超临界二氧化碳钻井液特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合石油科技中青年创新基金项目“超临界二氧化碳连续管钻井液携岩特性研究”和中国石油大学博士创新基金项目“超临界二氧化碳钻井液特性研究”的有关研究内容,深入研究了二氧化碳流体在井眼条件下的密度、粘度、温度和压力等特性的变化规律,设计和建立了超临界二氧化碳钻井液循环模拟实验装置,通过模拟实验研究揭示了超临界二氧化碳钻井液携岩规律以及二氧化碳水合物溶解特性,为超临界二氧化碳钻井液的现场应用奠定了基础。
     二氧化碳流体是可压缩性非常好的非理想气体,常用的理想气体状态方程不适应于井眼内密度、粘度、温度和压力等参数的准确计算。基于Pen-Robinson方程和Chung方程,推导出了适合超临界二氧化碳钻井液在井眼条件下的密度和粘度计算公式,计算结果与实际误差都在5%以内,具有较好的实用性。应用传热学基本原理,建立了地层/钻具/二氧化碳流体之间的温度传递数学模型,给出了钻具和环空内二氧化碳流体的温度解析式,并绘制了井眼温度剖面。运用有限元基本方法和流体力学理论,推导出了在井眼条件下二氧化碳钻井流体的静液柱压力和摩擦压耗的数学模型,从而绘制出井眼压力剖面,为实现控制压力钻井提供了理论依据。
     利用相似性原理,研制出超临界二氧化碳钻井液循环模拟实验装置。该装置可模拟二氧化碳流体在2000米井深内的运行状态,能够做到温度可调,压力可控,并能在高温高压(90℃,15MPa)下具有可视化。该装置可用于完成超临界二氧化碳钻井液的携岩特性、循环压耗特性、水合物生成和溶解特性等方面的实验研究,实验结果重复性好。
     利用新研制的超临界二氧化碳钻井液循环模拟实验装置,试验研究了二氧化碳流体在不同状态和不同井斜情况下的携岩特性,发现在超临界状态下,0°~36°是携岩较容易的井斜范围,井斜超过36°后携岩开始变得困难,54°~72°为携岩最困难的井斜范围,72°~90°携岩变得相对容易;确定了不同状态下二氧化碳流体有效携岩的最低返速和最小流量;揭示出携岩能力随压力增加而增大、随着温度的增加而减少的变化基本规律。
     模拟实验装置中固液分离器是采用侧面旋流进气的锥形容器,它能够使二氧化碳、水充分旋流搅拌,在温度低于10℃,压力高于5MPa条件下,形成二氧化碳水合物。研究了二氧化碳水合物在地面环境中的稳定性,发现当环境温度高于30℃时,二氧化碳水合物分解速度是2℃、10℃、20℃条件下的1倍;实验探讨了二氧化碳水合物在热力学抑制剂乙醇以及无机盐氯化钙和氯化钠溶液中溶解特性;也实验分析了二氧化碳水合物在动力学抑制剂十六烷基磺酸钠溶液中的溶解特性,有助于超临界二氧化碳钻井液现场应用时产生水合物堵塞提供解决方案。
The paper launch on research work according to petroleum science and technology innovating fund for middle-young people“Bring cuttings feature research of supercritical carbon dioxide coiled tubing drilling fluid”and China University of Petroleum doctor innovating fund“Feature research of supercritical carbon dioxide drilling fluid”. The regular patterns of density, viscosity, temperature and pressure in the borehole are researched thoroughly; The supercritical carbon dioxide drilling fluid circulating simulating experiment equipment is developed; By the simulating experiment equipment, bring cuttings law and carbon dioxide hydrate dissolution law are found. All these are base of the application of supercritical carbon dioxide drilling fluid
     Carbon dioxide fluid is a non-ideal gas with good compressibility, common use ideal gas equation isn’t fit for caculation of density, viscosity, temperature, and pressure in borehole .By modifing P-R equation and Chung equation, equations of caculating density and viscosity in borehole are developed with error no more than 5%,the two equation have good applicability. Using diathermanous concept temperature transfer math model of layer/drill pipe/carbon dioxide fluid is setted up. By resolving the math model, temperature at any well depth of in drill pipe and annular can be calculated and get temperature profile. With these basic data, divide borehole into many small unit, the hydrostatic column pressure and friction pressure consume can be calculated in these small unit, then pressure and pressure consume can be calculated at any well depth and get pressure profile.
     The supercritical carbon dioxide drilling fluid circulating simulating experiment equipment was designed and setted up. As similarity principle, the experiment equipment was proved fully comparable with practice borehole. The experiment equipment can simulate operation behavior of supercritical carbon dioxide drilling fluid in depth of 2000 meters. Tempreture can be adjust and pressure can be controled easily in the experiment equipment. The visulization can be achieved in the high tempreture and high pressure condition(90℃,15MPa) The experiment equipment can accomplish bring cuttings, pressure consume and carbon dioxide hydrate preparation.
     By circulation simulating experiment equipment, the feature of bring cuttings was researched in different state and different inclined angle. Experiment found that carring cuttings is easy when the angle is between 0°~36°in supercritical state, carring cuttings become difficult when the angle get to 36°and carring cuttings is most difficult when the angle is between 54°~72°.it is different with our mind’s eye that carring cuttings isn’t most difficult in horizontal well. The least uphole velocity and minimal rate of flow for carring cuttings are found in different condition. The law of carring cuttings capability is increasing with pressure increasing and decreasing with temperature increasing.
     Solid separator in the experiment equipment is a side face revolver; this can mix carbon dioxide and water, when the temperature is no more than 10℃and pressure more than 5MPa carbon dioxide hydrate can be preparation. Stability of carbon dioxide hydrate in air gas was researched , the research demonstrate that carbon dioxide hydrate decompose speed is double than 2℃, 10℃, 20℃when surroundings temperature is more then 30℃. Carbon dioxide hydrate dissolving feature was researched in thermodynamics inhibitor like grain alcohol and inorganic salt calcium chloride and sodium chloride solution.. Carbon dioxide hydrate dissolving feature was research in dynamics inhibitor like SAS. The research of dissolving feature gives a settling way of dissolving carbon dioxide hydrate when jam occurs.
引文
[1]周英操,翟洪军.欠平衡钻井技术与应用[M].北京:石油工业出版社,2003, 1-203
    [2]李亚强,钟树德,陈星元.欠平衡钻井技术综述[J].石油钻采工艺,2000, 22(4):22-26
    [3]张东海,席继强,贾建明.国外钻井技术发展现状[J].断块油气田,2006, 7(8):64-68
    [4]孙宁.气体钻井好戏连台――中油集团钻井科技重大现场试验纪实[J].中国石油企业,2006, 96-98
    [5]樊宝荣,张松杰,熊腊生.浅谈在国内如何有效地发展欠平衡钻井技术[J].钻采工艺,2001, 24(3):4-5
    [6]马宗金,肖润德.现代欠平衡钻井技术[J].钻采工艺,2000, 23(3):1-4
    [7]王轶君,韩玉安,韩海生.欠平衡完井技术及发展现状[J].国外油田工程,2000, 17-19
    [8]林安村,马光长,邓传光.四川油气田推广欠平衡钻井的可能性与必要性[J].钻采工艺,2000, 23(2):1-4
    [9]寇海成,朱坤科,吴建文.适合于欠平衡钻井的油气藏筛选依据[J].钻采工艺,2000, 23(5):22-31
    [10]杨虎.欠平衡钻井井底负压差的确定因素与控制方法研究[J].天然气工业,2001, 21(4)60-62
    [11]孙莉.欠平衡作业(UBO)促进水平井技术的发展[J].国外油田工程,2000(1), 23-26
    [12]刘海浪,柯仲华,赵振峰.小井眼和连续油管技术的进展与应用[M].北京:石油工业出版社.1998: 1-28
    [13]Chiu. Ikoku , J . J . Azar , C. Ray Williams. Practical Approach to Volume Requirements for Air and Gas Drilling .
    [14]李大公,朱长发.连续油管综述[J].国外石油机械,1995, 6(3):23-31
    [15]赵炜,古小红译.连续油管工艺技术持续快速发展[J].国外石油机械,1999,10(1):27-33
    [16]大港油田集团钻采工艺研究院.国内外钻井与采油工程新技术[M].北京:中国石化出版社,2002: 8-36
    [17]陈会年,张国龙,胡清富.连续油管钻井技术的发展及应用[J].石油钻探技术,2000,28 (2):19一21
    [18]A.P.Gupta. Feasibility of Supercritical Carbon Dioxide as a Drilling Fluid for Deep Underbalanced Drilling Operation. SPE 96992
    [19]阎立峰,陈文明.超临界流体(SCF)技术进展[J].化学通报,1998,(4):11-14
    [20]金义范,金玳,庄允迪.物理化学[M].北京:高等教育出版社, 1984: 3-56
    [21]钱学仁,李坚.超临界流体在林产工业中的应用[J].世界林业研究,1996,(1):28-31
    [22]卢子扬.超临界流体的原理及利用技术[J].甘肃环境研究与监测, 1997, 10(1): 43-49
    [23]郑利民,朱声逾.简明元素化学[M],北京:化学工业出版社, 1988:54-58
    [24]赵亚平.超临界CO2流体提取辣椒精油成分的研究[J].食品工业科技,1996 , (4) :15-18.
    [25]葛发欢,李菁,王海波等.超临界CO2流体萃取技术在天然产物提取及药物分析中的最新研究进展和前景[J].中药材,1995 ,18(6) :316-328.
    [26]苏子仁,陈建南,葛发欢等.应用SFE - CO2提取丹参脂溶性有效成分工艺研究[J].中成药,1998 ,20(8) :1-3.
    [27]邓启焕,高勇.第二类超临界流体萃取银杏叶有效成分的实验研究[M].中草药, 1999 ,30(6): 419.
    [28]Moyle D A. Extraction of essential oils with carbon dioxide. Flavour and Fragrance J, 1993, (8):235-247.
    [29]Macnaughton S J, Foster N R. Supercritical adsorption and desorption behavior of DDT on activated carbon using carbon dioxide [J]. Ind Eng Chem Res, 1995, 34: 275-2821
    [30]王少芬,魏建谟.超临界流体技术在化学研究中的应用[J].化学通报,1999, 8(12): 50-53
    [31]Watkins J J, McCarthy T J. Polymer/Metal nanocomposite synthesis in supercritical CO2 [J]. Chem Mater ,1995 , (7) :1991~1 992.
    [32]马一太,王景刚,吕灿仁.超临界流体及超(跨)临界循环的特性研[J].暖通空调, 2002, 32(1):101-104
    [33]郭万奎,廖广志,邵振波等.注气提高采收率技术[M].北京:石油工业出版社,2003:53-58
    [34]李孟涛,单文文,刘文贵.超临界二氧化碳混相驱油机理实验研究[J].石油学报,2006,27(3):81-84
    [35]付美龙,张鼎业.杜84块超稠油油藏蒸汽+CO2+助剂吞吐物理模拟实验研究[J].油田化学,23(2):145-148
    [36]J.J.Kolle. Coiled-Tubing Drilling with Supercritical Carbon Dioxide. SPE/Petroleum Socuety of CIM 65534
    [37]A.P.Gupta. Feasibility of Supercritical Carbon Dioxide as a Drilling Fluid for Deep Underbalanced Drilling Operation. SPE 96992
    [38]苏海英.水利测量中径伟仪的误差与控制[J].安徽水利水电职业技术学院学报,2005,5(2):47-48
    [39]李芝芬,杨怡生.气体和液体性质[M].北京:石油工业出版社,1994:12-57
    [40]美R.C.里德,J.M.普劳斯尼茨,B.E.波林.气体和液体性质[M].李芝芬,杨怡生译.北京:石油工业出版社,1994: 12-14
    [41]漆新华,庄源益.超临界流体技术在环境科学中的应用.北京:科学出版社,2005:1-211
    [42]尹从绪,吕静,要丽娟.超临界CO2流体管内流动换热[J].制冷与空调,2004, 4(6):39-4
    [43]伊萨琴科.传热学[M].王丰,冀守礼,周筠清等译.河北省:高等教育出版社,1987:4~26
    [44]金义范,金玳,庄允迪.物理化学[M].河北省:高等教育出版社,1986:21~46
    [45]Edwardson, M.J, Girner, H.M., Parkison, H.R., et al. Calculation of formation Temperature disturbances caused by mud circulation [J]. J.Pet.Tech, April, 1962, 416-426
    [46]Charles S. Holmes, Samuel C.Swift. Calculation of Circulating mud temperatures[C]. Cities Service Oil Co
    [47]张正荣.传热学[M].北京:高等教育出版社,1982:11-88
    [48]钱滨江,伍贻文,常家芬等.简明传热手册[M].北京:高等教育出版社,1983:390-391
    [49]胜利油田钻井工程公司.钻井技术手册. 1987:625-626
    [50]William C.Lyons, Bayum Guo, Frank A. Seidel. Air and Gas Drilling Manual [M].Houston: Gulf Pub, 1984: Chapter six.
    [51]Boyun Guo, Ali Ghalambor.欠平衡钻井气体体积流量的计算.胥思平译.中国石化出版社,2006:8-28
    [52]C.D.Marken, XiaoJunHe, and ArildSaasen. The Influence of Drilling Conditions on Annular Pressure Losses[C]. SPE 24598
    [53]Antonino Merlo, Roberto Maglione and Cesare piatti. An Innovative Model For Drilling Fluid Hydraulics[C]. SPE 29259
    [54]高健康,菅从光,林柏泉.壁面粗糙度对瓦斯爆炸过程中火焰传播和爆炸波的作用[J].煤矿安全, 2005, 36(2):4-6
    [55]李华,吴长春.输气管道当量粗糙度的罪小二乘算法[J].管道技术与设备,2005,(1):8-10
    [56]郭庆海,张剑,李平先.新老混凝土粘结面的数酯糙化处理与工程应用[J].人民黄河,2005,27(8):55-58
    [57]易浩,唐波,练章华.考虑接头的钻柱摩阻扭矩分析[J].西南石油学院学报,2006,28(4):85-88
    [58]徐涛,周安,陈春雷.预应力混凝土结构孔道摩擦系数κ和μ值实测分析[J].工程与建设,2006,20(3):200-201
    [59]龙芝辉,汪志明,郭晓乐.钻井循环压耗计算修正系数方法及应用[J].天然气工业,2005,25(7):66-68
    [60]曹溅辉,金之钧.油气二次运移和聚集物理模拟[M].北京:石油工业出版社, 2000:25-49
    [61]姜万录,孔祥东,杜崇杰. PC控制的全尺寸钻井综合模拟试验装置[J].东北重型机械学院学报,1997,21(1):35-38
    [62]张景富,俞庆森,严世才.侧钻井钻井液携屑能力试验研究[J].石油钻采工艺,2000,22(2):12-16
    [63]张振华,孙延德,崔晓艳.高温高压下可循环微泡沫钻井液管路流动试验[J],钻井液与完井液,2004,21(2):11-13
    [64]S.B.Supon, M.A.Adewuml. An Experimental Study of the Annulus Pressure Drop in a Simulated Air-Drilling Operation. SPE Drilling Engineering, March 1991
    [65]S.B.Supon, M.A.Adewuml.Measurement and Analysis of the Pressure Drop in a Vertical Annulus in a Simulated Air Drilling Operation. SPE 17039
    [66]R.C.Temple, R.W.Watson, M.A.Adewumi. An Experimental Study of Pneumatic Transport of Solids in a Vertical Wellbore Annulus. SPE 37327
    [67]袁恩熙.工程流体力学[M].北京:石油工业出版社, 1998:98-103
    [68]V.C.Kelessidis and G.E.Bandelis. Flow patterns and minimum suspension velocity for efficient cuttings transport in horizontal and deviated wells in coiled-tubing drilling [R]. SPE 81746, 2004:213-226.
    [69]A.Y.Zekri, R.A.Almehaideb and S.A.Shedid. Displavement efficiency of supercritical CO2 flooding in tight carbonate rocks under immiscible and miscible conditions [R]. SPE 98911, 2006:1-13.
    [70]Evren M. Ozbayoglu, Arild Saasen. Estimating critical velocity to prevent bed development for horizontal-inclined wellbores [R]. SPE 108005, 2007:1-6
    [71]Henry Pinkstons, Andy Timms. Underbalanced drilling of fractured carbonates in Nortern Thailand overcomes conventional drilling problems leading to a major gas discovery [R]. SPE 90185, 2004:1-12.
    [72]袁兆广,周开吉,孟英峰等.气体钻大斜度水平井最小注气量计算方法研究[J].天然气工业,2007, 27(4):65-68
    [73]王存新,孟英峰,邓虎等.气体钻井注气量计算方法研究进展[J].天然气工业,2006, 26(12):97-99
    [74]郭建华,李黔,王锦.气体钻井岩屑运移机理研究[J].天然气工业, 2006, 26(6): 66-67
    [75]A.P.Gupta, J.Langlinais. Feasibility of supercritical carbon mdioxide as a drilling fluid for deep underbalanced drilling operationg [R]. SPE 96992, 2005:1-8.
    [76]王利国,杨虎,鄢捷年等.气基流体钻井气液流量组合设计新方法及应用[J].石油钻采工艺, 2006, 28(20:31-34
    [77]A.P.Gupta. Feasibility of Supercritical Carbon Dioxide as a Drilling Fluid for Deep Underbalance. SPE 96992, 2005
    [78]耿昌全,裘俊红,朱菊香.水合物技术[J].化工进展, 2001, (1):14-17
    [79]雷怀彦,官宝聪,刘建辉.笼状水合物拉曼光谱特征与结构水合数的耦合关系[J].现代地质, 2005, 19(1):83-87
    [80]郭文斌,陈晓威.管道输送二氧化碳单井吞吐工艺[J].石油钻采工艺, 1999, 21(1):94-96
    [81]王书淼,吴明,王国付.管内天然气水合物抑制剂的应用研究[J].油气储运, 2006, 25(2):43-46