城域以太网中VPLS研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以太网技术以前所未有的速度向前发展,并向城域网方向迈进。特别是ITU-T X.86标准的提出,首次成功地将以太网和千兆以太网引入到电信传输网中,使以太网技术向城域网方向的发展迈出了关键性的一步。ITU-T X.87的问世,为以太网技术在城域网范围内实现多业务的承载提供了有力的技术保证,推动了城域以太网技术的快速发展。在城域以太网众多的技术中,VPLS(Virtual Private Lan Services,虚拟专用局域网服务)由于技术简单可靠、易于实现而受到人们的青睐。
     在分析VPLS网络技术特点的基础上,给出了VPLS的网络模型及其转发平台的实现方法。VPLS的网络模型是进行VPLS技术研究的重要理论基础。通过在PE节点之间建立全网状的伪线互连,利用MPLS的标签交换路径建立数据转发隧道,完成对用户业务的承载。分析了VPLS中的MAC地址学习机制,FIB(Forwarding Information Base,转发表)的建立及管理等。分析了具体实现过程中的软/硬件分层结构,并深入探讨了实现VPLS数据转发的状态机。通过大量的试验,对理论研究的结果进行了逐一验证。
     提出了VPLS网络中的流量工程模型,给出了VPLS可行树的建立算法。VPLS网络中的流量工程是实现VPLS网络优化和保证服务质量的重要方法,有助于实现端到端的QoS控制功能,确保分组在通过VPLS网络时的服务质量。分析了VPLS中为用户提供SLA服务的复杂性,给出了CE节点为实现流量工程采取的QoS预处理,以及流量通过UNI接口进入到服务提供商网络中时PE节点必须完成的主要功能,如对着色帧的处理,UNI接口上的广播帧的转发抑制等。给出了基于Hose模型的带宽分配机制,通过VPLS可行树实现多点到多点的动态带宽分配,以及在链路故障的情况下如何对VPLS可行树中的链路提供路径保护。
     通过迭代,提出了VPLS中具有时延约束机制的转发算法。点到多点的分组转发机制是VPLS网络中的一个重要研究课题,即:如何真正实现点到多点的转发机制,弥补VPLS技术中由于洪泛带来网络资源的巨大开销。考虑到VPLS将是一种承载实时业务的技术,算法中研究了具有时延约束的点到多点的转发机制,对改善VPLS网络的性能具有重要的理论意义。采用MPLS的显式路由建立点到多点的LSP,减少洪泛,降低PE节点的负担,优化网络的性能。给出了不同情况下转发树的剪枝和加入方法,以满足VPLS成员的动态变化。给出了点到多点MPLS隧道的建立方法,表明设计的方案能够真正地在应用中实现。
     提出了VPLS中如何通过共享聚合树实现组播技术。VPLS对组播业务的承载是人们关注的一个热点问题。由于VPLS的转发是建立在“分布式”的MPLS交换平台之上,针对两个重要的问题进行了深入探讨:(1)如何获取组播成员信息;(2)如何在PE节点间共享这些成员信息。由于网络规模的差异,分别采用IGMP spooping和PIM Snooping两种方法获取组播成员。给出了组播组和共享聚合树之间的映射算法,以及优化组和树之间由于需要维护转发状态而带来的系统开销。
Ethernet technology has been developing much faster than ever before. The ratification of ITU-T X.86 successfully introduces Ethernet into carrier grade telecom network for the first time, and another ITU-T standard, X.87, makes it feasible and reliable for Ethernet to carry multi-services in metropolitan area networks. In recent years, Ethernet has extended itself into metro area networks, becoming the optimal candidate in building metro. Among the many metro-building candidates, VPLS is highly praised for its simplicity, reliability and ease of implementation. It takes the advantages of IP/MPLS backbone to provide customers with an emulated LAN; upon it transparent LAN services can be easily carried out.
     A VPLS network model and its implementation is first put forward. By building a full-mesh of pseudo-wires between PE nodes and mapping traffic onto MPLS LSP tunnels, VPLS carries different kinds of services for customers. Then it studies the mechanisms for building and managing FIB table, etc. It also describes the architecture for implementing multi-layer VPLS routing and switching platform. Through experiment it concludes that the theoretical model introduced is practical and feasible.
     A VPLS model for traffic engineering is proposed for the purpose of end-to-end QoS guaranteed packet switching. It points out the complexity when offering customers with SLA services. Some important technical issues, such as the traffic pre-treatment on CE nodes, what steps PE nodes should take when receiving traffic from UNI, including frames coloring, UNI broadcast storm control, etc., are fully addressed. The last issue is the hose model based bandwidth guarantee, in which it illustrates how VPLS feasible tree can be implemented to realize the multipoint-to-multipoint dynamic bandwidth allocation, and how backup path can be computed when link failure occurs in a VPLS feasible tree.
     A delay-constraint point-to-multipoint forwarding algorithm is proposed to avoid too much flooding in VPLS network. Flooding, if not properly handled, often degrades network performance and wastes resources. With real-time services taken into account, a delay-constraint point-to-multipoint routing mechanism is described through P2MP MPLS LSPs. As complementary, it briefly illustrates how to establish P2MP LSPs,concluding that the proposal can be feasibly implemented.
     A shared aggregate multicast tree is suggested for multicast services in VPLS. As VPLS is based on“distributed”switching architecture, how to learn multicast membership and how to distribute them among PE nodes are the greatest challenges. It describes both IGMP snooping and PIM snooping to learn multicast membership, and discusses the conflict between multicast states and bandwidth efficiency with shared aggregate multicast trees as an optimized trade-off solution. Through the mapping mechanism between multicast groups and aggregate trees, the overhead for multicast state maintenance can be greatly reduced.
引文
[1] ITU-T Recommendation X.86/Y.1323, Ethernet over LAPS
    [2] ITU-T Recommendation X.85/Y.1321, IP over SDH using LAPS
    [3] ITU-T Recommendation X.87/Y.1324, Multiple Services ring based on RPR
    [4] 余少华,陶智勇. 城域网多业务传送理论与技术. 北京:人民邮电出版社,2004.12
    [5] Metro Ethernet Forum.Ethernet Services Attributes Phase 1, Technical Specification, MEF 10. November 2004
    [6] Sam Halabi. METRO ETHERNET. Cisco press, Sept. 2003. 49-132
    [7] Metro Ethernet Forum. Metro Ethernet Network Architecture Framework Part 2: Ethernet Services Layer, Technical Specification, MEF 12. April 2005
    [8] Metro Ethernet Forum. User Network Interface (UNI) Type 1 Implementation Agreement, Technical Specification MEF 13. November 2005
    [9] 徐荣,龚倩,张光海. 城域光网络. 北京:人民邮电出版社, 2003.1. 166-186
    [10] 董喜明.Q-in-Q VLAN技术在城域以太网组网中的应用. 计算机工程与科学, Vol.27, 2005.6. 18-20
    [11] Marc Lasserre, Vach Kompella. Virtual Private LAN Services over MPLS, work in progress. draft-ietf-l2vpn-vpls-ldp-06.txt. Feb. 2005
    [12] K. Kompella, Y. Rekhter. Virtual Private LAN Service, work in progress, draft-ietf-l2vpn-vpls-bgp-02.txt. May 2004
    [13] Metro Ethernet Forum. Metro Ethernet Network Architecture Framework - Part 1: Generic Framework, Technical Specification, MEF 4. May 2004
    [14] Metro Ethernet Forum. Ethernet Services Definitions - Phase I, Technical Specification, MEF 6. June 2004
    [15] Metro Ethernet Forum. Requirements and Framework for Ethernet Service Protection in Metro Ethernet Networks, Technical Specification, MEF 2. Feb 8, 2004
    [16] Eric C. Rosen. Framework for Layer 2 Virtual Private Networks (L2VPNs), work in progress, draft-ietf-l2vpn-l2-framework-05.txt. June 2004
    [17] Oded Bergman, Eran Mann, and Scott Kotrla. VPLS Node Auto-Discovery Using IGP, work in progress. draft-bergman-vpls-igp-auto-discovery-00.txt. July 2004
    [18] Olen Stokes, Vach Kompella, Giles Heron, Yetik Serbest. Testing HierarchicalVirtual Private LAN Services, work in progress, draft-stokes-vkompella-l2vpn-hvpls-oam-00.txt. October 2004
    [19] Dinesh Mohan,Ali Sajassi. L2VPN OAM Requirements and Framework,work in progress, draft-ietf-l2vpn-oam-req-frmk-04.txt. October 2005
    [20] N. Abu Ali, H. Mouftah, and S. Gazor. A distributed bandwidth-guaranteed routing algorithm for point-to-multipoint VPLS virtual connections. In: Proceedings of International Conference on Communications, (ICC 2005), May 2005. 1561-1565
    [21] Najah Abu Ali, Hussein T. Mouftah and Saeed Gazor. Online Distributed Statistical-Delay MBAC with QoS Guarantees for VPLS Connections. In: Proceedings of 8th International Conference on Telecommunications, 2005. 383-390
    [22] L. Martini, et al. Encapsulation Methods for Transport of Ethernet Frames Over IP/MPLS Networks, work in progress. IETF draft-ietfpwe3I-ethernet-encap-00.txt. August 2002
    [23] L. Martini, et al. Transport of Layer 2 Frames Over MPLS, work in progress, IETF draft-ietf-pwe3-control-protocol-00.txt. August 2002
    [24] Ximing Dong, Shaohua Yu. VPLS: An Effective Technology for Building Scalable Transparent LAN Services. In: Proceedings of SPIE, Network architectures, management, and applications II , Nov. 2004. 137-147
    [25] Jean-Yves Le Boudec. Some Properties Of Variable Length Packet Shapers. In: Proceedings of the 2001 ACM SIGMETRICS, International conference on Measurement and modeling of computer systems, Vol. 29 Issue 1,June 2001. 175-183
    [26] C.V. Hollot, Vishal Misra, Don Towsley, Wei-Bo Gong. A Control Theoretic Analysis of RED. In: Proceeding of IEEE INFOCOM, April 2001. 1510-1519
    [27] Thomas Bonald, Martin May, Jean Chrysostome Bolot. Analytic Evaluation of RED Performance. In: Proceeding of IEEE Infocom, March 2000. 1415-1424
    [28] Mikkel Christiansen, Kevin Jeffay, David Ott, F. Donelson Smith. Tuning RED for Web Traffic. In: Proceedings of Sigcomm, August 2000. 249-264
    [29] Ion Stoica,Scott Shenker, Hui Zhang. Core-Stateless Fair Queueing: A Scalable Architecture to Approximate Fair Bandwidth Allocations in High Speed Networks. IEEE/ACM Transactions on Networking (TON), Volume 1, Feb. 2003: 33-46
    [30] Dan Rubenstein, Jim Kurose, Don Towsley. Detecting Shared Congestion of Flows Via End-to-End Measurement. IEEE/ACM transactions on networking, Vol. 10, NO.3, JUNE 2002: 381-395
    [31] K. Yoshigoe, K. Christensen. RATE Control for Bandwidth Allocated Services in IEEE 802.3 Ethernet. In: Proceedings of IEEE 26th Conference on Local Computer Networks, 2001. 446-453
    [32] Jon C. R. Bennett, Kent Benson, Anna Charny, William E Courtney, Jean-Yves Le Boudec. Delay Jitter Bounds and Packet Scale Rate Guarantee for Expedited Forwarding. IEEE/ACM Transactions on Networking, Vol. 10, no. 4, August 2002: 529-540
    [33] Dmitri Loguinov, Hayder Radha. End-to-End Rate-Based Congestion Control: Convergence Properties and Scalability Analysis. IEEE/ACM Transactions on Networking, Vol. 11, No. 4, August 2003: 564-577
    [34] Daniel P. Heyman, David Lucantoni. Modeling Multiple IP Traffic Streams With Rate Limits. IEEE/ACM Transactions on Networking, Vol. 11, No. 6, December 2003: 948-958
    [35] Richard J. La ,Venkat Anantharam. Utility-Based Rate Control in the Internet for Elastic Traffic. IEEE Transactions On Networking, Vol. 10, No. 2, April 2002: 272-286
    [36] Metro Ethernet Forum. Circuit Emulation Service Definitions, Framework and Requirements in Metro Ethernet Networks, Technical Specification, MEF 3. April 13, 2004
    [37] Metro Ethernet Forum. Requirements and Framework for Ethernet Service Protection in Metro Ethernet Networks, Technical Specification, MEF 2. Feb 8, 2004
    [38] Metro Ethernet Forum. Abstract Test Suite for Ethernet Services at the UNI, Technical Specification, MEF 9. October 2004
    [39] Metro Ethernet Forum. Requirements for Management of Metro Ethernet Phase 1 Network Elements, Technical Specification, MEF 15. November 2005
    [40] Amit Kumar,Rajeev Rastogi,Avi Silberschatz,Bulent Yener. Algorithms for Provisioning Virtual Private Networks in the Hose Model. In: Proceeding of ACM SIGCOMM, August 2001. 135-146
    [41] A.Kumar,R.Rastogi, A.Silberschatz, BulentYener, Algorithms for Provisioning Virtual Private Networks in the Hose Model, IEEE/ACM Transactions on Networking, Aug. 2002: 565–578
    [42] Yu-liang Liu,Yeali S.Sun, and Meng Chang chen. Traffic Engineering forHose-Model VPN Provisioning. In:Proceedings of IEEE GLOBLECOM’2005, 2005. 1080-1085
    [43] Ali Sajassi, Yetik Serbest, Frank Brockners, Dinesh Mohan. VPLS Interoperability with CE Bridges, work in progress, draft-sajassi-l2vpn-vpls-bridge-interop-02.txt. October 2004
    [44] Tat Wing Chim, et al. Routing Algorithm for Provisioning Symmetric Virtual Private Networks in the Hose Model. In:Proceedings of IEEE GLOBLECOM’ 2005, 2005. 802-806
    [45] Krishna P. Gummadi, Madhavarapu Jnana Pradeep ,C. Siva Ram Murthy. An Efficient Primary-Segmented Backup Scheme for Dependable Real-Time Comm. in Multihop Networks. IEEE/ACM Trans. on Networking, Vol. 11, No. 1, February 2003: 81-94
    [46] George Apostolopoulos, Ioana Ciurea. Reducing the Forwarding State Requirements of Point-to-Multipoint Trees Using MPLS Multicast.In: Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC), June 2005. 713-718
    [47] F. Solano, R. Fabregat, Y. Donoso, J.L. Marzo. A Label Space Reduction Algorithm for P2MP LSPs using Asymmetric Tunnels. In: Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC), June 2005. 746-751
    [48] Costas A. Courcoubetis, Antonis Dimakis. Providing bandwidth guarantees over a best-effort network: call-admission and pricing. In: Proceedings of IEEE INFOCOM, April 2002. 459-467
    [49] Vijay Sivaraman, Fabio Chiussi. Providing End-to-End Statistical Delay Guarantees with Earliest Deadline First Scheduling and Per-Hop Traffic Shaping. In: Proceedings of IEEE Infocom, March 2002. 631-640
    [50] Neil Spring, Ratul Mahajan, Thomas Anderson. Quantifying the Causes of Path Inflation. In: Proceedings of Sigcomm, August 2003. 113-119
    [51] Yongho Seok, Youngseok Lee, Yanghee Choi, Changhoon Kim. Explicit Multicast Routing Algorithms for Constrained Traffic Engineering. In: Proceedings of the Seventh International Symposium on Computers and Communications (ISCC’02), July 2002. 455-461
    [52] 余祥宣,崔国华,邹海明. 计算机算法基础. 武汉:华中科技大学出版社, 1998.6. 67-87
    [53] D.E. Knuth. The Art of Computer Programming(Textbook), Vol. 3. London:Addison-Wesley Publishing Company, 1973. 790-841
    [54] Ali Sajassi, Nabil Bitar, Yuji Kamite. Congruency for VPLS Multicast and Unicast Paths, work in progress, draft-sajassi-l2vpn-vpls-multicast-congruency-00.txt. November 2005
    [55] Nicolas Christin, Jorg Liebeherr, Tarek F. Abdelzaher. A Quantitative Assured Forwarding Service, In: Proceeding of IEEE INFOCOM, April 2002. 864-873
    [56] Ian Pratt , Keir Fraser. Arsenic: A User-Accessible Gigabit Ethernet Interface, In: Proceeding of IEEE INFOCOM, April 2001. 67-76
    [57] Guy Fayolle, Arnaud de La Fortelle, Jean-Marc Lasgouttes, Laurent Massoulie, James Roberts. Best-effort networks: modeling and performance analysis via large networks asymptotics. In: Proceeding of IEEE INFOCOM, April 2001. 709-716
    [58] 林闯. 计算机网络和计算机系统的性能评价. 北京:清华大学出版社,2001.4
    [59] B.M.Waxman. Routing of multipoint connections. IEEE Journal of Selected Area in Communications, Dec. 1998: 1617-1622
    [60] 林闯, 单志广,任丰原. 计算机网络的服务质量. 北京:清华大学出版社, 2004.4
    [61] Seisho Yasukawa,Adrian Farrel. Support of LDP Multicast Label Switched Paths over Point-to-Multipoint Label Switched Path Tunnels and on Multi-Access Links, work in progress,draft-yasukawa-mpls-ldp-mcast-over-p2mp-lsps-01.txt. October 2005
    [62] Y. Kamite,Y. Wada,Y. Serbest,T. Morin,L. Fang. Requirements for Multicast Support in Virtual Private LAN Services.work in progress, draft-ietf-l2vpn-vpls-mcast-reqts-00.txt. Oct. 2005
    [63] Sidnie Feit 著,郭幽燕等译.组网用网:高速局域网. 北京:电子工业出版社, 2001.3.171-182
    [64] Gwyn Chatranon, Miguel A. Labrador,Sujata Banerjee. BLACK: Detection and Preferential Dropping of High Bandwidth Unresponsive Flows. In Proceedings of IEEE ICC 2003, May 2003. 664-668
    [65] Y. Serbest, Ray Qiu, Venu Hemige and Rob Nath. Supporting IP Multicast over VPLS, work in progress. draft-serbest-l2vpn-vpls-mcast-01.txt. Oct.2004
    [66] Ali Sajassi, Hussein Salama. VPLS based on IP Multicast, work in progress. draft-sajassi-mvpls-00.txt. Nov. 2002
    [67] Beau Williamson, Developing IP Multicast Networks. Vol. I, Cisco Press, 2000
    [68] Venu Hemige, Yetik Serbest, Ray Qiu,Suresh Boddapati.PIM Snooping over VPLS,work in progress, draft-hemige-serbest-l2vpn-vpls-pim-snooping-00.txt.November 2005
    [69] Kostas G. Anagnostakis,Michael Greenwald,Raphael S. Ryger. Cing: Measuring Network-Internal Delays using only Existing Infrastructure. In Proceedings of IEEE ICC, Alaska, May 2003. 2112-2121
    [70] Dina Katabi,Mark Handley,Charlie Rohrs. Congestion Control for High Bandwidth Delay Product Networks. In: Proceedings of ACM SIGCOMM, August 2002. 81-94
    [71] Arthur W. Berger, Yaakov Kogan. Dimensioning Bandwidth for Elastic Traffic in High-Speed Data Networks. IEEE/ACM Transactions on Networking, vol. 8, no. 5, october 2000: 643-654
    [72] Murali Kodialam, T.V.Lakshman. Dynamic Routing of Restorable Bandwidth Guaranteed Tunnels Using Aggregated Network Resource Usage Information. IEEE/ACM Transactions on Networking (TON), Vol. 11, June 2003: 399-410
    [73] Yigal Bejerano , Rajeev Rastogi. Robust Monitoring of Link Delays and Faults in IP Networks. In: Proceedings of Sigcomm, August 2003. 192-199
    [74] Koushik, KarMurali Kodialam, T.V.Lakshman. Routing Restorable Bandwidth Guaranteed Connections using Maximum 2-Route flows. In: Proceedings of IEEE Infocom, April 2002. 113-121
    [75] Anindya Basu, Alvin Lin, Sharad Ramanathan. Routing Using Potentials:A Dynamic traffic-Aware Routing Algorithm. In: Proceedings of ACM Sigcomm, August 2003. 37- 48
    [76] Volkan Ozdemir,Smuthukrishnan, Injong Rhee. Scalable, Low-Overhead Network Delay Estimation. In: Proceedings of IEEE Infocom, March 2000. 1343-1350
    [77] Florin Baboescu, George Varghese. Scalable Packet Classification, In: Proceedings of Sigcomm, August 2001. 199-210
    [78] Metro Ethernet Forum. User Network Interface (UNI) Requirements and Framework, Technical Specification, MEF 11. November 2004
    [79] William Stallings 著,齐望东等译.高速网络与互连网-性能与服务质量(第二版).北京:电子工业出版社, 2003.1.197-210
    [80] Zhenhai Duan, Zhi-Li Zhang, Yiwei Thomas Hou. Service Overlay Networks: SLAs, QoS and Bandwidth Provisioning. In: Proceedings of 10th IEEE International Conference on Network Protocols (ICNP'02), 2002. 870-883
    [81] Hyung-Keun Ryu, Jeong-Woo Cho, and Song Chong. Stabilized Edge to Edge Aggregate Flow Control. In: Proceedings of Networking 2004, LNCS 3042, 2004.574-587
    [82] S. Ben Fredj, T. Bonald, A. Proutiere, G. Regnie, J.W. Roberts. Statistical Bandwidth Sharing: A Study of Congestion at Flow Level. In: Proceedings of SIGCOMM, August 2001. 111-122
    [83] Sriram Ramabhadran, Joseph Pasquale. Stratified Round Robin: A Low Complexity Packet Scheduler with Bandwidth Fairness and Bounded Delay, In Proceedings of SIGCOMM, August 2003. 239-250
    [84] Ravi S. Prasad, Constantinos Dovrolis, Bruce A. Mah. The effect of layer-2 store-and-forward devices on per-hop capacity estimation. In: Proceedings of IEEE Infocom, April 2002. 2090-2100
    [85] Harsha Narayan, Ramesh Govindan, George Varghese. The Impact of Address Allocation and Routing on the Structure and Implementation of Routing Tables. In: Proceedings of Sigcomm, August 2003. 125-136
    [86] Bruce Lowekamp,David R. O’Hallaron,Thomas R. Gross. Topology Discovery for Large Ethernet Networks, In: Proceedings of Sigcomm, August 2001. 237-248
    [87] Antoine Clerget, Walid Dabbous. TUF: Tag-based Unified Fairness, In: Proceedings of IEEE Infocom, April 2002. 498-507
    [88] Yueping Zhang, SeongRyong, Kang Dmitri Loguinov. Delayed Stability and Performance of Distributed Congestion Control. In: Proceedings of ACM Sigcomm, August 2004. 307-318
    [89] Cristian Estan, Ken Keys.David Moore, George Varghese. Building a Better NetFlow. In: Proceedings of ACM Sigcomm, August 2002. 245-256
    [90] Ningning Hu, Li (Erran) Li, Zhuoqing Morley Mao. Locating Internet Bottlenecks: Algorithms, Measurements, and Implications. In: Proceedings of ACM Sigcomm, August 2004. 41-54
    [91] David A. Maltz, Geoffrey Xie, Jibin Zhan, Hui Zhang, Gysli Hj almtysson, Albert Greenberg. Routing Design in Operational Networks: A Look from the Inside. In: Proceedings of ACM Sigcomm, August 2004. 27-40
    [92] Huirong Fu, Edward W. Knightly. A Simple Model of Real-Time Flow Aggregation. IEEE/ACM Transactions on networking, Vol. 11, NO. 3, June 2003: 422-435
    [93] Shudong Jin, Liang Guo, Ibrahim Matta, Azer Bestavros. A Spectrum of TCP-Friendly Window-Based Congestion Control Algorithms. IEEE/ACM Transactions on networking, Vol. 11, No. 3, June 2003: 341-355
    [94] Matthew Andrews, Lisa Zhang. Achieving Stability in Networks of Input-Queued Switches. IEEE/ACM Transactions on networking, Vol. 11, No. 5, Oct. 2003: 848-857
    [95] Jogo Lufs Sobrinho. Algebra and Algorithms for QoS Path and Hop-by-Hop Routing in the Computation Internet, IEEE/ACM Transactions on networking, Vol. 10, No. 4, August 2002: 541-550
    [96] David Starobinski, Mark Karpovsky, Lev A. Zakrevski. Application of Network Calculus to General Topologies Using Turn-Prohibition. IEEE/ACM Transactions on networking, Vol. 11, No. 3, June 2003: 411-421
    [97] Laurent Massouli, James Roberts,Bandwidth Sharing: Objectives and Algorithms. IEEE/ACM Transactions on Networking, Vol. 10, No. 3, June 2002. 320-328
    [98] Roberto Rojas-Cessa, Eiji Oki, H. Jonathan Chao, Concurrent Fault Detection for a Multiple-Plane Packet Switch, IEEE/ACM Transactions on Networking, Vol. 11, No. 4, August 2003: 616-627
    [99] Murali Kodialam, T. V. Lakshman, Dynamic Routing of Restorable Bandwidth-Guaranteed Tunnels Using Aggregated Network Resource Usage Information, IEEE/ACM Transactions on Networking, Vol. 11, No. 3, June 2003: 399-410
    [100] Manish Jain, Constantinos Dovrolis, End-to-End Available Bandwidth: Measurement Methodology, Dynamics, and Relation With TCP Throughput. IEEE/ACM Transactions on Networking, Vol. 11, No. 4, August 2003: 537-549
    [101] Srisankar Kunniyur , R. Srikant, End-to-End Congestion Control Schemes: Utility Functions, Random Losses and ECN Marks. IEEE/ACM Transactions on Networking, Vol. 11, No. 5, October 2003: 689-702
    [102] Hemant M. Chaskar , Upamanyu Madhow. Fair Scheduling With Tunable Latency: A Round-Robin Approach. IEEE/ACM Transactions on Networking, Vol. 11, No. 4, August 2003: 592-601
    [103] Aleksandra Smiljani. Flexible Bandwidth Allocation in High-Capacity Packet Switches. IEEE/ACM Transactions on Networking, Vol. 10, No. 2, April 2002: 287-293
    [104] Brian Towles, William J. Dally. Guaranteed Scheduling for Switches With Configuration Overhead. IEEE/ACM Transactions on Networking, Vol. 11, No. 5, October 2003: 835-847
    [105] Peter Marbach, Priority Service and Max-Min Fairness, IEEE/ACM Transactionson Networking, Vol. 11, No. 5, October 2003: 733-746
    [106] Jeff Doyle, et al. Routing TCP/IP, Volume Ⅱ. Cisco Press, 2001
    [107] H. F. Salama, D. S. Reeves, and Y. Viniotis. Evaluation of multicast routing algorithms for real-time communication on high-speed networks. IEEE JSAC, vol. 15, No. 3, April 1997: 332-345
    [108] Ximing Dong, Shaohua Yu. A New Approach to Build VPLS with Auto-discovery Mechanism. In: Proc. Of SPIE Vol. 6022, November 2005. 778-786
    [109] Estrin, D, et al.. Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification, RFC 2362. June 1998
    [110] Diot, C., Dabbous, W., Crowcroft. Multicast Communication: Survey of Protocols, Functions, and Mechanism. IEEE Journal on Selected Areas in Communications, 1997: 277-290
    [111] Eeriksson, S. MBone: The Multicast Backbone. Comm. of the ACM 37, 1994: 54-60
    [112] Metro Ethernet Forum. Abstract Test Suite for Traffic Management Phase 1, Technical Specification, MEF 14. November 2005
    [113] D. Waitzman et al., Distance vector multicast routing protocol, Internet RFC 1175, November 1988
    [114] Aiguo Fei, Ju-Hong Cui, Mario Gerla, Michalis Faloutsos. Aggregate Multicast: an Approach to Reduce Multicast State. In: Proceedings of IEEE Globlecom 2001, November 2001. 1595-1599
    [115] Li Lao, Jun-Hong Cui, Mario Gerla. Tackling Group-Tree Matching in Large Scale Group Communications. Technical Report, TR040022, 2004
    [116] Jun-Hong Cui, Li Lao, Dario Maggiorini, Mario Gerla. BEAM: A Distributed Aggregate Multicast Protocol Using Bi-directional Trees. In: Proceedings of IEEE International Conference on Communications (ICC), May 2003. 689-695
    [117] Alexandre GUITTON, Joanna MOULIERAC. Scalable Tree Aggregation for Multicast. In: Proceedings of 8th International Conference on Telecom, 2005. 129-134
    [118] Ximing Dong, Shaohua Yu. Deliver Multicast Traffic over VPLS Domain Using Aggregated Multicast Trees. In: Proceedings of Advanced International Conference on Telecommunications, February 2006. 59-65
    [119] Ray Qiu, Yetik Serbest, Venu Hemige, Suresh Boddapati. Using LDP for VPLS Multicast, work in progress, Draft draft-qiu-serbest-l2vpn-ldp-multicast-00.txt.November 2005
    [120] Rahul Aggarwal, Thomas Morin and Luyuan Fang. Multicast in BGP/MPLS VPNs and VPLS, work in progress. draft-raggarwa-l3vpn-mvpn-vpls-mcast-01.txt. Oct. 2004