发动机叶片电子束焊修复工艺基础及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对镍基高温合金жс6у-ви叶片铸造缺陷的修补需要,进行了жс6у-ви合金电子束焊修复工艺基础研究,并对两种不同开槽形式电子束焊过程中的温度场及应力场进行了有限元数值分析。
     对Впр27和Впр24两种粉末料在жс6у-ви合金上进行了料的铺展性试验。根据铺展性试验结果,最终选择了Впр24料对жс6у-ви合金进行焊连接。利用扫描电镜、电子探针和X-射线衍射等分析手段,分析了接头的界面组织结构,确定了界面反应产物,探讨了工艺参数对接头界面组织和力学性能的影响。试验结果表明:工艺参数束流对料的润湿铺展性影响最大,同时对接头界面组织形态及其力学性能影响显著。采用Впр24料的电子束焊接头界面反应产物主要有α(Co,Ni)+(Ni)和Ni-Cr-Co-Mo固溶体及NiW,Ni3(Al,Ti),Ni3Nb金属间化合物。当聚焦电流、加热时间一定时,随着束流的增加,焊接头界面产物的种类并未发生改变,但界面各反应层的厚度发生一定的变化。通过工艺试验,确定采用Bпp24料对жс6у-ви合金进行电子束焊连接的相对最优工艺参数为:束流2.4~2.7mA,加热时间400~560s,聚焦电流1790~2200mA,此时接头抗拉强度可达340~400MPa。
     利用有限元软件MSC.Marc建立了两种不同开槽形式电子束焊过程中的温度场有限元数学模型,并在温度场计算基础上采用热力间接耦合方法对应力场进行了数值分析。计算结果表明:距离焊界面0.4~1.5mm的范围是应力集中区域;开非贯通槽时的残余应力比开贯通槽时的大;试板上沿y方向的应力大于x方向上的应力。
In order to meet the repair requirement of engine vanes of Ni-based high temperature alloyжс6у-виwith casting defects, the basic repairing technology on electron beam brazing ofжс6у-виalloy was studied in this paper. Meanwhile, the temperature field and the stress field of two different grooving forms during the process of electron beam brazing were analyzed by the finite element numerical simulation.
     The spreading experiments ofВпр27 andВпр24 powder brazing metals onжс6у-виalloy were carried out before electron beam brazing. According to the results of spreading experiment,Впр24 was preferably selected to brazeжс6у-виalloy. The interfacial structures and the reaction products of the brazing joints were analyzed by SEM, EPMA and XRD, and the effect of the technological parameters were discussed on the interfacial structures and mechanical properties. Experimental results showed that beam current is the most important parameter for the spreadability of brazing metals, meanwhile to the interfacial structures and mechanical properties of the joints. The interfacial structures of the electron beam brazing joints by usingВпр24 mainly containedα(Co,Ni)+(Ni) and Ni-Cr-Co-Mo solid solutions, NiW,Ni3(Al,Ti), and Ni3Nb intermetallic compounds. When focus current and heating time were fixed with the increment of beam current, the kinds of the interfacial structures of the brazing joints did not change, while the thickness of the reaction layers changed. Through technological experiments, the relative best technological parameters were gained as beam current 2.4~2.7mA, heating time 400~560s, focus current1790~2200mA, and the strengths of the joint achieved 340~400MPa.
     The FEM software MSC.Marc was employed to calculate the temperature field of the EBB samples with two different grooving forms. Based on the calculation results of the temperature fields, the stress field was simulated by heat-force indirect coupling. The simulated results of the stress field using different grooving forms indicated that the range of 0.4~1.5mm from the brazing interface was the stress concentration region; the residual stress of the sample with no-through slot was bigger than that with through slot; the stress along y direction was larger than that along x direction.
引文
1黄乾尧,李汉康.高温合金.北京:冶金工业出版社,2000
    2 Kyuzo Arakawa, Masao Kikuchi. An Electron-Beam Processing Machine for Micro-Scale Welding and Joining Applications. Mitsubishi Electric Advance, 1997,(12):25~26
    3李少青,张毓新,梁智.真空电子束焊工艺研究.焊接技术, 2004, 33(1): 27~29
    4 Zhang Li, S.L.Gobbi, K.H.Richter. Autogenous welding of Hastelloy X to Mar-M 247 by laser. Journal of Materials Processing Technology, 1997:285~292
    5吴国林.烟气轮机叶片堆焊修复.石油化工设备, 2002,31(6):50~51
    6 T.Branza, A.Duchosal, G.Fras. Experimental and numerical investigation of the weld repair of superplastic forming dies. Journal of Materials Processing Technology, 2004:1673~1680
    7刘传波,马晓梅,李全华.汽轮机叶片司太立合金高频焊工艺.焊接, 2002, (8):46~47
    8 J.G.Shan, J.L.Ren. Repairing of the engine vanes of an aeroplane by light beam brazing. Journal of Materials Processing Technology121(2002)23~26
    9赵建仓,杨富.汽轮机末级叶片裂纹焊接修复工艺.电力设备, 2005, 6(10):46~49
    10 D.Sciti, A.Bellosi, L.Esposito. Bonding of zirconia to superalloy with the active brazing technique. Journal of the European Ceramic Society 21 (2001) 45~52
    11刘传波,马晓梅,李全华.汽轮机叶片司太立合金高频焊工艺.焊接, 2002, (8):46~47
    12 C.L.OU, R.K.SHIUE. Microstructural evolution of brazing 422 stainless steel using the BNi-3 braze alloy. Journal of Materials Science 38 (2003) 2337 ~2346
    13潘辉,孙计生,刘效方.涡轮发动机叶片焊修复研究.材料科学与工艺, 1999, 7(增刊):209~212
    14中国航空材料手册.变形高温合金铸造高温合金.中国航空材料手册编辑委员会.中国标准出版社, 1989
    15任耀文.斯贝发动机高压一级涡轮叶片真空扩散焊和修复.材料工程, 1982, (4):17~22
    16李升,雷光远,汪波. 330MW汽轮机低压转子叶片断裂修复处理.西北电力技术, 2004
    17隋育松,徐可君.陶瓷涂层在航空发动机涡轮叶片表面处理中的应用. Ceramic Coating of Aeroengine Turbine Blade, 2001, (3):38~40
    18周婉婷.激光修复叶片的可行性探讨. 1995
    19周卓华,朱蓓蒂.铸造镍基K3合金的激光熔覆开裂及工艺研究.材料工程, 1996, (1):32~35
    20叶和清,王忠柯,许德胜.零件表面裂纹激光修复的组织结构研究.华中理工大学学报, 2002, 12(28):73~75
    21刘其斌,李绍杰.航空发动机叶片铸造缺陷激光熔覆修复的研究.金属热处理, 2001, (31):52~55
    22李晓莉,刘文今,钟敏霖.高温合金K403的激光熔敷研究.应用激光, 2002, 22(3):283~286
    23吴祥海,李绍杰,刘其斌.工艺参数对航空发动机叶片激光熔覆开裂敏感性的影响.现代机械, 2005, (1):76~78
    24 L.Sexton, S.Lavin, G.Byrne. Laser cladding of aerospace materials. Journal of Materials Processing Technology 122 (2002) 63~68
    25 L.Shepeleva, B.Medres, W.D.Kaplan. Laser cladding of turbine blades. Surface and Coatings Technology 125 (2000) 45~48
    26 Voth T.E, Gianoulakis S.E, Halbleib J.A. Thermal response of ceramic components during electron beam brazing. American Society of Mechanical Engineers, Heat Transfer Division, (Publication)HTD, 1996, 323(1):185~192
    27 Goodman D.L, Birx D.L. High energy electron beam processing experiments with induction accelerators. Nuclear Instruments and Methods in Physics Research, 1995, B(99):775~779
    28 Igor L.P, Alexey A.S, Irina G.N. Investigation of contact phenomena at cubic boron nitride-filler metal interface during electron beam brazing. Diamond and Related Materials, 1997, (6):1067~1070
    29 Irene Calliaril, Emilio Ramous, Katya Brunelli. Characterization of Vacuum Brazed Joints for Superconducting Cavities. DIMEG, University of Padua, Via Marzolo 9, 35131 Padova, Italy, 2004
    30 Jan Felba, Kazimierz P Friedel, Peter Krull. Electron beam activated brazing of cubic boron nitride to tungsten carbide cutting tools.Vacuum,2001, (62):171~180
    31沈宏谋.变频外转子永磁电机转子的真空电子束焊.微特电机,1995, (3):41~42
    32李少青,张毓新,梁智.真空电子束焊工艺研究.焊接技术, 2004, 33(1): 27~29
    33李少青,张毓新,王学东.基于电子束扫描控制的中间层熔炼技术.上海交通大学学报, 2005, 39(11):1771~1774
    34刘昕,胡刚,毛智勇.不锈钢方管套接接头电子束焊微观组织分析.热加工工艺, 2005, (10):42~43
    35张秉刚,冯吉才,吴林.鉻青铜与双相不锈钢电子束熔焊接头形成机制.焊接学报, 2005, 26(2):17~20
    36 Dilthey U, Weiser J. Investigations of EB characteristics and their influences on the weld shape[J]. Welding in the World, 1997, 39(2):89~98
    37 Giedt W.H. Heat transfer and fluid flow in electron beam welding. Trends in Welding Research in the United States[C], American Society for Metals, Ohio, 1982:109~131
    38 Wei P.S, Wu T.H, Chow Y.T. Investigation of high-intensity beam characteristics on welding cavity shape and temperature distribution [J]. Journal of Heat Transfer, 1990, 112(1):163~169
    39 Krinberg I.A, Mladenov G.M. Formation and expansion of the plasma column under electron beam-metal interaction[J]. Vacuum, 2005, 77(4):407~411
    40 Yang P, Turman B.N, Glass S.J. Braze microstructure evolution and mechanical properties of electron beam joined ceramics. Materials Chemistry and Physics, 2000, (64):137~146
    41 Jan Felba, Kazimierz P. Friedel, Peter Krull. Electron beam activated brazing of cubic boron nitride to tungsten carbide cutting tools.Vacuum,2001, (62):171~180
    42黄哲赟,项明,梁智.真空电子束焊温度场模拟[J].宇航材料工艺,2004, (6):53~57
    43李少青,梁智,芦凤桂.扫描电子束焊温度场数值分析[J].机械工程材料, 2006, 30(1):26~29.
    44樊志伟,张朴,刘文中.基于CCD数字图像处理的焊接温度场实时监测系统研究[J].计算机测量与控制, 2005, 13(3)
    45林燕,董俊慧,刘军.焊接残余应力数值模拟研究技术的现状与发展.焊接技术, 2003, 32(6):5~7
    46陈芙蓉,刘军,董俊慧.不锈钢电子束焊应力场数值计算. 2005年国际材料科学与工程学术研讨会论文集[C], 2005:660~663
    47陈芙蓉,霍立兴,张玉凤. BT20钛合金电子束焊接残余应力三维有限元数值模拟.焊接学报, 2004, 25(1):61~70
    48 Yang P, Turman B.N, Glass S.J. Braze microstructure evolution and mechanical properties of electron beam joined ceramics. Materials Chemistry and Physics, 2000, 64:137~146
    49李少青,梁智,芦凤桂等.扫描电子束焊温度场数值分析.机械工程材料, 2006, 30(1):26~30
    50武传松.焊接热过程数值分析.哈尔滨工业大学出版社, 1990:24~26
    51俞汉清等.金属塑性成型原理.北京:机械工业出版社, 1999