聚氯乙烯等塑料废弃物热解特性及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氯废塑料的热解制备燃料油技术在环境和资源两方面都具有很好的发展前景,对含氯废塑料热解特性的研究将为该技术进一步工业化提供理论依据。本文选取了四种典型的塑料样品,进行了一系列热解特性研究和动力学分析。包括:
     (1)通过热分析技术研究了PVC、PP、LDPE和HDPE的单组分样品的热解特性。依据不同升温速率条件下的热重实验数据,采用Friedman法和Malek法研究了热解过程的非等温动力学。PVC的热解主要分为两个阶段,第一阶段主要为HCl的脱除,第二阶段为多烯烃链的断裂,产生多种稠环芳烃,总残渣量约为10%。其热解机理主要为小分子消除反应和较高温度下的多烯烃链成环反应。PP及PE的热解只有一个失重过程,温度区间窄,残渣量非常小。其热解机理主要为分子链的无规断裂,依据反应条件的不同生成碳原子数为9-30的烷烃片段。
     (2)采用多种金属氧化物吸收PVC热解过程中产生的HCl,结果表明ZnO对HCl的吸附效果最好。通过热重分析、固定床热解实验、红外测试和电导率法等手段对热解产物进行了分析,并计算了热解过程的动力学参数,为金属氧化物类脱氯剂的筛选提供了依据。
     (3)研究了PVC在有氧气氛下的热解特性并进行了动力学分析。PVC在空气中热解(燃烧)时,O_2的存在对第一热解阶段有一定影响,使第二热解阶段多烯烃链的断裂反应活化能提高,最终残渣量<1%。
     (4)选取了木屑与盐藻两种生物质材料,研究了塑料与生物质共热解特性并对共热解过程进行了动力学分析。PVC与木屑混合时,在240-400℃范围内,二者存在协同效应,共热解最终残炭量增加。PVC与木屑共热解时,主要反应机理为HCl催化下纤维素脱水和双键形成反应,其反应机制为Lewis酸催化。PP、LDPE与木屑共热解时塑料对生物质产生包覆作用,热解初期抑制了挥发份的逸出。HDPE在与木屑的共热解过程中起到架桥作用,促进了体系的传质传热过程。两种PE与木屑共热解最终残渣量较少,PP与木屑共热解残渣量无明显变化。塑料与盐藻混合热解行为与木屑明显不同,残渣量变化趋势与塑料和木屑共热解相反。
     本文进行了含氯塑料等废弃物的热解特性研究及动力学分析,这些工作为城市固体废弃物的处理及资源化回收再利用提供了参考依据,并为热解技术的规模化、工业化提供了基础数据支持。
Pyrolysis technology on waste plastics, especially chlorine-containing plasticsdisposal shows prospects and is of much beneficial to both environment and resource.The research on pyrolysis characteristics of chlorine-containing plastic is essential forthe industrialization of its disposal and recycling. The pyrolysis characteristics andkinetics of four typical thermoplastic samples, poly(vinyl chloride)(PVC),polypropylene (PP), low density polyethylene (LDPE) and high density polyethylene(HDPE), were studied.
     The pyrolysis characteristics of PVC, PP, LDPE and HDPE were studied bythermogravimetric (TG) analysis respectively. Based on the TG data at differentheating rates, the kinetics parameters, especially the activation energy (E), werecalculated using the Friedman method. The mechanism functions of PVCdecomposition were judged by the Malek method. There were two stages in PVCpyrolysis. The first stage was mainly dechlorination, and the second stage was thecleavage of olefin chains releasing aromatic hydrocarbons. The residue was about10%. The process of PP and PE decomposition was simple, which was in a narrowtemperature range. The residue mount of PP and PE was quite little (<1%). Duringpyrolysis, the reactions of PVC include dehydrochlorination and cyclization of olefinchains. The random breakage of the PP/PE molecular chain occurs when heated, withC9-30alkane fractions generated.
     Kinds of metal oxides were mixed with PVC during pyrolysis for chlorineabsorption. The pyrolysis process were studied by TG analysis and fixed bedpyrolytic experiments. The gas production was detected by oxygen bomb combustion–ion selective electrode (ISE) method and Fourier transform infrared (FTIR)spectroscopy. Among, zinc oxide (ZnO) showed the best effect on the chlorineabsorption during the PVC pyrolysis.
     The thermal degradation of PVC in air ambience was investigated by the TGanalysis. The experiments were carried out at different heating rate of5,10,20and40oC/min, respectively. The kinetic parameter, the activation energy (E), was calculatedbased on the Friedman method. The pyrolysis process of PVC in air could be dividedinto two main stages:200-380oC and400-600oC, which obtained by TGA at the heating rate of5oC/min. And the second stage could be further subdivided into twoparts by465oC. It can be concluded that the oxygen in air affected the second stagemore obviously than that of the first one, in comparison with inert atmosphere. Theactivation energy of the second stage was still larger than the first stage. The residuewas little (almost zero).
     Pine wood and Dunaliella tertiolecta, as the samples of biomass, were mixedwith plastics and the pyrolysis of their blends were analyzed. The kinetics was alsostudied by the Friedman method. The difference between the experimental andtheoretical weight losses (ΔW) was calculated. The PVC-wood blend residuesincreased by10%, LDPE-wood blend residues decreased by1%, HDPE-wood blendresidues decreased by4%, and PP-wood residues remained unchanged. Thedehydrochlorination reaction of PVC and the degradation of hemicellulose andcellulose in wood were found to have synergistic effects during co-pyrolysis. The HClfrom PVC may act as a Lewis acid which shows an acid-catalyzed dehydrationmechanism of cellulose. LDPE, HDPE, and PP interacted with wood in co-pyrolysis.The activation energies of plastics, wood, and their blends were from92.8kJ/mol to359.5kJ/mol. The average activation energies of PVC–wood blend in the two stageswere180.2and254.5kJ/mol, respectively, whereas those of LDPE-wood blend were164.5and229.6kJ/mol, those of HDPE-wood blend were213.2and234.3kJ/mol,and those of PP-wood blend were198.4and263.6kJ/mol. The co-pyrolysis ofplastics and algae were different with the wood, and the variations of residue wereopposite to plastic and wood blends, except PP with no significant change.
     The investigation on pyrolysis characteristics and kinetics analysis of chlorinecontaining plastics wastes provided a reference to municipal solid waste disposal andresource recycling. And the study provided the basic data support for industrializationof pyrolysis technology.
引文
[1] Scott D S, Czernik S R, Piskorz J, et al. Fast pyrolysis of plastic wastes, Energy&Fuels,1990,4:407-411
    [2]李培生,孙路石,向军,等.固体废弃物的焚烧和热解.北京:中国环境科学出版社;2006
    [3] Buekens A G, Huang H. Catalytic plastics cracking for recovery of gasoline-rangehydrocarbons from municipal plastic wastes, Resour. Conserv. Recy.,1998,23:163-181
    [4] Luo G H, Suto T, Yasu S, et al. Catalytic degradation of high density polyethyleneand polypropylene into liquid fuel in a powder-particle fluidized bed, Polym.Degrad. Stab.,2000,70:97-102
    [5] Miskolczi N, Bartha L, Angyal A. High energy containing fractions from plasticwastes by their chemical recycling, Macromol. Symp.,2006,245-246:599-606
    [6] Delattre C, Forissier M, Pitault I, et al. Improvement of the microactivity test forkinetic and deactivation studies involved in catalytic cracking, Chem. Eng. Sci.,2001,56:1337-1345
    [7] Panda A K, Singh R K, Mishra D K. Thermolysis of waste plastics to liquid fuel Asuitable method for plastic waste management and manufacture of value addedproducts-A world prospective, Renew. Sust. Energ. Rev.,2010,14:233-248
    [8]赵胜利,黄宁生,朱照宇.塑料废弃物污染的综合治理研究进展,生态环境,2008,17:2473-2481
    [9]胡学,罗宪林,周作付.废塑料处理技术及综合利用研究,环境保护,2001,28:44-46
    [10] Scott G.'Green' polymers, Polym. Degrad. Stab.,2000,68:1-7
    [11] Yamamoto T, Isaka K, Sato H, et al. Gasification and smelting system usingoxygen blowing for municipal waste, Isij International,2000,40:260-265
    [12] Murata K, Sato K, Sakata Y. Effect of pressure on thermal degradation ofpolyethylene, J. Anal. Appl. Pyrolysis,2004,71:569-589
    [13] S rum L, Gr nli M G, Hustad J E. Pyrolysis characteristics and kinetics ofmunicipal solid wastes, Fuel,2001,80:1217-1227
    [14] Faravelli T, Pinciroli M, Pisano F, et al. Thermal degradation of polystyrene, J.Anal. Appl. Pyrolysis,2001,60:103-121
    [15] Demirbas A. Pyrolysis of municipal plastic wastes for recovery of gasoline-rangehydrocarbons, J. Anal. Appl. Pyrolysis,2004,72:97-102
    [16] Mastral F J, Esperanza E, Garcia P, et al. Pyrolysis of high-density polyethylenein a fluidised bed reactor. Influence of the temperature and residence time, J.Anal. Appl. Pyrolysis,2002,63:1-15
    [17] Garforth A A, Lin Y H, Sharratt P N, et al. Production of hydrocarbons bycatalytic degradation of high density polyethylene in a laboratory fluidised-bedreactor, Appl. Catal. A-General,1998,169:331-342
    [18] Dolezal Z, Pacakova V, Kovarova J. The effects of controlled aging and blendingof low-and high-density polyethylenes, polypropylene and polystyrene on theirthermal degradation studied by pyrolysis gas chromatography, J. Anal. Appl.Pyrolysis,2001,57:177-185
    [19] Marcilla A, Beltran M, Conesa J A. Catalyst addition in polyethylene pyrolysis-Thermogravimetric study, J. Anal. Appl. Pyrolysis,2001,58:117-126
    [20] Murata K, Hirano Y, Sakata Y, et al. Basic study on a continuous flow reactor forthermal degradation of polymers, J. Anal. Appl. Pyrolysis,2002,65:71-90
    [21] Sakata Y, Uddin M A, Muto A. Degradation of polyethylene and polypropyleneinto fuel oil by using solid acid and non-acid catalysts, J. Anal. Appl. Pyrolysis,1999,51:135-155
    [22] Bockhorn H, Hornung A, Hornung U, et al. Kinetic study on the thermaldegradation of polypropylene and polyethylene, J. Anal. Appl. Pyrolysis,1999,48:93-109
    [23] Onu P, Vasile C, Ciocilteu S, et al. Thermal and catalytic decomposition ofpolyethylene and polypropylene, J. Anal. Appl. Pyrolysis,1999,49:145-153
    [24] Kim S S, Kim S. Pyrolysis characteristics of polystyrene and polypropylene in astirred batch reactor, Chem. Eng. J.,2004,98:53-60
    [25] Chan J H, Balke S T. The thermal degradation kinetics of polypropylene.3.Thermogravimetric analyses, Polym. Degrad. Stab.,1997,57:135-149
    [26] Jakab E, Varhegyi G, Faix O. Thermal decomposition of polypropylene in thepresence of wood-derived materials, J. Anal. Appl. Pyrolysis,2000,56:273-285
    [27] Kaminsky W, Predel M, Sadiki A. Feedstock recycling of polymers by pyrolysisin a fluidised bed, Polym. Degrad. Stab.,2004,85:1045-1050
    [28] Seth D, Sarkar A. Thermal pyrolysis of polypropylene: effect of reflux-condenseron the molecular weight distribution of products, Chem. Eng. Sci.,2004,59:2433-2445
    [29] Woo O S, Ayala N, Broadbelt L J. Mechanistic interpretation of base-catalyzeddepolymerization of polystyrene, Cataly. Today,2000,55:161-171
    [30] Sakata Y, Uddin M A, Koizumi K, et al. Thermal degradation of polyethylenemixed with poly(vinyl chloride) and poly(ethyleneterephthalate), Polym. Degrad.Stab.,1996,53:111-117
    [31] McCaffrey W C, Kamal M R, Cooper D G. Thermolysis of polyethylene, Polym.Degrad. Stab.,1995,47:133-139
    [32] Songip A R, Masuda T, Kuwahara H, et al. Test to screen catalysts for reformingheavy oil from waste plastics, Appl. Catal. B-Environmental,1993,2:153-164
    [33] Joe H S, Guin J A. Continuous upgrading of a plastics pyrolysis liquid to anenvironmentally favorable gasoline range product, Fuel Process. Technol.,1998,57:25-40
    [34] Serrano D P, Aguado J, Escola J M, et al. Performance of a continuous screwkiln reactor for the thermal and catalytic conversion of polyethylene-lubricatingoil base mixtures, Appl. Catal. B-Environmental,2003,44:95-105
    [35] Lee S Y, Yoon J H, Kim J R, et al. Catalytic degradation of polystyrene overnatural clinoptilolite zeolite, Polym. Degrad. Stab.,2001,74:297-305
    [36] Ding W B, Liang J, Anderson L L. Thermal and catalytic degradation of highdensity polyethylene and commingled post-consumer plastic waste, Fuel Process.Technol.,1997,51:47-62
    [37] Ohkita H, Nishiyama R, Tochihara Y, et al. Acid properties of silica-aluminacatalysts and catalytic degradation of polyethylene, Ind. Eng. Chem. Res.,1993,32:3112-3116
    [38] Hwang E Y, Kim J R, Choi J K, et al. Performance of acid treated natural zeolitesin catalytic degradation of polypropylene, J. Anal. Appl. Pyrolysis,2002,62:351-364
    [39] Bagri R, Williams P T. Fluidised-bed catalytic pyrolysis of polystyrene, J. Inst.Energy,2002,75:117-123
    [40] Kim J R, Yoon J H, Park D W. Catalytic recycling of the mixture ofpolypropylene and polystyrene, Polym. Degrad. Stab.,2002,76:61-67
    [41] Audisio G, Silvani A, Beltrame P L, et al. Catalytic thermal-degradation ofpolymers polymers degradation of polypropylene, J. Anal. Appl. Pyrolysis,1984,7:83-90
    [42] Park D W, Hwang E Y, Kim J R, et al. Catalytic degradation of polyethyleneover solid acid catalysts, Polym. Degrad. Stab.,1999,65:193-198
    [43] Aguado J, Serrano D P, Escola J M, et al. Catalytic conversion of polyolefinsinto fuels over zeolite beta, Polym. Degrad. Stab.,2000,69:11-16
    [44] Seo Y H, Lee K H, Shin D H. Investigation of catalytic degradation ofhigh-density polyethylene by hydrocarbon group type analysis, J. Anal. Appl.Pyrolysis,2003,70:383-398
    [45] Beltrame P L, Carniti P, Audisio G, et al. Catalytic degradation of polymers.2.degradation of polyethylene, Polym. Degrad. Stab.,1989,26:209-220
    [46] Walendziewski J. Engine fuel derived from waste plastics by thermal treatment,Fuel,2002,81:473-481
    [47] Serrano D P, Aguado J, Escola J M, et al. Feedstock recycling of agricultureplastic film wastes by catalytic cracking, Appl. Catal. B-Environmental,2004,49:257-265
    [48] Hernandez M D, Garcia A N, Marcilla A. Study of the gases obtained in thermaland catalytic flash pyrolysis of HDPE in a fluidized bed reactor, J. Anal. Appl.Pyrolysis,2005,73:314-322
    [49] Wong H W, Broadbel L J. Tertiary resource recovery from waste polymers viapyrolysis: Neat and binary mixture reactions of polypropylene and polystyrene,Ind. Eng. Chem. Res.,2001,40:4716-4723
    [50] Miskolczi N, Bartha L, Deak G, et al. Thermal degradation of municipal plasticwaste for production of fuel-like hydrocarbons, Polym. Degrad. Stab.,2004,86:357-366
    [51] Lin Y H, Yang M H. Catalytic reactions of post-consumer polymer waste overfluidised cracking catalysts for producing hydrocarbons, J. Molecular Cataly. A:Chem.,2005,231:113-122
    [52] Marcilla A, Garcia-Quesada J C, Sanchez S, et al. Study of the catalytic pyrolysisbehaviour of polyethylene-polypropylene mixtures, J. Anal. Appl. Pyrolysis,2005,74:387-392
    [53] Lee K H, Shin D H, Seo Y H. Liquid-phase catalytic degradation of mixtures ofwaste high-density polyethylene and polystyrene over spent FCC catalyst. Effectof mixing proportions of reactants, Polym. Degrad. Stab.,2004,84:123-127
    [54] Bhaskar T, Kaneko J, Muto A, et al. Pyrolysis studies ofPP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) ofthe liquid products, J. Anal. Appl. Pyrolysis,2004,72:27-33
    [55] Lee K H, Noh N S, Shin D H, et al. Comparison of plastic types for catalyticdegradation of waste plastics into liquid product with spent FCC catalyst, Polym.Degrad. Stab.,2002,78:539-544
    [56] Marcilla A, Gomez A, Garcia A N, et al. Kinetic study of the catalyticdecomposition of different commercial polyethylenes over an MCM-41catalyst,J. Anal. Appl. Pyrolysis,2002,64:85-101
    [57] Puente G, Sedran U. Recycling polystyrene into fuels by means of FCC:performance of various acidic catalysts, Appl. Catal. B-Environmental,1998,19:305-311
    [58] Mertinkat J, Kirsten A, Predel M, et al. Cracking catalysts used as fluidized bedmaterial in the Hamburg pyrolysis process, J. Anal. Appl. Pyrolysis,1999,49:87-95
    [59] Faravelli T, Bozzano G, Colombo M, et al. Kinetic modeling of the thermaldegradation of polyethylene and polystyrene mixtures, J. Anal. Appl. Pyrolysis,2003,70:761-777
    [60] Puente G, Arandes J M, Sedran U A. Recycled plastics in FCC feedstocks:Specific contributions, Ind. Eng. Chem. Res.,1997,36:4530-4534
    [61] Garforth A A, Ali S, Hernandez-Martinez J, et al. Feedstock recycling ofpolymer wastes, Current Opinion in Solid State&Mater. Sci.,2004,8:419-425
    [62] Pinto F, Costa P, Gulyurtlu I, et al. Pyrolysis of plastic wastes-2. Effect ofcatalyst on product yield, J. Anal. Appl. Pyrolysis,1999,51:57-71
    [63] Yoon W L, Park J S, Jung H, et al. Optimization of pyrolytic coprocessing ofwaste plastics and waste motor oil into fuel oils using statistical pentagonalexperimental design, Fuel,1999,78:809-813
    [64] Masuda T, Kuwahara H, Mukai S R, et al. Production of high quality gasolinefrom waste polyethylene derived heavy oil over Ni-REY catalyst in steamatmosphere, Chem. Eng. Sci.,1999,54:2773-2779
    [65] Takuma K, Uemichi Y, Sugioka M, et al. A novel technology for chemicalrecycling of low-density polyethylene by selective degradation into lower olefinsusing h-borosilicate as a catalyst, Chem. Lett.,2001:288-289
    [66]张郑磊.废塑料热解—催化改质实验研究[硕士]:华北电力大学(河北);2009
    [67]袁兴中.废塑料裂解制取液体燃料技术的研究[博士]:湖南大学;2002
    [68] Uemichi Y, Nakamura J, Itoh T, et al. Conversion of polyethylene intogasoline-range fuels by two-stage catalytic degradation using silica-alumina andHZSM-5zeolite, Ind. Eng. Chem. Res.,1999,38:385-390
    [69]李梅,侯爱平.废弃塑料回收汽油、柴油的催化剂技术,塑料科技,1995,23:11-13
    [70]李稳宏,李迓红.废塑料降解工艺过程催化剂的应用研究,石油化工,2000,29:344-347
    [71]刘公召,陈尔霆.废塑料催化裂解生成汽柴油中试工艺的研究,环境科学与技术,2001,98:9-10,41
    [72] Yanik J, Uddin M A, Sakata Y. The effect of Red Mud on the Liquefaction ofWaste Plastics in Heavy Vacuum Gas Oil, Energy&Fuels,2000,15:163-169
    [73] Yanik J, Uddin M A, Ikeuchi K, et al. The catalytic effect of Red Mud on thedegradation of poly (vinyl chloride) containing polymer mixture into fuel oil,Polym. Degrad. Stab.,2001,73:335-346
    [74] Miranda R, Yang J, Roy C, et al. Vacuum pyrolysis of commingled plasticscontaining PVC I. Kinetic study, Polym. Degrad. Stab.,2001,72:469-491
    [75] Kaminsky W. Recycling of polymeric materials by pyrolysis, MakromolekulareChemie-Macromolecular Symposia,1991,48:381-393
    [76] Wenning H P. The veba oel technologie pyrolysis process, J. Anal. Appl.Pyrolysis,1993,25:301-310
    [77] Williams E A, Williams P T. Analysis of products derived from the fast pyrolysisof plastic waste, J. Anal. Appl. Pyrolysis,1997,40:347-363
    [78] Bockhorn H, Hornung A, Hornung U. Stepwise pyrolysis for raw materialrecovery from plastic waste, J. Anal. Appl. Pyrolysis,1998,46:1-13
    [79] Miranda R, Yang J, Roy C, et al. Vacuum pyrolysis of PVC I. Kinetic study,Polym. Degrad. Stab.,1999,64:127-144
    [80] Miranda R, Pakdel H, Roy C, et al. Vacuum pyrolysis of PVC II: Productanalysis, Polym. Degrad. Stab.,1999,66:107-125
    [81] Miranda R, Pakdel H, Roy C, et al. Vacuum pyrolysis of commingled plasticscontaining PVC II. Product analysis, Polym. Degrad. Stab.,2001,73:47-67
    [82] Keane M A. Catalytic conversion of waste plastics: focus on waste PVC, J.Chem. Technol. Biotechnol.,2007,82:787-795
    [83] Miskolczi N, Bartha L, Angyal A. Pyrolysis of polyvinyl chloride(PVC)-containing mixed plastic wastes for recovery of hydrocarbons, Energy&Fuels,2009,23:2743-2749
    [84] Lin Y H, Yang M H, Wei T T, et al. Acid-catalyzed conversion of chlorinatedplastic waste into valuable hydrocarbons over post-use commercial FCCcatalysts, J. Anal. Appl. Pyrolysis,2010,87:154-162
    [85]郑学刚,唐黎华,倪燕慧,等. PVC材料热解脱氯的研究,华东理工大学学报,2003,29:547-550,556
    [86] Jaksland C, Rasmussen E, Rohde T. A new technology for treatment of PVCwaste, Waste Manage.,2000,20:463-467
    [87] Matsuzawa Y, Ayabe M, Nishino J, et al. Evaluation of char fuel ratio inmunicipal pyrolysis waste, Fuel,2004,83:1675-1687
    [88] Caglar A, Aydinli B. Isothermal co-pyrolysis of hazelnut shell and ultra-highmolecular weight polyethylene: The effect of temperature and composition onthe amount of pyrolysis products, J. Anal. Appl. Pyrolysis,2009,86:304-309
    [89] Sharypov V I, Marin N, Beregovtsova N G, et al. Co-pyrolysis of wood biomassand synthetic polymer mixtures. Part1: influence of experimental conditions onthe evolution of solids, liquids and gases, J. Anal. Appl. Pyrolysis,2002,64:15-28
    [90] Brebu M, Ucar S, Vasile C, et al. Co-pyrolysis of pine cone with syntheticpolymers, Fuel,2010,89:1911-1918
    [91] Paradela F, Pinto F, Ramos A M, et al. Study of the slow batch pyrolysis ofmixtures of plastics, tyres and forestry biomass wastes, J. Anal. Appl. Pyrolysis,2009,85:392-398
    [92] Williams P T, Besler S. The pyrolysis of rice husks in a thermogravimetricanalyzer and static batch reactor, Fuel,1993,72:151-159
    [93] Nunn T R, Howard J B, Longwell J P, et al. Product compositions and kinetics inthe rapid pyrolysis of sweet gum hardwood, Ind. Eng. Chem. Process Design andDevelopment,1985,24:836-844
    [94] Volker S, Rieckmann T. Thermokinetic investigation of cellulose pyrolysis-impact of initial and final mass on kinetic results, J. Anal. Appl. Pyrolysis,2002,62:165-177
    [95] Di Blasi C. Comparison of semi-global mechanisms for primary pyrolysis oflignocellulosic fuels, J. Anal. Appl. Pyrolysis,1998,47:43-64
    [96]廖艳芬.纤维素热裂解机理试验研究[博士]:浙江大学;2003
    [97] Matsuzawa Y, Ayabe M, Nishino J. Acceleration of cellulose co-pyrolysis withpolymer, Polym. Degrad. Stab.,2001,71:435-444
    [98] Knumann R, Bockhorn H. Investigation of the kinetics of pyrolysis of PVC byTG-MS-analysis, Combustion Sci. Technol.,1994,101:285-299
    [99] Roy M, Rollin A L, Schreiber H P. Value recovery from polymer wastes bypyrolysis, Polym. Eng. Sci.,1978,18:721-727
    [100] Zevenhoven R, Axelsen E P, Hupa M. Pyrolysis of waste-derived fuel mixturescontaining PVC, Fuel,2002,81:507-510
    [101] Vuthaluru H B. Investigations into the pyrolytic behaviour of coal/biomassblends using thermogravimetric analysis, Bioresource Technol.,2004,92:187-195
    [102] Blazso M, Zelei B, Jakab E. Thermal decomposition of low-density polyethyenein the presence of chlorine-containing polymers, J. Anal. Appl. Pyrolysis,1995,35:221-235
    [103] Heikkinen J, Spliethoff H. Waste mixture composition by thermogravimetricanalysis, J. Thermal Analysis and Calorimetry,2003,72:1031-1039
    [104]罗春鹏.垃圾热解特性研究及热解特性神经网络预测[硕士]:浙江大学;2004
    [105]姜凡,江淑琴,潘忠刚,等.混合垃圾在热重分析仪中的燃烧特性分析,锅炉技术,2000,31:1-4,25
    [106]冉景煜.固态医疗垃圾循环流化床气固流动与燃烧特性数值分析及实验
    [博士]:重庆大学;2003
    [107] Tamplin S A, Davidson D, Powis B, et al. Issues and options for the safedestruction and disposal of used injection materials, Waste Manage.,2005,25:655-665
    [108] Sánchez-Hervás J M, Armesto L, Ruiz-Martinez E, et al. PCDD/PCDFemissions from co-combustion of coal and PVC in a bubbling fluidised bedboiler, Fuel,2005,84:2149-2157
    [109] Lothgren C J, van Bavel B. Dioxin emissions after installation of a polishingwet scrubber in a hazardous waste incineration facility, Chemosphere,2005,61:405-412
    [110] Zhang Y F, Deng N, Ling J H, et al. A new pyrolysis technology and equipmentfor treatment of municipal household garbage and hospital waste, RenewableEnergy,2003,28:2383-2393
    [111] McGhee A, Norton F, Snape C E, et al. The copyrolysis of poly(vinlychloride)with cellulose derived materials as a model for municipal waste derived chars,Fuel,1995,74:28-31
    [112] Kuramochi H, Nakajima D, Goto S, et al. HCl emission during co-pyrolysis ofdemolition wood with a small amount of PVC film and the effect of woodconstituents on HCl emission reduction, Fuel,2008,87:3155-3157
    [113]邓娜,张于峰,马洪亭.医疗废物中输液管(含PVC)与纱布(含纤维素)的混合热解特性,天津大学学报,2007,52:1372-1376
    [114] Aboulkas A, El Harfi K. Co-pyrolysis of olive residue with poly(vinyl chloride)using thermogravimetric analysis, J. Thermal Analysis and Calorimetry,2009,95:1007-1013
    [115] Duangchan A, Samart C. Tertiary recycling of PVC-containing plastic waste bycopyrolysis with cattle manure, Waste Manage.,2008,28:2415-2421
    [116] Hayashi S, Amano H, Niki T, et al. A new pyrolysis of metal hydroxide-mixedwaste biomass with effective chlorine removal and efficient heat recovery,Anglais,2010,49:11825-11831
    [117]胡荣祖,高胜利,赵凤起,等.热分析动力学.北京:科学出版社;2008.
    [118] Malek J, Criado J M. A simple method of kinetic-model discrimination.1.analysis of differential nonisothermal data, Thermochimica Acta,1994,236:187-197
    [119] Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data,Nature,1964,201:68-69
    [120] Ozawa T. Non-isothermal kinetics of consecutive reactions, J. Thermal Analysisand Calorimetry,2000,60:887-894
    [121] Kissinger H E. Variation of peak temperature with heating rate in differentialthermal analysis, J. Res. National Bureau of Standards,1956,57:217-221
    [122] Friedman H L. Kinetics and gaseous products of thermal decomposition ofpolymers, J. Macromol. Sci., Part A, Chem.,1967,1:57-79
    [123] Flynn J H, Wall L A. A quick, direct method for the determination of activationenergy from thermogravimetric data, J. Polym. Sci., Part B, Polym. Lett.,1966,4:323-328
    [124]宋春财,胡浩权,朱盛维,等.生物质秸秆热重分析及几种动力学模型结果比较,燃料化学学报,2003,31:311-316
    [125] Li S Y, Yue C T. Study of different kinetic models for oil shale pyrolysis, FuelProcess. Technol.,2004,85:51-61
    [126] Han B, Wu Y, Rui G, et al. Thermal degradation kinetics of poly (vinylchloride), Advanced Materials Research,2010,96:245-249
    [127] Budrugeac P, Segal E, Perez-Maqueda L A, et al. The use of the IKP methodfor evaluating the kinetic parameters and the conversion function of the thermaldehydrochlorination of PVC from non-isothermal data, Polym. Degrad. Stab.,2004,84:311-320
    [128] Marcilla A, Beltran M. Thermogravimetric kinetic study of poly(vinly chloride)pyrolysis, Polym. Degrad. Stab.,1995,48:219-229
    [129]孙庆雷,时新刚,林云良,等.聚氯乙烯的热解特性和热解动力学研究,燃料化学学报,2007,35:497-500
    [130]马师白,殷剑君,鲁军,等. PVC的热解脱氯动力学分析,环境化学,2001,20:172-178
    [131]金余其,严建华,池涌,等. PVC热解动力学的研究,燃料化学学报,2001,29:381-384
    [132]郑学刚,唐黎华,俞丰,等. PVC的热失重和热解动力学,华东理工大学学报,2003,29:346-350
    [133]周利民,王一平,黄群武,等.生物质/塑料共热解热重分析及动力学研究,太阳能学报,2007,28:979-983
    [134] Zhou L, Luo T, Huang Q. Co-pyrolysis characteristics and kinetics of coal andplastic blends, Energy Conversion and Manage.,2009,50:705-710
    [135] Kim S. Pyrolysis kinetics of waste PVC pipe, Waste Manage.,2001,21:609-616
    [136] Conesa J A, Marcilla A, Font R, et al. Thermogravimetric studies on the thermaldecomposition of polyethylene, J. Anal. Appl. Pyrolysis,1996,36:1-15
    [137]金熹高,黄俐研,史燚.裂解气相色谱方法及应用.北京:化学工业出版社;2009
    [138]吴茂英.塑料降解与稳定化(Ⅱ):热降解与热稳定(上),塑料助剂,2009,75:48-53
    [139]赵劲松,李宁. PVC微观结构及颗粒形态,聚氯乙烯,1999,26:46-58
    [140] Wilkes C E, Summers J W, Daniels C A编著;乔辉等译.聚氯乙烯手册.北京:化学工业出版社;2008
    [141] Zhu H M, Jiang X G, Yan J H, et al. TG-FTIR analysis of PVC thermaldegradation and HCl removal, J. Anal. Appl. Pyrolysis,2008,82:1-9
    [142]田原宇,吕永康,谢克昌. PVC的热解/红外(Py/FTIR)研究,燃料化学学报,2002,30:569-572
    [143]肖刚,池涌,倪明江,等. PVC塑料流化床气化试验研究,燃料化学学报,2005,33:708-712
    [144] McNeill I C, Memetea L, Cole W J. A study of the products of PVC thermaldegradation, Polym. Degrad. Stab.,1995,49:181-191
    [145] Ceamanos J, Mastral J F, Millera A, et al. Kinetics of pyrolysis of high densitypolyethylene. Comparison of isothermal and dynamic experiments, J. Anal. Appl.Pyrolysis,2002,65:93-110
    [146] Karayildirim T, Yanik J, Yuksel M, et al. Degradation of PVC containingmixtures in the presence of HCl fixators, J. Polym. Environ.,2005,13:365-374
    [147] Sivalingam G, Karthik R, Madras G. Effect of metal oxides on thermaldegradation of poly(vinyl acetate) and poly(vinyl chloride) and their blends, Ind.Eng. Chem. Res.,2003,42:3647-3653
    [148] Zhou Q, Tang C, Wang Y Z, et al. Catalytic degradation and dechlorination ofPVC-containing mixed plastics via Al–Mg composite oxide catalysts, Fuel,2004,83:1727-1732
    [149] Zhou Q, Yang J W, Wang Y Z, et al. Preparation of nano-MgO/Carboncomposites from sucrose-assisted synthesis for highly efficientdehydrochlorination process, Mater. Lett.,2008,62:1887-1889
    [150] Masuda Y, Uda T, Terakado O, et al. Pyrolysis study of poly(vinylchloride)-metal oxide mixtures: Quantitative product analysis and the chlorinefixing ability of metal oxides, J. Anal. Appl. Pyrolysis,2006,77:159-168
    [151]朱新生,程嘉祺,管爱国.金属氧化物对聚氯乙烯热降解性能的影响,华东理工大学学报,2003,29:384-387
    [152] Gupta M C, Viswanath S G. Role of metal oxides in the thermal degradation ofpoly(vinyl chloride), Ind. Eng. Chem. Res.,1998,37:2707-2712
    [153] Pi H, Xiong Y, Guo S Y. The kinetic studies of elimination of HCl duringthermal decomposition of PVC in the presence of transition metal oxides,Polymer-Plastics Technol. Eng.,2005,44:275-288
    [154] Viswanath S G, Gupta M C. The importance of the inflection point innonisothermal analysis: New derivative methods, Thermochimica Acta,1997,292:151-157
    [155] Nabeel A, Khan T A, Sharma D K. Non-isothermal kinetic studies ofco-combustion and co-cracking of coal and plastic blends usingthermogravimetric analysis, Energy Sources Part A-Recovery Utilization andEnvironmental Effects,2009,31:722-732
    [156] Vrandecic N S, Andricic B, Klaric I, et al. Kinetics of isothermalthermooxidative degradation of poly(vinyl chloride)/chlorinated polyethyleneblends, Polym. Degrad. Stab.,2005,90:455-460
    [157] Aracil I, Font R, Conesa J A. Thermo-oxidative decomposition of polyvinylchloride, J. Anal. Appl. Pyrolysis,2005,74:215-223
    [158] Xu Z P, Saha S K, Braterman P S, et al. The effect of Zn, Al layered doublehydroxide on thermal decomposition of poly(vinyl chloride), Polym. Degrad.Stab.,2006,91:3237-3244
    [159] Valko L, Klein E, Kovarik P, et al. Kinetic study of thermaldehydrochlorination of poly(vinyl chloride) in the presence of oxygen-III.Statistical thermodynamic interpretation of the oxygen catalytic activity, Eur.Polym. J.,2001,37:1123-1132
    [160] Grammelis P, Basinas P, Malliopoulou A, et al. Pyrolysis kinetics andcombustion characteristics of waste recovered fuels, Fuel,2009,88:195-205
    [161] Levchik S V, Weil E D. Overview of the recent literature on flame retardancyand smoke suppression in PVC, Polym. Adv. Technol.,2005,16:707-716
    [162] Abb s K B, S rvik E M. On the thermal degradation of poly(vinyl chloride). II.The effect of atmosphere, J. Appl. Polym. Sci.,1973,17:3577-3594
    [163]石玉良.玉米秸秆热解及在甲醇中的热化学转化研究[硕士]:太原理工大学;2010.
    [164] Maschio G, Koufopanos C, Lucchesi A. Pyrolysis, a promising route forbiomass utilization, Bioresource Technol.,1992,42:219-231
    [165] Bridgwater A V. Production of high grade fuels and chemicals from catalyticpyrolysis of biomass, Cataly. Today,1996,29:285-295
    [166] Sharma A, Rao T R. Kinetics of pyrolysis of rice husk, Bioresource Technol.,1999,67:53-59
    [167] Williams P J. Biofuel: microalgae cut the social and ecological costs, Nature,2007,450:478-478
    [168] Demirbas A. Use of algae as biofuel sources, Energy Conversion and Manage.,2010,51:2738-2749
    [169]王新运,吴凤义,万新军.生物质裂解机理模型的研究进展,广州化工,2009,37:15-17
    [170]许洁,颜涌捷,李文志,等.生物质裂解机理和模型(Ⅰ)——生物质裂解机理和工艺模式,化学与生物工程,2007,24:1-4
    [171] Koufopanos C A, Lucchesi A, Maschio G. Kinetic modelling of the pyrolysis ofbiomass and biomass components, The Canadian J. Chem. Eng.,1989,67:75-84
    [172] Zaror C A, Hutchings I S, Pyle D L, et al. Secondary char formation in thecatalytic pyrolysis of biomass, Fuel,1985,64:990-994
    [173] Antal M J. Effects of reactor severity on the gas-phase pyrolysis of cellulose-and kraft lignin-derived volatile matter, Ind. Eng. Chem. Prod. Res.Development,1983,22:366-375
    [174]王爽.海藻生物质热解与燃烧的试验与机理研究[博士]:上海交通大学;2010
    [175] Richards G N. Glycolaldehyde from pyrolysis of cellulose, J. Anal. Appl.Pyrolysis,1987,10:251-255
    [176]邓娜.医疗废物热解特性及动力学模型研究[博士]:天津大学;2005
    [177] Horikawa S, Takai Y, Ukei H, et al. Chlorine gas recovery from polyvinylchloride, J. Anal. Appl. Pyrolysis,1999,51:167-179