冀北赤城花岗岩的岩石学、地球化学与锆石SHRIMP年代学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冀北赤城花岗岩主要出露于赤城县城以北的马营、云州水库、独石口和镇宁堡等地,包括马营的红墩梁、云洲水库的舍身崖、独石口的冰山梁和镇宁堡的东沟楼等四个岩体。这些花岗岩体均呈岩珠状产出,为中深成至深成侵入岩,它们主要侵位于晚古生代―红旗营子群‖的黑云斜长片麻岩之中,局部侵位于样墩片麻岩,部分岩体则为侏罗系火山岩所覆盖而呈沉积接触关系。其中,红墩梁、舍身崖和东沟楼等岩体的出露面积大小不等,为黑云二长花岗岩,具典型的花岗结构和块状构造,主要矿物成分有斜长石、钾长石、石英,次要矿物为黑云母。黑云二长花岗岩的地球化学特征显示其具较高的SiO_2含量(73.93 %~76.44 %)以及相对较低的Al__2O_3(11.56 %—12.95 %)、Na_2O (3.88 %—4.38 %)和K_2O含量(4.37 %—5.06 %),ΣREE相对较低(92.51 ppm—240.53 ppm),(La/Yb)N介于6.66与18.27之间,具明显的负Eu异常(δEu=0.15—0.38),Ce异常不明显。其fSm/Nd和εNd(t)分别为-0.31—-0.53和-13.25—-15.80,为起源于陆壳环境的钙碱性系列花岗岩类。冰山梁岩体的矿物成分有斜长石(40 %—45 %)、钾长石(30 %—35 %)、石英(10 %—15 %)和少量黑云母,在地球化学特征上,具有较低的SiO_2含量(66.31 %)以及相对较高的Al_2O_3(15.13 %)、Na_2O(4.40 %)和K_2O含量(5.51 %),ΣREE相对较高(373.95 ppm),(La/Yb)N为30.77,具不太明显的负Eu异常(δEu=0.78),Ce异常相对较明显(δCe=0.70)。其fSm/Nd和εNd(t)分别为-0.50和-12.18,为起源于陆壳环境的花岗闪长岩类。对于二长花岗岩类,马营的红墩梁岩体中的锆石具有明显的岩浆成因环带,Th/U比值为0.50~1.45,锆石SHRIMP U-Pb同位素数据表明其~(206)Pb/~(238)U平均年龄为143.9±2.2 Ma;东沟楼黑云二长花岗岩体中的锆石具有明显的岩浆成因环带,Th/U比值为0.61~0.96,锆石颗粒的SHRIMP U-Pb同位素分析数据表明其~(206)Pb/~(238)U平均年龄为138.0±2.2 Ma;云州水库的舍身崖岩体,Th/U比值为2.19,数据显示该岩体的年龄在136.0±3.3Ma左右。对于花岗闪长岩类,冰山梁岩体中的锆石也具明显的岩浆成因环带,Th/U比值较高,为1.18~2.73,锆石SHRIMP U-Pb同位素测年分析数据表明其~(206)Pb/~(238)U平均年龄为228.0±3.1 Ma。
     根据获得的锆石SHRIMP年龄资料来看,以冰山粱岩体为代表的花岗闪长岩体的锆石SHRIMP U-Pb年龄为228 Ma,形成于印支期,而红墩粱、舍身崖和东沟楼等黑云二长花岗岩体的锆石SHRIMP年龄介于136Ma与144 Ma之间,平均值为143 Ma,明显形成于燕山期,这与前人认为该地区花岗岩体是海西期明显不同。
     冀北赤城地区两期花岗岩体的存在,一方面暗示该地区先后经历了印支期和燕山期两次岩浆热事件,这对该地区的岩石—构造单元的大地构造属性等相关研究提供了岩石学和年代学的依据;一方面限定了冀北红旗营子群整体推覆的最晚时间应该是在228Ma之前;另一方面结合华北克拉通中生代遭受的破坏,赤城地区花岗岩的存在和年代学的研究,结合对赤城花岗岩Sm-Nd同位素的研究,不仅说明了在中生代华北克拉通北缘中段地区的岩石圈减薄作用,还为华北克拉通中生代的破坏的具体时间提供了岩石学证据,从而限定了华北克拉通的破坏始于印支期,而在燕山期达到了高潮。
The granitic plutons which emplaced in the Hongqiyingzi complex are exposed in Maying、Yunzhou reservoir、Dushikou and Zhenningpu, in the northern margin of Northern China Craton(NCC). The granitic bodies in the region of interest include Hongdunliang、Seshenya、Bingshanliang and Donggoulou et al. Some of the granitoids emplaced into the Hongqiyingzi complex which consisted of biotite plagioclase gneiss, some emplaced in Yangdun gneiss, and some other bodies were covered by upper Jurassic volcanic sedimentary rock. On the basis of the geochemical and isotopic characteristics, the granitic plutons could be classified two types. The first, calc-alkalic granitic rocks that are mainly exposed in Hongdunliang, Sheshenya, and Donggoulou area have different exposure area, but the same attitude and similar petrological feature. They mainly component of plagioclase、potassic feldspar、quartz and little blotite, with typical granitic texture and massive structure. The granites rich in SiO_2 content (73.93%~76.44%) and lower Al_2O_3 content (11.56%~12.95%)、Na_2O(3.88%~4.38%) and lower K_2O content (4.37%~5.06%), and is characterized by lower total rare-earth element content (∑REE) (92.51~240.53 ppm), (La/Yb)N between 6.66 and 18.27, and distinct negative Eu anomaly of Eu (δEu=0.15~0.38), and a weak Ce anomaly. This type present the features: the fSm/Nd average range from -0.31 to -0.53 and theεNd(t) average range from -13.25 to 15.80, so, the monzonitic granites is calc-alkalic series granites, stemming from continental crust.
     The second, the granitic pluton, exposed in Bingshanliang, is granodiorite, which mainly component of plagioclase (40%~45%)、potassic feldspar (30%~35%)、quartz (10%~15%) and little blotite. The granodirite body is characterized by lower SiO_2 content (66.31%), higher Al_2O_3 (15.13%)、Na_2O (4.40%) and K_2O(5.51%), higher∑REE(373.95 ppm), the ratio of (La/Yb)N is 30.77, a weak Eu anomaly and apparent Ce anomaly(δCe=0.70). Its fSm/Nd is -0.50 and theεNd(t) is -12.18(<0), illustrates the granodiorte stemmed from continental crust too.
     For the biotite monzogranite, we tested some samples from Hongdunliang and Donggoulou, and just analyses only one spot on the sample from Sheshenya for lacking of time. The zircon in the samples from Hongdunliang body (sample 072503) have apparent magmatic genetic clitellum, and its ratio of Th/U is between 0.50 and 1.45, the average SHRIMP U-Pb isotopic age ~(206)Pb/~(238)U from 14 zircons is 143.9±2.2Ma; and the zircon in the samples from Donggoulou (sample 072802) also have apparent magmatic genetic clitellum in cathodoluminescence images, and its ratio of Tu/U range from 0.61 to 0.96, the average of analytic datas of zircon U-Pb ~(206)Pb/~(238)U age is 138.0±2.2 Ma; with regard to the body exposure at Sheshenya, the zircon also have magmatic genetic clitellum in the cathodoluminescences, and based on the only one spot on the zircon, its ratio of Th/U is 2.19, the ~(206)Pb/~(238)U age is 136.0±3.3Ma. For the granodiorite, we used the body of Bingshanliang to zircon SHRIMP U-Pb dating. The zircons in samples from the Bingshanliang body (sample 072602) have apparent clitellum in the cathodouminescences, and higher ratio of Th/U (range from 1.18 to 2.73), the average of analytic datas of zircon U-Pb ~(206)Pb/~(238)U age is 228.0±3.1Ma.
     Based on our study of zircon SHRIMP U-Pb dating, the ~(206)Pb/~(238)U age from the zircon of the granodiorite exposed in Bingshanliang is 228Ma, formed at Indo-Chinese epoch. On the other hand, the average of ~(206)Pb/~(238)U age, obtained from the monzonitic granite, which exposure at Hongdunliang、Sheshenya and Donggoulou, ranges from 136Ma to 144Ma, the average value is 143Ma, so, the monzonitic granites in the studying region formed at Yanshan epoch. The age of granitic plutons in Chicheng is different from the concept of other scholars who regarded the granits is formed in Haixi epoch.
     The study of incorporation of granite forming and lithopheric thinning could get in touch with craton breaking The SHRIMP U-Pb age data has extraordinarily important geologic meaning. First of all, it strongly show that there are two stages of magmatic activities in Chicheng region, northern Chicheng—Chongli—Pingquan discordogenic fault, which offers exact foundation to the study of property of tectonic framework of the rock—building block in the studying area. Besides, integrating with the braking of Northern China Craton in Mesozoic era, it offers the petrologic proof for the braking of Northern China Craton, restricts that the Northern China Craton wrecked begin at Indo-Chinese epoch and attained the most intense phase at Yanshan epoch.
     Finally, the study of the granites in the northern margin of Northern China Craton denotes the thinning of lithopheric, which is an extraordinary apparent about the breaking of Northern China Craton in Mesozoic era. Then, the study of the granites extends some significant petrologic proofs and some geochronologic proofs for the study of braking of Northern China Craton in Mesozoic era, which have extraordinary important geotectonic significations.
引文
[1]刘振峰,王继明,吕金波,等.河北赤城县温泉环斑花岗岩的地质特征及形成时代[J].中国地质,2006,33(5):1052~1058.
    [2]河北省革命委员会地质勘测总队区域地质测量大队.龙关幅(K-50-ⅩⅩⅦ)1/20万区域地质调查报告.北京:中国工业出版社,1970;31~41.
    [3]河北省区域地质调查队.赤城幅(K-50-26)1/20万区域地质调查报告. 1990;109~120.
    [4]张栓宏,赵越,刘健,等.华北地块北缘晚古生代中生代花岗岩体侵位深度及其构造意义[J].岩石学报,2007,23(03):625~638.
    [5]钟长汀.华北克拉通北缘中段古元古代花岗岩类地球化学、年代学与构造意义[D].中国地质大学(北京),2006.
    [6]童英.阿尔泰造山带晚古生代花岗岩年代学、成因及其地质意义[D].中国地质科学院,2006.
    [7]柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[D].西北大学,2004.
    [8]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社,2002,p1~294.
    [9]稽少丞,王茜,徐志琴.华北克拉通破坏与岩石圈减薄[J].地质学报,2008,82(2):174~193.
    [10]杨进辉,吴福元.华北东部三叠纪岩浆作用与克拉通破坏[J].中国科学(D辑):地球科学,2009,39(7):910~921.
    [11] Tuttle G O. and Bowen N L. Origin of granite in the light of experimental studies in the system NaAlSi3O8—KAlSi3O8—SiO2—H2O [J]. Journal of Geological society of America Memoir, 1958,74:1~153.
    [12] Yoder H S and Tilley C E. Origin of basalt magmas,an experimental study of natural and synthetic rock system [J].Journal of Petrol,1962,3:342~532.
    [13] Green D H. and Ringwood A E. The genesis of basalt magmas [J]. Contribution to Mineralogy and Petrology,1967,15:105~190.
    [14]董申保,田伟.花岗岩研究的反思[J].高校地质学报,2007,13(3):353~361.
    [15] Gast P W. Trace element fractionation and origin of tholeiitic and alkaline magma type.Geochimica et Cosmochim Acta, 1968.32:1057~1086.
    [16] Shaw D M. Trace element fractionation during anatexis.Geochimia et Cosmochim Acta, 1970, 34:237~243.
    [17] Allegre C J and Minster J F. Quantitative models of trace element behavior in magmatic processes [J]. Earth and Planetary Science Letters, 1978, 38:1~25.
    [18] Hanson G N. The application of trace elements to the petrogenesis of igneous rocks ofgranitic composition [J]. Earth and Planetary Sicence Letters,1978, 38:26~38.
    [19] Chappell B.W, Whilte A.J.R. Two contrasting granite types [J]. Pacific Geology, 1974, 8: 173~174.
    [20] White AJR. Sources of granite magmas [J]. Journal of Geological Society of America Abstracts with Programs, 1979, 11: 539.
    [21] Loiselle MC, Wones DR. Characteristics and origin of anorogenic granite [J]. Geological Society of American, Abstrats with Programs, 1979, 11:468.
    [22] Barbarin B. A review of the relationships between granitoid types: their origins and their geodynamic environments [J]. Lithos, 1999, 46: 605~626.
    [23] Frost B R, Barnes C G, Collins W J, et al. Ageochemical classification for granitic rocks [J]. Journal of Petrology, 2001, 42: 2033~2048.
    [24] Pearce J. Sources and settings of granitic rocks [J]. Episodes, 1996,19(4): 120~125.
    [25]徐克勤,胡受奚,孙明志,等.华南两个成因系列花岗岩及其成矿特征[J].矿床地质, 1982, 1(2): 1~14.
    [26]徐克勤,胡受奚,孙明志,等.论花岗岩的成因系列——以华南中生代花岗岩为例[J].地质学报, 1983, 56(2): 107~118.
    [27]庞迎春,程顺波.花岗岩分类问题研究现状[J].资源环境与工程,2009,23(2):119~122.
    [28]赵伦山,张本仁.地球化学[M].北京:地质出版社,1988,p166~212.
    [29]吴福元,李献华,杨进辉,等,花岗岩成因研究的若干问题[J].岩石学报,2007,23(06):1217~1238.
    [30] Piteher W.S. The Nature and orgin of Granite (2nd edition) [M]. Chapman &Hall,London,1997,386
    [31] Pitcher W.S. and Hus K. Granite type and tectonic environment [M]. Mountain Building Processes, London: Academic Press,1993,19~40.
    [32] Barbarin B. A review of the relationships between granitoid types,their origins and their geodynamic environments[J]. Lithos,1999,46:605~626.
    [33]汪洋.北京白查A型花岗岩的地球化学特征及其成因与构造指示意义[J].岩石学报,2009,25(01):13~24.
    [34]孙金凤,杨进辉.华北东部早白垩世A型花岗岩于克拉通破坏[J].地球科学—中国地质大学学报,2009,34(1):137~147.
    [35]张旗,潘国强,李承东,等.花岗岩混合问题:与玄武岩对比的启示—关于花岗岩研究的思考之一[J].岩石学报,2007,23(5):1141~1152.
    [36]张旗,潘国强,李承东,等.花岗岩结晶分离作用问题—关于花岗岩研究的思考之二[J].岩石学报,2007,23(6):1239~1251.
    [37]张旗,潘国强,李承东,等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报,2007,23(11):2683~2698.
    [38]张旗,王焰,潘国强,等.花岗岩源岩问题——关于花岗岩研究的思考之四[J].岩石学报,2008,24(06):1193~1204.
    [39]张旗,潘国强,李承东,等.花岗岩研究的误区——关于花岗岩研究的思考之五[J].岩石学报,2008,24(10):2212~2218.
    [40]张旗,潘国强,李承东,等. 21世纪的花岗岩研究,路在何方?——关于花岗岩研究的思考之六[J].岩石学报,2008,24(10):2219~2236.
    [41]董申保,田伟.花岗岩拓扑学的反思[J].地学前缘(中国地质大学,北京),2003,10(3):1~13.
    [42]白文吉等著.华北地块岩石圈构造演化与镁铁—超镁铁杂岩及矿化特征[M].北京:地震出版社,1993.
    [43]翟明国,郭敬辉,李永刚.晋冀蒙交界地区高压基性麻粒岩带及其相邻岩石组合的性质.见:钱祥麟,王仁民主编.华北北部麻粒岩带地质演化[C].北京:地震出版社,1994,p21~31.
    [44]李江海,侯贵廷,钱祥麟,等.恒山中元古代早期基性岩墙群的单颗粒锆石U-Pb年龄及其克拉通构造演化意义[J].地质论评, 2001,47(3):234~238.
    [45]翟明国,郭敬辉,阎月华,等.中国华北太古宙高压基性麻粒岩的发现及初步研究[J].中国科学(B辑),1992,(12):1325~1330.
    [46]李江海,钱祥麟,翟明国.华北北部高级麻粒岩相带构造区划及其早前寒武纪构造演化[J].地质科学,1997,32(3):254~266.
    [47]毛德宝,钟长汀,陈志宏,等.承德北部高压麻粒岩的同位素年龄及其地质意义[J].岩石学报,1999,(15)4:524~531
    [48]钟长汀,毛德宝,陈志宏等.冀北高压麻粒岩带构造单元划分及其演化[J].前寒武纪研究进展,2001,24(3):175~183.
    [49]黄汲清.中国大地构造及其演化1:400万中国大地构造图简要说明[M].北京:科学出版社,1980.
    [50]倪志耀,翟明国,王仁民,等.华北古陆块北缘中段发现晚古生代退变榴辉岩[J].科学通报,2004,49(6):585~591.
    [51]白谨,黄学光,王惠初,等.中国前寒武纪地壳演化(第二版).北京:地质出版社,1996,1-259.
    [52]刘洪涛,翟明国,刘建明,等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报,2002,18(04):433~448.
    [53]刘洪涛,孙世华,刘建明,等.华北克拉通北缘中生代高锶花岗岩类:地球化学与源区性质[J].岩石学报,2002,18(03):257~274.
    [54]胡学文,张江满,权恒.燕辽地区太古宇与下元古界间不整合面的发现及其意义[J].地质评论,1996,42(3):2455~250.
    [55]严刚,倪志耀,翟明国,等.冀北异剥钙榴岩的岩石学、地球化学、及锆石SHRIMP年代学研究[J].矿物岩石,2008,28(1):21~30.
    [56] R.L. Rudnick, S.M. McLennan, S.R. Taylor. Large ion lithophile elements in rocks from high-pressure granulite facies terrains [J]. Geochimica er Cosmochinica Acta, 1985,49(7):1645~1655.
    [57]陆松年,杨春亮,将明媚,等.前寒武纪大陆地壳演化示踪[M].北京,地质出版社,1996:23~31.
    [58]邢凤鸣,徐祥,李应运,等.皖南晋宁早期华岗闪长岩带的确定及其岩石学特征[J].岩石学报,1989,4:
    [59]宋彪,张拴宏,王彦斌,等.锆石SHRIMP年龄数据处理时系统偏差的避免—标准锆石分段校正的必要性[J].岩矿测试, 2006, 25(1): 9~14.
    [60] Williams I S. U-Th-Pb geochronology by ion microprobe. In: McKibben M.A., Shanks,W.C., Ridley, W.I.(Eds.). Applications of Microanalytical Technique to Understanding Mineralizing process. Rev Economic Geol, 1998,7: 1~35.
    [61] Ludwig K R. Squid 1.02: a user manual. Berkeley Geochronological Center Special Publication, 2001,2: 19.
    [62]刘敦一,简平,张旗,等.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据[J].地质学报,2003,77(3):317~327.