京的古地震研究.见:史前地震与第四纪地质文集.西安:陕西科学技术出版社,51-58.
    王锡财,王彬,周光全,等.2004.高层建筑震害研究.自然灾害学报,13(1):100-104.
    吴济民.1987.1985年墨西哥地震震害分析.建筑科学,(2):73-79.
    吴开统,焦远碧,吕培琴,等.1990.地震序列概论.北京:北京大学出版社,124-150.
    辛永信,1990.宝坻断裂危险性的初步分析.地震学刊,(1):76-78.
    徐锡伟,吴卫民,张先康,等.2002.首都圈地区地壳最新构造变动与地震.北京:科学出版社.
    叶文华,徐锡伟,汪良谋.1996.中国西部强震的地表破裂规模与震级、复发时间间隔关系的研究.地震地质,18(1):37-44.
    易建国.1987.1985年9月墨西哥地震的震害特征.结构工程师,(1):52-59.
    宇津德治(陈铁成等,译).1981.地震学.地震出版社.
    俞言祥.2006.强地面运动影响场计算方法研究(PPT).
    张伟.2006.含起伏地形的三维非均匀介质中地震波传播的有限差分算法及其在强地面震动模拟中的应用.北京大学博士学位论文.
    张世民,刘旭东,任俊杰,等.2005.顺义地裂缝成因与顺义——良乡断裂北段第四纪活动性讨论.中国地震,21(1):84-92.
    张世民,王丹丹,刘旭东,等.2008.北京南口——孙河断裂晚第四纪古地震事件的钻孔剖面对比与分析.中国科学D辑:地球科学,38(7):881-895.
    张先康,赵金仁,刘国华,等.2002.三河——平谷8.0级大震区震源细结构的深地震反射探测研究.中国地震,18(4):326-336.
    赵伯明.2008.广州市主要断裂带特征震源模型研究.华南地震,28(4):1-8.
    赵伯明,2009.基于复合预测方法的强地震动评价研究.华中科技大学学报(自然科学版),37(8):108-111.
    赵金仁,张先康,张成科,等.1999.香河——北京——涿鹿及其相邻地区壳幔构造与速度结构特征.地震地质,21(1):29-36.
    赵静,刘文锋.2011.建筑结构的基本自振周期研究.特种结构,28(2):30-32.
    中国地震局监测预报司.2003.地震参数——数字地震学在地震预测中的应用.地震出版社.
    中华人民共和国建设部.2001.建筑结构荷载规范(GB 50009-2001).北京:中国建筑工业出版社.
    中华人民共和国住房和城乡建设部.2010.《建筑抗震设计规范》(GB50011-2010).中国建筑工业出版社.
    竹内敬二,赵仕万.1986.墨西哥地震的长周期波.国际地震动态,(12):27-29.
    Adams Brain M, Osborne Neal M, Taber J John.2003. The basin-edge effect from weak ground motions across the fault-bounded edge of the Lower Hutt valley, New Zealand. Bull. Seism. Soc. Am.,93 (6):2703-2716.
    Baisa Rodonikova, Tamara Larkova, Vladislav Shleifer, et al.1996. Genesis, dynamic process, classification and evolution of sedimentary basins//Abstracts of 30th International Geological Congress (Volume 1 of 3), Beijing:[s. n.],317-365.
    Bard P Y, M Bouchon.1980. The seismic response of sediment-filled valleys, part 1: The case of incident SH waves. Bull. Seism. Soc. Am.,70 (4):1263-1286.
    Bard P Y, M Bouchon.1980. The seismic response of sedimentfilled valleys, Part 2: The case of incident P and SV waves. Bull Seism. Soc. Am.,70,1921-1941.
    Bard P Y, M Bouchon.1985. The two-dimensional resonance of sediment-filled valleys. Bull Seism. Soc. Am.,75:519-542.
    Bindi D, S Parolai, F Cara, et al.2009. Site amplifications observed in the Gubbio basin, central Italy:Hints for lateral propagation effects. Bull. Seism. Soc. Am.,99 (2A):741-760.
    Bonilla M, Mark R, Lienkaemper J.1984. Statistical relations among earthquake magnitude, surface length and surface fault displacements. Bull. Seism. Soc. Am., 74:2379-2411.
    Booth D B, R E Wells, R W Givler.2004. Chimney damage in the greater Seattle area from the Nisqually earthquake of 28 February,2001. Bull. Seism. Soc. Am., 94:1143-1158.
    Broberg K B.1996. How fast can a crack go?. Materials Science,32:80-86.
    Campbell K W.1997. Empirical near-source attenuation relations for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seism. Res. Lett.,68(1):154-179.
    Cerjan C, Kosloff D, Kosloff R, Reshef M.1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics,50:705-708.
    Chen X F.1990. Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method. I. Theroy of two-dimensional SH case. Bull. Seism. Soc. Am.,80 (6):1696-1724.
    Chen X F.1996. Seismogram Synthesis for Multi-Layered Media with Irregular Interfaces by Global Generalized Reflection/Transmission Matrices Method. III. Theory of 2D P-SV Case. Bull. Seism. Soc. Am.,86 (2):389-405.
    Chinnery M A.1969. Earthquake magnitude and source parameters. Bull Seism Soc Am,59:1969-1982.
    Choi Yoojoong, Stewart Jonathan P, Graves Robert W.2005. Empirical model for basin effects accounts for basin depth and source location. Bull. Seism. Soc. Am.,95 (4):1412-1427.
    David D Oglesby, Ralph J Archuleta, Stefan B Nielsen.2000. The Three-Dimensional Dynamics of Dipping Faults. Bull. Seism. Soc. Am.,90(3): 616-628.
    Day S M, J Bielak, D Dreger, et al.2005.3D ground motion simulation in basins. Final report to pacific earthquake engineering research center.
    Esteva L, EERI M(张鸣岗,译).1988.1985年9月19日墨西哥地震:经验教训及其对研究实践的影响Earthquake Spectra,4(3):19-24.
    Field Edward H.1996. Spectral Amplification in a Sediment-Filled Valley Exhibiting Clear Basin-Edge-Induced Waves. Bull. Seism. Soc. Am.,86 (4):992-1005.
    Field Edward H.2000. A Modified Ground-Motion Attenuation Relationship for Southern California that Accounts for Detailed Site Classification and a Basin-Depth Effect. Bull. Seism. Soc. Am.,90 (6B):S209-S221.
    Field Edward H, The SCEC Phase Ⅲ Working Group.2000. Accounting for Site Effects in Probabilistic Seismic Hazard Analyses of Southern California:Overview of the SCEC Phase Ⅲ Report. Bull. Seism. Soc. Am.,90 (6B):S1-S31.
    Fletcher Jon B, Wen Kuo-Liang.2005. Strong Ground Motion in the Taipei Basin from the 1999 Chi-Chi Taiwan, Earthquake. Bull. Seism. Soc. Am.,95(4): 1428-1446.
    Frankel A, D Carver, E Cranswick, et al.1999. Site response for Seattle and source parameters of earthquakes in the Puget Sound region. Bull. Seism. Soc. Am., 89:468-483.
    Frankel A, J Vidale.1992. A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock. Bull. Seism. Soc. Am., 82:2045-2074.
    Frankel A.1993. Three-dimensional simulations of ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas Fault. Bull. Seism. Soc. Am.,83:1020-1041.
    Frankel Arthur D, David L Carver, Robert A Williams.2002. Nonlinear and Linear Site Response and Basin Effects in Seattle for the M6.8 Nisqually, Washington, Earthquake. Bull. Seism. Soc. Am.,92 (6):2090-2109.
    Frankel Arthur, William Stephenson, David Carver.2009. Sedimentary Basin Effects in Seattle, Washington:Ground-Motion Observations and 3D Simulations. Bull. Seism. Soc. Am.,99 (3):1579-1611.
    Gaffet S, M Bouchon.1991. Source location and valley shape effects on the P-SV near displacement field using boundary integral equation discrete wave number representation. Geophys. J. Int.,106:341-355.
    Gao S, H Liu P, M Davis, et al.1996. Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake. Bull. Seism. Soc. Am.,85: S209-S230.
    Gil-Zepeda S Alejandro, Francisco Luzon, Jorge Aguirre, et al.2002.3D seismic response of the deep basement structure of the Granada basin (southern Spain). Bull. Seism. Soc. Am.,92 (6):2163-2176.
    Graves R W.1996. Simulating Seismic Wave Propagation in 3D Elastic Media Using Staggered-Grid Finite Differences. Bull. Seism. Soc. Am.,86 (4):1091-1106.
    Graves R W, A Pitarka, P G Somerville.1998. Ground motion amplification in the Santa Monica area:effects of shallow basin edge structure. Bull. Seism. Soc. Am., 88:1224-1242.
    Graves R W.1993. Modeling three-dimensional site response effects in the Marina District, San Francisco, California. Bull. Seism. Soc. Am.,83:1042-1063.
    Hayashi K B, Burns D R, Toksoz M N.2001. discontinuous-grid finite-difference seismic modeling including surface topography. Bull. Seism. Soc. Am., 91:1750-1764.
    Heaton T H.1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors,64(1):1-20.
    Hill J, H Benz, M Murphy, et al.1990. Propagation and resonance of SH waves in the Salt Lake Valley, Utah. Bull. Seism. Soc. Am.,80:23-42.
    Hruby Claire E, Beresnev Igor A.2003. Empirical corrections for basin effects in stochastic ground-motion prediction, based on the Los Angeles basin analysis. Bull. Seism. Soc. Am.,93(4):1679-1690.
    Joyner William B.2000. Strong Motion from Surface Waves in Deep Sedimentary Basins. Bull. Seism. Soc. Am.,90(6B):S95-S112.
    Kanamori H, Anderson D C.1975. Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am.,65:1073-1096.
    Kawase H.1996. The cause of the damage belt in Kobe:"The basin-edge effect", Constructive interference of the direct S-wave with the basin-induced diffracted/Rayleigh waves. Seism. Res. Lett.67(5):25-34.
    Kim B Olsen, Ralph J Archuleta.1996. Three-Dimensional Simulation of Earthquakes on the Los Angeles Fault System. Bull. Seism. Soc. Am.,86(3): 575-596.
    Lee Shiamm-Jong, Chen How-Wei, Huang Bor-Shouh.2008. Simulations of strong ground motion and 3D amplification effect in the Taipei basin by using a composite grid finite-difference method. Bull. Seism. Soc. Am.,98(3):1229-1242.
    Lee Y, J G Anderson.2000. A custom southern California ground motion relationship based on analysis of residuals. Bull. Seism. Soc. Am.,90:S170-S187.
    Levander A R.1988. Fourth-order finite-difference P-SV seismograms. Geophysics, 53:1425-1436.
    Ohminato T, Chouet B A.1997. A free-surface boundary condition for including 3D topography in the finite-difference method. Bull. Seism. Soc. Am.,87:494-515.
    Olsen K B, J C Pechmann, G T Schuster.1995. Simulation of 3D elastic wave propagation in the Salt Lake basin. Bull. Seism. Soc. Am.,85:1688-1710.
    Olsen K B.2000. Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion. Bull. Seism. Soc. Am.,90(6B):S77-S94.
    Ouchi T, A Lin, A Chen, et al.2001. The 1999 Chi-Chi (Taiwan) Earthquake: Earthquake Fault and Strong Motions. Bull. Seism. Soc. Am.,91(5):966-976.
    Pitarka A, Irikura K.1996. Basin structure effects on long-period strong motions in the San Fernando Valley and the Los Angeles basin from the 1994 Northridge earthquake and an aftershock. Bull. Seism. Soc. Am.,86 (1B):S216-S137.
    Pitarka A, K Irikura, T Iwata, et al.1998. Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogoken Nanbu (Kobe), Japan, earthquake. Bull. Seism. Soc. Am.,88:428-440.
    Robert W Graves, Arben Pitarka, Paul G Somerville.1998. Ground-motion amplification in the Santa Monica area:Effects of shallow basin-edge structure. Bull. Seism. Soc. Am.,88(5):1224-1242.
    Robert W Graves.1998. Three-Dimensional Finite-Difference Modeling of the San Andreas Fault:Source Parameterization and Ground-Motion Levels. Bull. Seism. Soc. Am.,88(4):881-897.
    Robertsson J.1996. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics,61:1921-1934.
    Rogers A M, J C Tinsley, R D Borcherdt.1985. Predicting relative ground response. U.S. Geol. Surv. Profess. Pap.1360:221-248.
    Sanchez-Sesma F J, F Luzon.1995. Seismic response of three dimensional alluvial valleys for incident P, S and Rayleigh waves. Bull. Seism. Soc. Am.,85:269-284.
    Scot J S, E Hauksson, F Vernon, et al.1994. Los Angeles basin ground motion estimation for aftershocks of the 1994 Northridge Earthquake from a tomographic velocity model.89th SSA Meeting, Pasadena, California.
    Shin T C, K W Kuo, W H K Lee, et al.2000. A preliminary report on the 1999 Chi-Chi (Taiwan) earthquake. Seism. Soc. Res. Lett.,71:24-30.
    Slemmons D B, Bodin P, Zang X.1989. Determination of earthquake size from surface faulting events. In:Proc. of the International Seminar on Seismic Zonation, Guangzhou, China. State Seismological Bureau, Beijing,13.
    Somerville P G., Irikura K, Graves R W, et al.1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seism. Res. Lett., 70(1):59-80.
    Song X, L Jones, D V Helmberger.1994. Source characteristics of the January 17, 1994 Northridge California earthquake from regional broadband modeling.89th SSA meeting, Pasadena, California.
    Steidl J H, Lee Y.2000. The SCEC phase III strong-motion database. Bull. Seism. Soc. Am.,90:S 113-S135.
    Stephenson W J, A D Frankel, J K Odum, et al.2006. Towards resolving an earthquake ground motion mystery in west Seattle, Washington state:Shallow seismic focusing may cause anomalous chimney damage. Geophys. Res. Lett., Vol. 33, L06316, doi:10.1029/2005GL025037.
    Trifunac M D, Lee V W.1978. Dependence of the Fourier amplitude spectra of strong motion acceleration on the depth of sedimentary deposits. Report No. CE 78-14, University of Southern California. Civil Engineering Department.
    Virieux J.1986. P-SV wave propagation in heterogeneous media:velocity-stress finite-difference method. Geophysics,51:889-901.
    Wald D J, R W Graves.1998. The seismic response of the Los Angeles basin, California. Bull Seism Soc Am.,88:337-356.
    Wells D L, Coppersmith K J.1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seism Soc Am.,84(4):974-1002.
    William Stockton(范文献,译).1985.墨西哥地震与城市建筑International Herald Tribune.
    Yamanaka H, K Seo, T Samano.1989. Effects of sedimentary layers on surface-wave propagation. Bull. Seism. Soc. Am.,79:631-644.