单轴和三轴应力下塑性混凝土性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑性混凝土是由膨润土、粘土、水泥、砂、石和水等原料经搅拌、浇注、凝结而成的强度介于土和普通混凝土之间的柔性工程材料。为了推广塑性混凝土在工程防渗等领域的应用,本文通过7组不同配合比的塑性混凝土试验,探讨了水胶比、用水量、水泥用量和砂率等参数对塑性混凝土性能的影响,建立了用水量与其余材料用量的关系。在此基础上,通过塑性混凝土的单轴抗压、三轴压缩、单轴循环加载和渗透等试验,研究了单轴受压下塑性混凝土的基本力学性能、三轴压缩下塑性混凝土的本构关系和强度准则、峰值前后两个阶段塑性混凝土的变形特征与其应力状态的关系以及渗透性能等。主要内容如下:
     1.单轴受压下塑性混凝土基本力学性能
     (1)单轴抗压性能。研究了加载速率、试件形状、龄期和组成材料等对塑性混凝土单轴抗压强度的影响。结果表明,对于单轴抗压强度大于2MPa的塑性混凝土,适宜的加载速率为0.1MPa/s,小于2MPa时以0.05MPa/s为宜。
     (2)弹性模量。系统研究了试件形状、量测标距、龄期和组成材料等对塑性混凝土弹性模量的影响。结果表明,塑性混凝土弹性模量试验可采用150mm×150mm×300mm的棱柱体试件以及全长标距测试变形,试验时不预压。塑性混凝土弹性模量应采用应力应变曲线上升段0.3倍和0.7倍峰值强度对应的点建立计算公式,并建立了塑性混凝土弹性模量与立方体抗压强度之间的关系式。
     (3)单轴受压本构关系。研究了试件形状、龄期、量测标距和测试方式对塑性混凝土单轴受压应力应变曲线的影响,采用上升段和下降段的分段函数方法建立了塑性混凝土单轴受压本构关系。
     2.三轴应力下塑性混凝土力学性能
     (1)常规三轴应力下塑性混凝土力学性能。研究了常规三轴试验下围压、单轴抗压强度等对塑性混凝土三轴强度和应力应变关系的影响。结果表明,三轴应力下塑性混凝土强度和峰值应变大幅度提高。建立了三轴强度与单轴抗压强度和围压的关系式、塑性混凝土割线模量与单轴抗压强度、弹性模量以及围压的关系式,并进一步建立了塑性混凝土常规三轴受压本构关系式。
     (2)真三轴应力下塑性混凝土力学性能。研究了两类真三轴试验下塑性混凝土强度特征。在侧压恒定的真三轴应力下,塑性混凝土强度随侧压的增加而增大;当第三主应力一定时,随着第二主应力的增大,塑性混凝土第一主应力逐渐增加。在侧向位移恒定的真三轴应力下,塑性混凝土三轴强度大幅度增加,且随着设定初始侧向应力的增加而增大,可达单轴强度的4-6倍。
     研究了真三轴应力下塑性混凝土体应变和峰值应变特征。在侧压恒定的真三轴应力下塑性混凝土出现扩容现象,对于相同配合比的塑性混凝土,在相同的第三主应力下,扩容的起始点随着第二主应力的增大而增大。塑性混凝土立方体试件峰值应变由单轴受压下的0.5%-1.5%增至侧压恒定的真三轴试验下的2%-5%、侧向位移恒定的真三轴试验下的6.2%-9.3%。
     (3)峰值前后两个阶段塑性混凝土变形特征。研究了塑性混凝土峰值前的变形特征与其应力状态的关系。在单轴压缩及侧向位移恒定真三轴试验下,峰值前塑性混凝土主要产生弹性变形,可用弹性模量表示该阶段变形特征;在侧向应力恒定的常规三轴及真三轴试验下,峰值前塑性混凝土主要产生塑性变形,可用割线模量表示该阶段变形特征。
     研究了峰值后塑性混凝土应力应变曲线特性与其应力状态的关系。根据峰值后变形性质参数D2 (D2=E1.5ε/E0.3),塑性混凝土峰值后应力应变曲线有如下特点:
     (4)强度准则。根据常规三轴试验结果,利用格里菲斯理论建立了塑性混凝土强度准则;研究了常规三轴试验下塑性混凝土强度包络线特征并建立了强度方程。根据真三轴试验结果,建立了塑性混凝土破坏准则在八面体应力空间的表达式。
     3.单轴循环加载下塑性混凝土力学性能
     研究了4种单轴循环加载模式下塑性混凝土力学性能。根据试验结果,建立了单轴循环加载下塑性混凝土峰值强度与单轴单调加载峰值强度、循环加载过程中最大应力之间的关系式。分析了单轴循环加载下塑性混凝土滞回环的特征及卸载、再加载应力应变曲线特征。
     4.塑性混凝土渗透性能
     研究了利用混凝土相对渗透试验和土工渗透试验测试塑性混凝土渗透系数的适宜性。结果表明,利用土工渗透试验测试塑性混凝土渗透系数是不可行的;利用混凝土相对渗透试验测试塑性混凝土渗透系数是可行的,试验时适宜的水压力为0.5MPa、渗透时间为12h,并对试验结果处理方法提出了修正。
     5.塑性混凝土配合比设计
     通过7组塑性混凝土配合比试验,推荐了配制不同强度等级塑性混凝土的水胶比、单位用水量、水泥用量、土掺量和砂率等参数,建立了用水量与水胶比、水泥用量、土掺量、砂率的关系式。
     6.塑性混凝土防渗墙工程应用
     利用三维有限元方法,研究了塑性混凝土在河南省窄口水库坝体防渗墙的设计与应用。结果表明,塑性混凝土防渗墙技术在该工程中是可行的,防渗墙以两段式最优,下部40m采用C10普通混凝土,上部40m左右采用塑性混凝土并确定了塑性混凝土的设计指标。
Plastic concrete is made of bentonite, clay, cement, sand, gravel and water, which is flexible engineering material. In order to use it in cutoff walls extensively, researches were carried on parameters which affected the properties of plastic concrete, such as water cement ratio, unit water, cement, and the relation between unit water and the other parameters was established by 7 plastic concrete mixes tests. Mechanical properties of plastic concrete under uniaxial and triaxial stress were focused using uniaxial compression test, triaxial and true triaxial one, cyclic loading one and permeability one. Main researches were carried on as following:
     1. Basic mechanical properties of plastic concrete under uniaxial stress
     (1) Properties under uniaxial compressive stress. Research has been done on the factors influencing strength of plastic concrete, e.g. loading rate, specimen shape, age and constituent. When uniaxial compressive strength of plastic concrete is over 2.0 MPa, the rate should be 0.1 MPa/s, when less than 2.0 MPa, the rate be 0.05MPa/s.
     (2) Elastic modulus. Elastic modulus of plastic concrete is focused on the influence with specimen shape, standard measurement distance, age and constituent. The result shows that the specimen of 150mm×150mm×300mm, full-lengthed measurement standard stance, should be selected in testing elastic modulus of plastic concrete without preloading. The formula for E can choose the two points of 0.3 and 0.7 times of peak strength on the ascending section in the stress strain curve.
     (3) Constitutive relation. Stress-strain curve of plastic concrete under uniaxial compressive stress is studied with specimen shape, age, standard measurement distance and constituent. Constitutive equation of plastic concrete under uniaxial compressive stress is established in ascending segment and descending one.
     2 Mechanical properties of plastic concrete under triaxial compressive stress
     (1) Mechanical properties under conventional triaxial stress. Main researches are carried on strength and stress strain curve of plastic concrete under conventional triaxial stress. The result shows that strength of plastic concrete increases greatly with confining pressure, and they are established on the relation between the strength of plastic concrete and uniaxial compressive one, confining pressure, and the relation between secant modulus and uniaxial compressive strength, elastic modulus, confining pressure. Furthermore, the constitutive equation under triaxial stress is presented.
     (2) Mechanical properties under true triaxial stress. Strength of plastic concrete is focused in two kinds of true triaxial tests. The result shows plastic concrete strength increases greatly with lateral pressures, when one of lateral pressure is constant, the strength increases with increases of the other lateral one in the one kind of true triaxial tests. And plastic concrete strength increases more with the increases of the initial lateral pressure, it can reach 4-6 times of uniaxial compressive one in the other kind of true triaxial test.
     Volume strain and peak one are focused under two kinds of true triaxial tests. The result shows that there is dilatancy for plastic concrete in the one kind of true triaxial test with constant lateral pressure, and the onset of dilatancy increases withσ2 for the constant a3. Peak strain is 0.005-0.015 in the uniaxial compression test, but it can be 0.02-0.05 in the first kind of true triaxial test, and it can be 0.062-0.093 in the second kind of true triaxial test.
     (3) Deformation characteristics during prepeak and post peak zones. Researches on relations between deformation characteristics and stress state during prepeak zone are carried on. The deformation behaves mainly elastically, when plastic concrete occurs under uniaxial compression test and true triaxial compression one with constant lateral displacement. And elastic modulus is used to represent the plastic concrete deformation characteristics during the prepeak zone. The deformation behaves mainly plastically, when plastic concrete occurs under triaxial compression tests with constant lateral pressure. Secant modulus has been used to assess plastic concrete deformation in the conditions.
     Researches on relations between deformation characteristics and stress state during postpeak zone are carried on. According to D2 (D2=E1.5ε/E0.3), stress strain curve of plastic concrete behaves as following during post peak zone:
     (4) Failure criterion. Failure criterion has been studied by Griffith theory and Mohr-Coulomb rules according to plastic concrete conventional triaxial test. Failure criterion in octahedron stress is brought out on terms of plastic concrete true triaxial test.
     3 plastic concrete mechanical properties under uniaxial cyclic loading test
     Plastic concrete mechanical properties under 4 kinds of cyclic loading tests is concerned. The equation between peak strength under cyclic loading test and one under uniaxial directly loading test, the maximal stress during cyclic loading is presented. Plastic loop and stress-strain curve of cyclic loading of plastic concrete is analysized.
     4 Permeability of plastic concrete
     Plastic concrete permeability is studied by comparative permeability test and permeability test in soil mechanics. The result shows that comparative permeability test is good, and the other is bad. The water pressure should be 0.5MPa, and the time be 12h in the comparative permeability test. The modified method of calculation of permeability coefficient is presented.
     5 Mixes design of plastic concrete
     Parameters are proposed in order to get required strength plastic concrete, including water cement ratio, water, cement and sand ratio.
     6 Applied of plastic concrete cutoff wall in engineering practice
     Design is analysized on Zhaikou reservoir in Henan province by 3-D FEM. The result shows that plastic concrete cutoff wall can be used in the project, and C10 concrete below 40m and 5MPa plastic concrete for upper segment, and design indexes of plastic concrete are suggested.
引文
[1]Little, A. L. In situ Diaphragm walls for embankment dams[J]. Diaphragm Wall and Anchorages ICE. londres,1974.9
    [2]De Pablo, L.M. and Cruz.A. Performance during constructions of Colbun dam.15th ICOLD: Q56, R.60. Lausanne,1985
    [3]Costaz, J. and Tardieu, B. Plastic concrete cut-off wall technical lecture on plastic concrete for slurry walls Held in Denver (Colorado) for the US Bureau of Reclamation.1985.5.4
    [4]N.辛伯等.加拿大克利夫兰坝的防渗处理(上)[J].水利水电快报,2007,1(28):9-15
    [5]V. A. Grishin and L. M. Deryugin. Experience in the use of bentonite-cement concrete for repairing the core of the earthfill dam of Kureiskaya Hpp[J]. Power Technology and Engineering,2006,40(2):2~8
    [6]Allan.MI, kukacka,L.E. Grout-treated soil for low-permeability barriers around waste landfills [J]. Materials Journal,1994,91(4):355~361
    [7]邓明基.东平湖围坝塑性混凝土防渗墙性能研究[D].北京:清华大学硕士学位论文,2005.05
    [8]王树林.塑性混凝土防渗墙技术在册田水库坝体中的应用[J].防渗技术.2002,(8):15-18
    [9]王正旭.百丈漈一级水电站大坝补强加固工程及安全评价[J].水利技术监督,2001年第4期:34-36
    [10]崔海镇,高广庆,李宝林.薄型塑性混凝土防渗墙在堤防工程上的应用[J].水利科技与经济,2001,7(1):36-37
    [11]魏光辉,曹伟,余芳.掺粉煤灰塑性混凝土的配制技术研究[J].粉煤灰.2006年4月:31-32
    [12]杜锦程,黄仁虎,徐强.塑性混凝土防渗墙在除险加固工程中的应用[J].浙江水利科技,2004年第四期:75-76
    [13]杨玉光,魏鸣冬,陈忠文等.绰勒水电枢纽塑性混凝土防渗墙的施工[J].东北水利水电,2006年第一期:24-26
    [14]零雄,李上游.单掺粘土塑性混凝土在大坝防渗墙中的应用研究[J].广西水利水电,2002年3月:8-11
    [15]张涛,王宝成,刘玉文.东平湖围坝塑性混凝土防渗墙试验[J].人民黄河,2007,8(29):67-71
    [16]王敬静,谈力.都匀市绿茵湖水库大坝塑性混凝土防渗墙设计[J].中国农村水利水电,2004年第8期:59-60
    [17]何润之,何丽娟.防渗墙低弹塑性混凝土的试验研究与应用[J].混凝土,2006年第9期:7-10
    [18]高福平,张成军,刘建成.防渗墙粘土混凝土配合比试验研究[J].特种结构,2006,1(23):101-103
    [19]李青云,张建红,包承纲.风化花岗岩开挖弃料配制三峡二期围堰防渗墙材料[J].水利学报,2004年第11期:114-118
    [20]傅代兵,潘正丰.佛子岭抽水蓄能电站下库拦河坝塑性混凝土防渗墙施工[J].治淮.2004年10月:45-46
    [21]周剑桥,涂建湘.汉江遥堤加固工程防渗墙施工技术[J].西部探矿工程.2004,1(92):60-62
    [22]姜葵红,和桂玲,杨国瑞等.混凝土防渗墙技术在日照水库除险加固工程中的应用[J].水利规划与设计.2007年第4期:59-62
    [23]涂建湘,何培章,李志斌.荆南长江干堤塑性混凝土防渗墙施工技术[J].云南水利发电. 2001,1(18):96-98
    [24]杜亚文,王立娇,韩立军.酒泉五一水库坝基防渗墙塑性混凝土的试验研究[J].东北水利水电,2002年第2期:35-36
    [25]李志强,江春根,崔中兴.老营盘大坝塑性混凝土防渗墙施工技术[J].山西建筑.2006,3(23):145-146
    [26]乔晓华.黏土混凝土在防渗墙中的应用及质量控制[J].山西水利.2006年第6期:90-91
    [27]夏思远,陈小良,宁健.浅谈塑性混凝土配合比的设计[J].江西水利科技.2005,3(31):171-174
    [28]袁月月,何勇,方建平.青山水库除险加固工程防渗墙塑性混凝土质量控制[J].浙江水利科技,2004年第3期:41-43
    [29]刘舒平.沙湾电站一期围堰塑性混凝土防渗墙施工[J].四川水利,2004年第6期:17-20
    [30]赵玺,王淑新,李彦.砂砾石底层塑性混凝土防渗墙施工法在引黄总干三级泵站应用[J].山西水利科技,2001年第3期:36-41
    [31]A.A.默罕西米等.世界最大的卡尔黑防渗墙[J].水利水电快报,2006,1(27):5-8
    [32]钱伟兴,米有明.塑性混凝土薄壁防渗墙在除险加固工程上的应用[J].江苏水利,2006年第7期:15-16
    [33]李洪飞,刘绍宝,屈永强等.塑性混凝土薄墙在病险水库处理中的应用[J].东北水利水电,2003第6期:17-18
    [34]王忠义,周弘文.塑性混凝土薄墙在黄河水库除险加固工程中的应用[J].吉林水利,2003年第1期:16-19
    [35]林峰,周彩贵,高雄杰.八一水库大坝防渗处理[J].岩石力学与工程学报,2003,22(增,2):2925-2928
    [36]高汝红,谷欣,赵晓颖.塑性混凝土防渗墙技术在象山水库加固工程中的应用[J].黑龙江水专学报,2005,3(32):129-130
    [37]马兆荣.塑性混凝土防渗墙在岭澳核电站防波堤的应用[J].电力建设,2001,4(22):36-38
    [38]李显洲.塑性混凝土防渗墙在山神庙水库中的应用[J].云南地质,2007,3(26):355-359
    [39]蒋小健.塑性混凝土防渗墙在水库除险加固工程中的应用[J].新疆水利,2007年第5期:19-21
    [40]林再石,谭跃林,蔡运鹏.塑性混凝土防渗墙在水库加固工程中的应用[J].广东水利水电增刊,2002年6月:49-51
    [40]刘书定,齐书杰,杜克勤等.塑性混凝土防渗墙在西段村水库坝基处理中的应用[J].河南水利,2006年第1期:21-22
    [41]尤长明.塑性混凝土防渗墙在溪霞土坝加固中的应用[J].水利水电工程设计,2007,4(26):23-25
    [42]李晓晖.塑性混凝土防渗墙在张峰水库大坝基础防渗中的应用研究[J].水利与建筑工程学报,2007,2(5):39-40
    [43]徐庆伟,周廷江.塑性混凝土防渗墙在紫坪铺工程中的应用[J].水电站设计,2005,4(21):77-78
    [44]徐伟利,徐志成,曹敏.塑性混凝土配合比及性能指标试验方法的探讨[J].浙江水利科技,2004年第3期:46-48
    [45]程瑶,张美霞.塑性混凝土配合比试验研究及应用[J].2002,5(19):62-64
    [46]刘伍根.塑性混凝土在大坝防渗墙中的应用及质量控制[J].质量论证,2006年第3期:35-37
    [47]何丽娟,何润之.英山占河水库防渗墙粘土混凝土的试验研究及应用[J].施工技术,2007,5(36):92-93
    [48]宋海亭,李斌,郭朝文.东平湖围坝防渗墙应力应变分析[J].人民黄河,2004,12(26):43-45
    [49]李家正,王迪友,杨华全.塑性混凝土配合比设计及试验方法探讨[J].长江科学院院报,2002,4(19):58-61
    [50]刘伟才,曾述银.塑性混凝土防渗墙施工及质量控制[J].水电站设计,2005,21(2):78-80
    [51]陈国才,刘超.薄壁塑性混凝土防渗墙在水库加固工程中的应用[J].西部探矿工程,2008年第8期:210-214
    [52]魏光辉,田伟,柯春光.塑性混凝土防渗墙在阿克达拉水库加固工程中的应用[J].云南水力发电,2008,24(2):44-46
    [53]黄永成.苏丹麦洛维大坝塑性混凝土防渗墙配合比设计研究[J].四川水利水电,2008,27(2):101-104
    [54]徐永仁.塑性混凝土防渗墙在龙河口东大坝加固中的应用[J].江淮水利科技,2008年第1期:25-27
    [55]唐雄兴.振动沉模防渗板墙技术在塑性混凝土防渗墙工程中的应用[J].上海建设科技,2008年第2期:20-22
    [56]张鹏,黄成奎,李清富.塑性混凝土抗压强度试验研究[J].工业建筑,2007,37(1):73-76
    [57]黄绪通,杨宏伟,刘云霞.塑性混凝土防渗墙混凝土性能研究[J].水力发电,1998,第2期
    [58]张鹏,李清富.塑性混凝土抗剪强度试验研究[J].水力发电,2008,34(8):19-22
    [59]张鹏,李清富.塑性混凝土抗拉强度试验研究[J].水力发电,2008,34(2):64-66
    [60]Ahmad Mahboubi, Ali Ajorloo. Experimental study of the mechanical behavior of plastic concrete in triaxial compression [J]. Cemet and Concrete Research 35(2005):412-419
    [61]REMR, Design procedure for plastic concrete cut off walls, Technical Note GT-SR-1.3,1992
    [62]D. Sfer, I. Caro, R. Gettu, G. Etse, Study of the behavior of concrete under triaxial compression [J], J.Eng. Mech.2002,128(2):156~163
    [63]P B Bamfort h. The relationship between permeability coefficient for concrete obtained using liquid and gas [J]. M. C. R,1987,39(138):3-10
    [64]宿辉,李芳,马秋绢.塑性混凝土抗渗测试方法及性能评价研究[J].中国农村水利水电,2007年第10期:91-93
    [65]陈立军,王永平,尹新生等.混凝土孔径尺寸对其抗渗性的影响[J].硅酸盐学报,2005,33(4):500-505.
    [66]王兆利.混凝土抗冻性及其与渗透性关系[D].青岛:青岛理工大学博士学位论文,2003.
    [67]R P Khatri, V Sirivivatnanon. Methods for the Determination of Water Permeability of Concrete[J]. ACI Materials Journal,1997,94 (3):257-261.
    [68]胡良明,朱海堂,苗宗伟等.塑性混凝土渗透性能试验[J].人民黄河,2008,30(3):86-88
    [69]李清富,张鹏,张保雷.塑性混凝土弹性模量的试验研究[J].水力发电,2005,31(3):30-32
    [70]徐伟利,徐志成,曹敏.塑性混凝土配合比及性能指标试验方法的探讨[J].浙江水利科技,2004年第3期:46-48
    [71]王萱子.塑性混凝土防渗墙的试验研究[D].南昌:南昌大学硕士论文,2005
    [72]水工混凝土试验规程(DL/T5150-2001).北京:中国电力出版社,2002
    [1]邓明基.东平湖围坝塑性混凝土防渗墙性能研究[D].北京:清华大学硕士学位论文,2005.05
    [2]李家正,王迪友,杨华全.塑性混凝土配合比设计及试验方法探讨[J].长江科学院院报,2002,4(19):58-61
    [3]王清友等.塑性混凝土防渗墙结构非线性分析及其设计[J].土石坝工程,1992,2
    [4]李晓晖.张峰水库左坝肩防渗墙应力分析[J].水利与建筑工程学报,2007,5(1):40-43
    [5]张成军.土石坝防渗墙粘土混凝土材料研究与工程应用[D].西安:西安理工大学博士学位论文,2007
    [1]苏承东.大理岩颗粒及试样尺寸对冲击倾向影响的试验研究[J].岩石力学与工程学报,2004,23(22):3750-3753
    [2]潘鹏志,周辉,冯夏庭.加载条件对不同尺寸岩石单轴压缩破裂过程的影响研究[J].岩石力学与工程学报,2008,27(增2):3636-3642
    [3]吕兆兴,冯增朝,赵阳升.岩石的非均质性对其材料强度尺寸效应的影响[J].煤炭学报,2007,32(9):917-920
    [4]赵顺波,钱晓军,杜辉.钢纤维混凝土基本力学性能的尺寸效应试验研究[J].港工技术,2007,N0.6:34-37
    [5]屈彦玲.碾压混凝土单轴抗拉强度尺寸效应的数值模拟[J].水资源与水工程学报,2007,18(4):45-47
    [6]杨忠义.全级配混凝土强度的尺寸效应研究[J].水电站设计,2008,24(3):11-14
    [7]冷发光,丁威,张仁瑜等.尺寸效应对混凝土耐久性影响研究[J],水泥与混凝土,2008(6):16-19
    [8]王利民,孙明远,代祥俊等.混凝土断裂工程及尺寸效应分析[J].实验力学,2008,23(1):52-60
    [9]田瑞俊,杜修力,彭一江.混凝土压缩断裂过程及尺寸效应的数值模拟[J].工业建筑,38(4):5-10
    [10]过镇海.混凝土的强度和变形试验基础和本构关系.北京:清华大学出版社,1997年12月:12-15
    [11]高丹盈,刘建秀.钢纤维混凝土基本理论.北京:科学技术文献出版社,1994年12月
    [12]Sargin M. stress-strain relationships for concrete and the analysis of structural concrete sections. Canada,1971
    [13]Hongestad E, et al. Concrete stress distribution in ultimate strength design[J]. Journal of ACI, dec 1955:455~479
    [14]许锦峰.高强混凝土应力-应变全曲线试验研究[D].北京:清华大学硕士论文,1986
    [1]丁发兴.圆钢管混凝土结构受力性能与设计方法研究[D].长沙:中南大学博士论文,2006
    [2]余志武,丁发兴.混凝土受压力学性能统一方法[J].建筑结构学报,2003,24(4):41-46
    [3]俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2001
    [4]Ansari Farhad, Li Qingbin. High-strength concrete subjected to triaxial compression[J]. ACI material Journal,1988,95(6):747~755
    [5]D.Sfer Domingo, Carol Ignacio, Gettu Rabindra, et al. Study of the behavior of concrete under triaxial compression[J]. Journal of Engineering Mechanics,2002,128(2):156~163
    [6]Zhao Zhiye, Ren Liqun. Failure criterion of concrete under trixial stresses using neural networks [J]. Computer-Aided Civil and Infrastructure Engineering,2002,17(1):68~73
    [7]Imran I., Pantazopoulou S.J.. Experimental study of plain concrete under triaxial stress[J]. ACI Material Journal.1996,93(6),589-601.
    [8]Attard M.M.,Setunge S.. Stress-strain relationship of confining and unconfined concrete[J]. ACI Material Journal,1996,93(5),432-442.
    [9]钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003.
    [10]Johansson Mathias,Gylltoft Kent. Mechanical behavior of circular steel-concrete composite stub columns[J]. Journal of Engineering Mechanics,2002,128(8):1073-1081
    [11]Giakoumelis Georgios,Lam Dennis. Axial capacity of circular concrete-filled tube columns[J]. Journal of Constructional Steel Research,2004,60(7):1049-068.
    [12]谢和平,董毓利,李世平.不同围压下混凝土受压弹塑性损伤本构模型的研究[J].煤炭学报,1996,21(3),265-270.
    [13]Candappa D.P.,Setunge S.,Sanjayan J.G.. Stress versus strain relationship of high strength concrete under high lateral confinemen[J]. Cement and Concrete Research,1999,29(12): 1977-1982.
    [14]Ahmad Mahboubi, Ali Ajorloo. Experimental study of the mechanical behavior of plastic concrete in triaxial compression [J]. Cement and Concrete Research,2005, (35):412-419.
    [15]S. Hinchberger, J. Week, T. Newson. Mechanical and hydraulic characterization of plastic concrete for seepage cut-off walls[J]. Can. Geotech. J.2010, (47):461~471.
    [16]Mahmoud Ghazavi, Zolfaghar Safarzadeh, Hamid Hashemolhoseini. Response of plastic concrete cutoff walls in earth dams to seismic loading using finite element methods[J].13th world conference on earthquake engineering, Vancouver, B.C. Canada,2004:paper No.2961.
    [17]Rajendra P. Tiwari, K. Seshagiri Rao. Post failure behaviour of a rock mass under the influence of trixial and true triaxial confinement[J]. Enigeering Geology 2006, (84): 112~129.
    [18]. Singh, M., Rao, K.S., Ramamurthy, T. Strength and deformational behavior of ajointed rock mass. Rock Mech. Rock Eng.2002,35(1):45~64.
    [19]Sfer Domingo, Carol Ignacio, Gettu Rabindra, et al. Study of the behavior of concrete under triaxial compression[J]. Journal of Engineering Mechanics,2002,128(2):156~163.
    [20]Attard M.M.,Setunge S.. Stress-strain relationship of confined and unconfined concrete[J]. ACI Material Journal,1996,93(5):432~442.
    [21]Mogi, K., Fracture and flow of rocks under high triaxial compression, J. Geophys. Res., 1971,76:1255-1269.
    [22]Changdong Chang, Bezalel Haimson. True triaxial strength and deformability of the German Continental Deep Drilling Program (KTB) deep hole amphibolite[J]. Journal of Geophysical research,2000,105(B8):18,999~19,013.
    [23]李林峰.岩石峰后扩容特性的加卸载试验研究[D].昆明:昆明理工大学硕士学位论文, 2008.
    [24]张爱辉,徐进,庞稀斌等.围压对大理岩力学特性影响的试验研究[J].西南民族大学学报自然科学版.2008,34(6):1257-1260.
    [25]卢兴利,刘泉声,张伟等.高应力软岩非弹性体积增加试验研究[J].煤炭学报,2009,34(7):903-907.
    [26]B. Haimson, C. Chang. Brittle fracture in two crystalline rocks under true triaxial compressive stresses. Geological Society, London, Special Publications; 2005; v.240; p. 47-59;DOI:10.1144/GSL. SP.2005.240.01.05
    [27]徐志英主编.岩石力学[M].北京:中国水利水电出版社,1993:50-54。
    [1]高春玉,徐进,何鹏等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):455-460
    [2]宋林辉,梅国雄,宰金珉等.粉质粘土的加卸载试验研究[J].南京工业大学学报,2006,28(3):35-39
    [3]许江,鲜学福,王鸿等.循环加卸荷条件下岩石类材料变形特性的实验研究[J].岩石力学与工程学报,2006,25(增1):3040-3045
    [4]赵延林,曹平,陈沅江等.分级加卸载下节理软岩流变试验及模型[J].煤炭学报,2008,33(7):748-753
    [5]袁海平,曹平,万文等.分级加卸载条件下软弱复杂矿岩蠕变规律研究[J].岩石力学与工程学报,2006,25(8):1575-1581
    [6]苏承东,杨圣奇.循环加卸载下岩样变形与强度特征试验[J].河海大学学报,2006,34(6):667-671
    [7]孙益振,邵龙潭.三轴循环加卸条件下砂性土变形特性研究[J].岩土工程学报,2005,27(11):1353-1357
    [1]D. Whiting. Rapid determination of the chloride permeability of concrete. Final report No. FHWARD-81/119, NTIS No. PB82130724, Federal Highway Administration. Washington, D.C., August,1981
    [2]P B Bamfort h. The relationship between permeability coefficientfor concrete obtained using liquid and gas [J]. M. C. R,1987,39(138):3-10.
    [3]曹芳,马保国,李友国等.混凝土的渗透性能及测试方法的对比分析[J].混凝土,2002,(10):15-17.
    [4]吴绍章.混凝土抗渗性及其评定方法[J].水利水运科学研究,1994.(3):268-277.
    [5]易成,谢和平,孙华飞等.混凝土抗渗性能研究的现状与进展[J].混凝土,2003,(2):7-11.
    [6]郭剑飞.混凝土孔结构与强度关系理论[D].浙江大学硕士学位论文,2004
    [7]赵铁军,李淑进.混凝土强度与渗透性[J].建筑技术,2002,33(1):20-21
    [8]杨线荣.掺粉煤灰和引气剂混凝土渗透性与强度的关系[J].建筑材料学报,2004,7(4):457-461
    [9]A. Abbas, M. Carasses, J. P. Ollivier. The importance of gas permerbility of Cover Concrete. Magazine of Concrete Research,1995,47(171):103~111
    [10]赵铁军.混凝土渗透性[M].北京:科学出版社,2006.01:20-21
    [11]赵铁军.高性能混凝土的渗透性研究[D].北京:清华大学博士学位论文,1997
    [1]张成军.土石坝防渗墙粘土混凝土材料研究与工程应用[D].西安:西安理工大学博士论文,2007
    [2]邓明基.东平湖围坝塑性混凝土防渗墙性能研究[D].北京:清华大学硕士学位论文,2005.05
    [3]王敬静,谈力.都匀市绿茵湖水库大坝塑性混凝土防渗墙设计[J].中国农村水利水电,2004年第8期:59-60
    [4]宋海亭,李斌,郭朝文.东平湖围坝防渗墙应力应变分析[J].人民黄河,2004,12(26):43-45
    [5]王萱子.塑性混凝土防渗墙的试验研究[D].南昌:南昌大学硕士论文,2005
    [6]王四巍,马英,高丹盈.窄口水库除险加固防渗墙设计优化研究[J].人民黄河,2009,31(5):110-111
    [7]杨忠兴,张华.锦屏一级水电站上游围堰稳定性安全评价方法[J]. GEZHOUBA GROUP SCIENCE & TECHNOLOGY,2008,86(2):68~71
    [8]河南省水利勘测设计研究公司.河南省窄口水库除险加固工程初步设计报告,2007