听神经病随访观察及致病基因筛查研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
听神经病是一种临床表现较为特殊的疾病,主要的听力学特征包括听性脑干反应缺失或严重异常,耳声发射正常,镫骨肌反射消失或阈值升高,纯音听力图多以低频听阈损失为主。患者的主要主诉是言语分辨率差而无法与人正常交流。听神经病与一般的感音神经性聋的显著差异,正引起越来越多的关注。但是对于此病的病因、发病机制及疾病的转归仍不明确。因此分析认识疾病的发展与转归,有利于深入了解该病并指导患者生活。另外,我们希望通过基因水平的研究以获得该病的致病基因,从而明确该病的发病机理,寻找可能的治疗手段。试验方法和结果
     1听神经病患者随访研究
     通过对2001年1月至2009年7月间就诊于我科的听神经病患者进行随访调查,分析听神经病患者的纯音听阈测试、声导抗测试、ABR、DPOAE、ENG及VEMP等的变化特征。随访者均为非综合征型听神经病患者,共74人,男性32人,女性42人,发病年龄3~33岁,平均16.69±4.42岁。患者纯音听阈损失以低频损失为主(70.1%),左右耳间无差别。随访1~9年,平均3.74±1.96年,患者纯音听阈水平在随访期内无明显差异,无向高频发展的趋势。随着患者病程和随访期的延长,言语识别率为0的患者比例有显著的增加。随访期内镫骨肌反射阈值与引出率无明显变化。随访期间患者DPOAE无变化,并无继发性耳声发射消失的表现。随访期间患者ENG异常耳数量、VEMP阈值及引出率均无明显变化,并无加重趋势。总之,随访期内听神经病患者的听力学表现基本无变化,未观察到明显加重或减轻。对于该病的发展与转归,仍需扩大随访人群并延长随访期,以全面了解该病的自然病程。
     2听神经病患者OOOOTTTOOF基因与PPPPJJJVVK基因突变筛查
     OTOF基因与PJVK基因是隐性遗传性耳聋的致病基因,目前有证据显示其突变与听神经病相关。为了明确散发听神经病患者上述两种基因的突变情况,我们进行了全外显子测序筛查。70名受检者中,OTOF基因共检出10种影响氨基酸编码的突变,其中4种未见报道,包括4023+1G>A,G368R,N727S,A809D。PJVK基因共检出3种影响氨基酸编码的突变,其中2种未见报道,包括1059+2A>C,R183Q。但是检出的突变均为单杂合突变,尚不能确定其突变形式是该患者的致病原因。
     3听神经病遗传家系的收集与整理
     临床中我们注意总结和收集耳聋家系以供基因研究。我们共收集到7个听神经病家系。其中5个为常染色体显性遗传的非综合症性听神经病家系,2个是伴有外周神经病的X染色连锁的隐性遗传性听神经病家系。为我们后期的研究奠定了坚实的基础。
     4X染色体连锁的隐性遗传性听神经病家系的致病基因筛查
     我们对一个临床资料较为完整的X染色体连锁的隐性遗传性听神经病家系进行了全外显子捕获测序,逐步缩小检测范围,最终通过家系连锁确定了该家系的致病基因为AIF(apoptosisinducefactor,凋亡诱导因子)基因,突变为错义突变S314N。
     5AAAIIF基因在听神经病患者中的突变筛查
     我们对70名散发的听神经病患者进行了AIF基因的全外显子测序筛查,在男患者中共检出9种错义突变,包括L191P、I287T、Q332H、G360R、R422W、A440V、P475L、E558V、D559G,及一个位于5‘UTR区的纯合突变,均未见报道。我们认为AIF基因在听神经病患者中的高突变率可能提示其在听神经病致病过程中扮演着重要的角色。
     6AAAIIF基因的定位与表达研究。
     我们通过RT-PCR及组织化学染色的方法,对AIF基因在大鼠内耳的表达做了初步研究,发现AIF广泛分布在Corti器、内外毛细胞、基底膜、螺旋神经节细胞及血管纹等处。同时新生大鼠与成年大鼠耳蜗基底膜AIFmRNA的表达量无明显差异。结果初步提示我们,AIF在内耳中广泛表达,其功能异常可能影响声音信号的转化与传导。我们仍需进一步进行功能研究以明确其致病机理。
     总之,我们对听神经病的了解还比较少,通过本研究,我们初步探明了听神经病的自然转归,了解了隐性遗传性听神经病相关基因OTOF与PJVK基因在散发听神经病患者中的致病性,并通过对一个X染色体连锁的隐性遗传听神经病家系进行研究,定位了一个新的听神经病致病基因AIF,并在散发的听神经病患者中检出9种错义突变,明确了AIF基因在听神经病患者中的重要性。通过实验手段对AIF基因在大鼠耳蜗做了明确定位,为进一步研究其功能奠定了基础。
Auditory neuropathy (AN) is a specific hearing disorder. The main clinicalcharacters include auditory brainstem responses (ABR) absent or abnormalseverely and evoked otoacoustic emissions (EOAE) normal, which reflects thefunction of auditory nerve with inner hair cells and outer hair cells, respectively.AN was first named by Starr in 1996, and interested a lot of researchers studyingthis special disease. Auditory tests results in AN patients distinguished fromother sensorineural hearing loss also include acoustic reflex (AR) absence orthreshold elevation, pure tone auditory threshold elevation mainly at lowerfrequencies and vestibular affection as vestibular evoked myogenic potentials(VEMP) and/or electronystagram (ENG) abnormal. The core complain of ANpatients is speech discrimination disability and difficulty of verbalcommunication especially in noises. However, there is no effective treatment forAN patients, and we still have no idea of the causes and the changes in thecourse of this disease. Therefore we follow up a bunch of adult AN patients andanalyse the changes in auditory tests, hoping to understand the natural processand the prognosis of the disease. Neonatal hyperbilirubinemia, anoxianeonatorum, premature birth and ototoxic drug history can explain the causes in some congenital AN, but most posteriority AN patients has no clear history ofsuch risk factors at all. Some AN patients had been detected genes mutations ascause of their disease, but we do not know if genes variations are the cause ofsporadic adult patients. Thus, we designed this study to explore whether ourpatients carry variations in related genes.
     MethodMethods and results
     1. Follow-up study of auditory neuropathy patients
     The main body of this study is 74 out patients diagnosed as AN during 2001January till 2009 July. All the patients test pure tone audiometry, acousticimpedance, ABR, DPOAE, ENG, VEMP and speech discrimination during thefollow-up period. The average ages of AN onset are 16.69±4.42 years and thecourse of follow up are 3.74±1.96 years. There is no difference in the pure toneaudiometry between left and right ears of the patients, and both ears affect lowfrequencies mostly (70.1%). During the course of follow up, the pure tonethreshold has no significant changes and has no trend affecting higherfrequencies. Word discrimination score has no changes during follow up, but thenumber of ears with 0% word discrimination rate increased during the followingcourse. AR, DPOAE, ENG and VEMP have no statistic differences between thefirst and last visits, but the recordable VEMP threshold and latency areapparently different from control. In conclusion, during following course, thereis no big difference in almost all the auditory tests. We need to visit more ANpatients and follow up a longer period to understand better about the specialdisease.
     2. OTOF gene and PJVK gene variations sequencing in late onset ANpatients
     OTOF and PJVK are the pathogenetic genes detected in some AN patients.However, almost all the mutations are detected in early onset patients, who hadlittle ability to hear and speak. There is no variation map in adult AN patients,and we wonder if OTOF and/or PJVK are the pathogenetic genes of late onset AN patients. We tested 70 sporadic acquired AN patients, and sequenced all theexons as well as introns near exons of OTOF and PJVK. We have detected 10variations that altered amino acid coding, 4 out of which had not reported before,including 4023+1 G>A, G368R, N727S and A809D. We have detected 2 novelmissense mutations in PJVK gene. However, all of the new variations are thesingle heterozygous in single patients, so we can not say that these variations arethe only causes of these patients. We still need to sequence more patients anddetect more related genes.
     3. Hereditary AN families clinical and genetic features analyzing
     Some AN patients has clear family history. In clinical study, we collectedsome precious hereditary AN families as follow. We collected 7 AN familiesappearing autosomal dominant inheritance phenotype and 2 AN families withperipheral neuropathy showing X-linked recessive inheritance phenotype. Weevaluated the phenotype and genetic characters of these families in detail.
     4. Pathogenetic gene sequencing of an X-linked recessive AN family
     We focused on an X-linked recessive AN family searching for theirpathogenetic gene, which had not detected yet. We used the exome capture chip(Nimblgen) and sequencing chip (Solexa) in the propositus for variations in theentire chromosome. Then we narrow the scope of candidate genes step by step,and finally confirmed gene AIF as the pathogenetic gene of the family, whosepathogenetic mutation is S314N.
     5. AIF gene sequencing in late onset AN patients
     We sequenced the 70 AN patients for all the AIF exons and introns near exons.Interestingly, we deteceed 9 missense mutations in 9 male patients as follow:L191P, I287T, Q332H, G360R, R422W, A440V, P475L, E558V and D559G, aswell as a variation in the 5'UTR of the upper stream in a boy. All the abovevariations are novel and did not detected in control. We believe that AIF gene iscritical in AN pathogenesis, and the mutations of AIF gene could be the causesof the patients.
     6. Fluorescence dye and mRNA express of AIF in normal rat inner ear
     In order to make sure the location of AIF staining in normal cochlea, we usedimmunofluorescent and RT-PCR techniques. We observed that AIF wasdistributed broadly in the inner ear cells, especially in hair cells. There is novisible difference among the expression of AIF mRNA among neonatal andadult cochlea basilar membranes and neonatal spiral ganglion cells. Thus, weknow that AIF is a important molecule in mitochondria and expressed stably inthe inner ear, and we should do more work to fully understand the function ofAIF in hearing loss. AIF could be the very key to the AN.
     Conclusion
     We are still at the beginning of AN studying. In this study, we get the generalknowledge of the natural out come of AN, we realized the variations carryingstates of OTOF gene and PJVK gene in late onset AN patients, we found a newAN related pathogenetic gene in an X-linked AN family with peripheralneuropathy, we confirmed the importance of AIF in AN pathogenesis as detected10 novel pathogenetic mutations, and we make clear the expression of AIF inneonatal and adult rat inner ear. All our work urged to reveal the pathogenesis ofAN, so that to find some curable methods to make the patients recover.
引文
[1]. Starr, A., et al., Auditory neuropathy. Brain, 1996. 119 ( Pt 3): p. 741-53.
    [2]. Worthington, D.W. and J.F. Peters, Quantifiable hearing and no ABR: paradox orerror? Ear Hear, 1980. 1(5): p. 281-5.
    [3]. Laccourreye, L., et al., Bilateral evoked otoacoustic emissions in a child withbilateral profound hearing loss. Ann Otol Rhinol Laryngol, 1996. 105(4): p. 286-8.
    [4]. Trautwein, P., et al., Selective inner hair cell loss does not alter distortion productotoacoustic emissions. Hear Res, 1996. 96(1-2): p. 71-82.
    [5].顾瑞与于黎明,中枢性低频感音神经性听力减退.中华耳鼻咽喉科杂志, 1992.27(1):第27-29页.
    [6].王锦玲等,听神经病听力学特征及病损部位分析.听力学及言语疾病杂志, 2007.15(2):第89-97页.
    [7]. Corley, V.M. and L.S. Crabbe, Auditory neuropathy and a mitochondrial disorder ina child: case study. J Am Acad Audiol, 1999. 10(9): p. 484-8.
    [8]. Rapin, I. and J. Gravel, "Auditory neuropathy": physiologic and pathologic evidencecalls for more diagnostic specificity. Int J Pediatr Otorhinolaryngol, 2003. 67(7): p.707-28.
    [9]. Starr, A., et al., A dominantly inherited progressive deafness affecting distal auditorynerve and hair cells. J Assoc Res Otolaryngol, 2004. 5(4): p. 411-26.
    [10]. Cheng, X., et al., Connexin 26 variants and auditory neuropathy/dys-synchronyamong children in schools for the deaf. Am J Med Genet A, 2005. 139(1): p. 13-8.
    [11]. Varga, R., et al., Non-syndromic recessive auditory neuropathy is the result ofmutations in the otoferlin (OTOF) gene. J Med Genet, 2003. 40(1): p. 45-50.
    [12]. Delmaghani, S., et al., Mutations in the gene encoding pejvakin, a newly identifiedprotein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. NatGenet, 2006. 38(7): p. 770-8.
    [13]. Kim, T.B., et al., A gene responsible for autosomal dominant auditory neuropathy(AUNA1) maps to 13q14-21. J Med Genet, 2004. 41(11): p. 872-6.
    [14]. Schoen, C.J., et al., Increased activity of Diaphanous homolog 3(DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathyand in Drosophila. Proc Natl Acad Sci U S A, 2010. 107(30): p. 13396-401.
    [15]. Wang, Q.J., et al., AUNX1, a novel locus responsible for X linked recessive auditoryand peripheral neuropathy, maps to Xq23-27.3. J Med Genet, 2006. 43(7): p. e33.
    [16]. Attias, J., et al., Multiple auditory steady-state responses in children and adults withnormal hearing, sensorineural hearing loss, or auditory neuropathy. Ann Otol RhinolLaryngol, 2006. 115(4): p. 268-76.
    [17].王锦玲等,听神经病与前庭上、下神经损害的关系.听力学及言语疾病杂志,2006. 14(6):第405-410页.
    [18]. Sheykholeslami, K., et al., Vestibular function in auditory neuropathy. ActaOtolaryngol, 2000. 120(7): p. 849-54.
    [19]. Fujikawa, S. and A. Starr, Vestibular neuropathy accompanying auditory andperipheral neuropathies. Arch Otolaryngol Head Neck Surg, 2000. 126(12): p.1453-6.
    [20].王锦玲等,单侧听神经病11例听力学特点分析.临床耳鼻咽喉头颈外科杂志,2007. 21(10):第436-440页.
    [21]. De Leenheer, E.M., et al., Cochlear implantation in 3 adults with auditoryneuropathy/auditory dys-synchrony. B-ENT, 2008. 4(3): p. 183-91.
    [22]. Yasunaga, S., et al., A mutation in OTOF, encoding otoferlin, a FER-1-like protein,causes DFNB9, a nonsyndromic form of deafness. Nat Genet, 1999. 21(4): p. 363-9.
    [23]. Rodriguez-Ballesteros, M., et al., A multicenter study on the prevalence andspectrum of mutations in the otoferlin gene (OTOF) in subjects with nonsyndromichearing impairment and auditory neuropathy. Hum Mutat, 2008. 29(6): p. 823-31.
    [24]. Chiu, Y.H., et al., Mutations in the OTOF gene in Taiwanese patients with auditoryneuropathy. Audiol Neurootol, 2010. 15(6): p. 364-74.
    [25]. Wang, D.Y., et al., Screening mutations of OTOF gene in Chinese patients withauditory neuropathy, including a familial case of temperature-sensitive auditoryneuropathy. BMC Med Genet, 2010. 11: p. 79.
    [26]. Collin, R.W., et al., Involvement of DFNB59 mutations in autosomal recessivenonsyndromic hearing impairment. Hum Mutat, 2007. 28(7): p. 718-23.
    [27]. Ebermann, I., et al., Truncating mutation of the DFNB59 gene causes cochlearhearing impairment and central vestibular dysfunction. Hum Mutat, 2007. 28(6): p.571-7.
    [28]. Schwander, M., et al., A forward genetics screen in mice identifies recessivedeafness traits and reveals that pejvakin is essential for outer hair cell function. JNeurosci, 2007. 27(9): p. 2163-75.
    [29]. Hashemzadeh, C.M., et al., Novel mutations in the pejvakin gene are associated withautosomal recessive non-syndromic hearing loss in Iranian families. Clin Genet,2007. 72(3): p. 261-3.
    [30]. Wang, Q., et al., Familial auditory neuropathy. Laryngoscope, 2003. 113(9): p.1623-9.
    [31]. Van Laer, L., et al., Nonsyndromic hearing loss. Ear Hear, 2003. 24(4): p. 275-88.
    [32]. Ng, S.B., et al., Targeted capture and massively parallel sequencing of 12 humanexomes. Nature, 2009. 461(7261): p. 272-6.
    [33]. Biesecker, L.G., Exome sequencing makes medical genomics a reality. Nat Genet,2010. 42(1): p. 13-4.
    [34]. Gure, A.O., et al., The SSX gene family: characterization of 9 complete genes. Int JCancer, 2002. 101(5): p. 448-53.
    [35]. Peloquin, J.B., et al., Functional analysis of congenital stationary night blindnesstype-2 CACNA1F mutations F742C, G1007R, and R1049W. Neuroscience, 2007.150(2): p. 335-45.
    [36]. Gu, Y., et al., A naturally-occurring mutation in Cacna1f in a rat model of congenitalstationary night blindness. Mol Vis, 2008. 14: p. 20-8.
    [37]. McLean, J.R., I. Kouranti and K.L. Gould, Survey of the Phosphorylation Status ofthe Schizosaccharomyces pombe Deubiquitinating Enzyme (DUB) Family. JProteome Res, 2011. 10(3): p. 1208-15.
    [38]. Atanackovic, D., et al., Expression of cancer-testis antigens as possible targets forantigen-specific immunotherapy in head and neck squamous cell carcinoma. CancerBiol Ther, 2006. 5(9): p. 1218-25.
    [39]. Fredriksson, R., et al., Novel human G protein-coupled receptors with longN-terminals containing GPS domains and Ser/Thr-rich regions. FEBS Lett, 2002.531(3): p. 407-14.
    [40]. Curioni-Fontecedro, A., et al., MAGE-C1/CT7 is the dominant cancer-testis antigentargeted by humoral immune responses in patients with multiple myeloma. Leukemia,2008. 22(8): p. 1646-8.
    [41]. Wu, J. and B.P. Rosen, The arsD gene encodes a second trans-acting regulatoryprotein of the plasmid-encoded arsenical resistance operon. Mol Microbiol, 1993.8(3): p. 615-23.
    [42]. Sugimoto, K., et al., A Japanese family with Alport syndrome associated withesophageal leiomyomatosis: genetic analysis of COL4A5 to COL4A6 andimmunostaining for type IV collagen subtypes. Clin Nephrol, 2005. 64(2): p. 144-50.
    [43]. Ghezzi, D., et al., Severe X-linked mitochondrial encephalomyopathy associatedwith a mutation in apoptosis-inducing factor. Am J Hum Genet, 2010. 86(4): p.639-49.
    [44]. Iwase, M., et al., Frequent gene conversion events between the X and Y homologouschromosomal regions in primates. BMC Evol Biol, 2010. 10: p. 225.
    [45]. Aruga, J. and K. Mikoshiba, Identification and characterization of Slitrk, a novelneuronal transmembrane protein family controlling neurite outgrowth. Mol CellNeurosci, 2003. 24(1): p. 117-29.
    [46]. Cavani, S., et al., FMR1, FMR2, and SLITRK2 deletion inside a paracentricinversion involving bands Xq27.3-q28 in a male and his mother. Am J Med Genet A,2010.
    [47]. Fukuzawa, R., et al., WTX mutations can occur both early and late in thepathogenesis of Wilms tumour. J Med Genet, 2010. 47(11): p. 791-4.
    [48]. Comai, G., et al., Expression patterns of the Wtx/Amer gene family during mouseembryonic development. Dev Dyn, 2010. 239(6): p. 1867-78.
    [49]. Pan, J., et al., Inactivation of Nxf2 causes defects in male meiosis and age-dependentdepletion of spermatogonia. Dev Biol, 2009. 330(1): p. 167-74.
    [50]. Grillo, L., et al., Familial 1.1 Mb deletion in chromosome Xq22.1 associated withmental retardation and behavioural disorders in female patients. Eur J Med Genet,2010. 53(2): p. 113-6.
    [51]. Susin, S.A., et al., The central executioner of apoptosis: multiple connectionsbetween protease activation and mitochondria in Fas/APO-1/CD95- andceramide-induced apoptosis. J Exp Med, 1997. 186(1): p. 25-37.
    [52]. Cande, C., et al., Apoptosis-inducing factor (AIF): a novel caspase-independentdeath effector released from mitochondria. Biochimie, 2002. 84(2-3): p. 215-22.
    [53]. Zhang, W., et al., Identification of apoptosis-inducing factor in human coronaryartery endothelial cells. Biochem Biophys Res Commun, 2003. 301(1): p. 147-51.
    [54]. Ye, H., et al., DNA binding is required for the apoptogenic action of apoptosisinducing factor. Nat Struct Biol, 2002. 9(9): p. 680-4.
    [55]. Mate, M.J., et al., The crystal structure of the mouse apoptosis-inducing factor AIF.Nat Struct Biol, 2002. 9(6): p. 442-6.
    [56]. Sevrioukova, I.F., Apoptosis Inducing Factor: Structure, Function and RedoxRegulation. Antioxid Redox Signal, 2010.
    [57]. Klein, J.A., et al., The harlequin mouse mutation downregulates apoptosis-inducingfactor. Nature, 2002. 419(6905): p. 367-74.
    [58]. Singh, M.H., et al., Evidence for caspase effects on release of cytochrome c and AIFin a model of ischemia in cortical neurons. Neurosci Lett, 2010. 469(2): p. 179-83.
    [59]. Sawada, S., et al., Differential vulnerability of inner and outer hair cell systems tochronic mild hypoxia and glutamate ototoxicity: insights into the cause of auditoryneuropathy. J Otolaryngol, 2001. 30(2): p. 106-14.
    [60]. Wang, H., et al., Apoptosis-inducing factor substitutes for caspase executioners inNMDA-triggered excitotoxic neuronal death. J Neurosci, 2004. 24(48): p.10963-73.
    [61]. Joza, N., et al., AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci, 2009.1171: p. 2-11.
    [62]. Kim, J. and J. Soh, Cadmium-induced apoptosis is mediated by the translocation ofAIF to the nucleus in rat testes. Toxicol Lett, 2009. 188(1): p. 45-51.
    [63]. Sevrioukova, I.F., Redox-linked conformational dynamics in apoptosis-inducingfactor. J Mol Biol, 2009. 390(5): p. 924-38.
    [64]. Garrity-Moses, M.E., et al., X-Linked inhibitor of apoptosis protein gene-basedneuroprotection for the peripheral nervous system. Neurosurgery, 2006. 59(1): p.172-82; discussion 172-82.
    [65]. Kalantry, S., Recent advances in X-chromosome inactivation. J Cell Physiol, 2011.
    [66]. Rapti, A., et al., The structure of the 5'-untranslated region of mammalian poly(A)polymerase-alpha mRNA suggests a mechanism of translational regulation. Mol CellBiochem, 2010. 340(1-2): p. 91-6.
    [67]. Daugas, E., et al., Mitochondrio-nuclear translocation of AIF in apoptosis andnecrosis. FASEB J, 2000. 14(5): p. 729-39.
    [68]. Joza, N., et al., Essential role of the mitochondrial apoptosis-inducing factor inprogrammed cell death. Nature, 2001. 410(6828): p. 549-54.
    [69]. Pospisilik, J.A., et al., Targeted deletion of AIF decreases mitochondrial oxidativephosphorylation and protects from obesity and diabetes. Cell, 2007. 131(3): p.476-91.
    [70]. Ishimura, R., G.R. Martin and S.L. Ackerman, Loss of apoptosis-inducing factorresults in cell-type-specific neurogenesis defects. J Neurosci, 2008. 28(19): p.4938-48.
    [71]. Xu, H.L., et al., Anti-proliferative effect of Juglone from Juglans mandshuricaMaxim on human leukemia cell HL-60 by inducing apoptosis through themitochondria-dependent pathway. Eur J Pharmacol, 2010. 645(1-3): p. 14-22.
    [72]. van Empel, V.P., et al., EUK-8, a superoxide dismutase and catalase mimetic,reduces cardiac oxidative stress and ameliorates pressure overload-induced heartfailure in the harlequin mouse mutant. J Am Coll Cardiol, 2006. 48(4): p. 824-32.
    [73]. Vahsen, N., et al., AIF deficiency compromises oxidative phosphorylation. EMBO J,2004. 23(23): p. 4679-89.
    [74]. Hangen, E., et al., Life with or without AIF. Trends Biochem Sci, 2010. 35(5): p.278-87.
    [75]. Han, W., X. Shi and A.L. Nuttall, AIF and endoG translocation in noise exposureinduced hair cell death. Hear Res, 2006. 211(1-2): p. 85-95.
    [76]. Susin, S.A., et al., Molecular characterization of mitochondrial apoptosis-inducingfactor. Nature, 1999. 397(6718): p. 441-6.
    [77]. Susin, S.A., et al., Mitochondrial release of caspase-2 and -9 during the apoptoticprocess. J Exp Med, 1999. 189(2): p. 381-94.
    [78]. Otera, H., et al., Export of mitochondrial AIF in response to proapoptotic stimulidepends on processing at the intermembrane space. EMBO J, 2005. 24(7): p.1375-86.
    [79]. Yu, S.W., et al., Outer mitochondrial membrane localization of apoptosis-inducingfactor: mechanistic implications for release. ASN Neuro, 2009. 1(5).
    [80]. Herrmann, J.M. and K. Hell, Chopped, trapped or tacked--protein translocation intothe IMS of mitochondria. Trends Biochem Sci, 2005. 30(4): p. 205-11.
    [81]. Loeffler, M., et al., Dominant cell death induction by extramitochondrially targetedapoptosis-inducing factor. FASEB J, 2001. 15(3): p. 758-67.
    [82]. Hangen, E., et al., A brain-specific isoform of mitochondrial apoptosis-inducingfactor: AIF2. Cell Death Differ, 2010. 17(7): p. 1155-66.
    [83]. Delettre, C., et al., AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptoticisoform with potential pathological relevance in human cancer. J Biol Chem, 2006.281(10): p. 6413-27.
    [84]. Delettre, C., et al., Identification and characterization of AIFsh2, a mitochondrialapoptosis-inducing factor (AIF) isoform with NADH oxidase activity. J Biol Chem,2006. 281(27): p. 18507-18.
    [85]. Hangen, E., et al., A brain-specific isoform of mitochondrial apoptosis-inducingfactor: AIF2. Cell Death Differ, 2010. 17(7): p. 1155-66.
    [86]. Park, S.Y., et al., The age-dependent induction of apoptosis-inducing factor (AIF) inthe human semitendinosus skeletal muscle. Cell Mol Biol Lett, 2010. 15(1): p. 1-12.
    [87]. Stambolsky, P., et al., Regulation of AIF expression by p53. Cell Death Differ, 2006.13(12): p. 2140-9.
    [88]. Chen, J.T., et al., HGF increases cisplatin resistance via down-regulation of AIF inlung cancer cells. Am J Respir Cell Mol Biol, 2008. 38(5): p. 559-65.
    [89]. Burton, T.R., D.D. Eisenstat and S.B. Gibson, BNIP3 (Bcl-2 19 kDa interactingprotein) acts as transcriptional repressor of apoptosis-inducing factor expressionpreventing cell death in human malignant gliomas. J Neurosci, 2009. 29(13): p.4189-99.
    [90]. Jeong, E.G., et al., Immunohistochemical and mutational analysis ofapoptosis-inducing factor (AIF) in colorectal carcinomas. APMIS, 2006. 114(12): p.867-73.
    [91]. Lorenzo, H.K., et al., Apoptosis inducing factor (AIF): a phylogenetically old,caspase-independent effector of cell death. Cell Death Differ, 1999. 6(6): p. 516-24.
    [92]. Kleiger, G. and D. Eisenberg, GXXXG and GXXXA motifs stabilize FAD andNAD(P)-binding Rossmann folds through C(alpha)-H... O hydrogen bonds and vander waals interactions. J Mol Biol, 2002. 323(1): p. 69-76.
    [93]. Churbanova, I.Y. and I.F. Sevrioukova, Redox-dependent changes in molecularproperties of mitochondrial apoptosis-inducing factor. J Biol Chem, 2008. 283(9): p.5622-31.
    [94]. Zhang, Y., et al., The proapoptotic activity of C-terminal domain ofapoptosis-inducing factor (AIF) is separated from its N-terminal. Biol Res, 2009.42(2): p. 249-60.
    [95]. Garcia, M., V. Bondada and J.W. Geddes, Mitochondrial localization of mu-calpain.Biochem Biophys Res Commun, 2005. 338(2): p. 1241-7.
    [96]. Norberg, E., et al., An increase in intracellular Ca2+ is required for the activation ofmitochondrial calpain to release AIF during cell death. Cell Death Differ, 2008.15(12): p. 1857-64.
    [97]. Ozaki, T., T. Yamashita and S. Ishiguro, ERp57-associated mitochondrialmicro-calpain truncates apoptosis-inducing factor. Biochim Biophys Acta, 2008.1783(10): p. 1955-63.
    [98]. Cao, G., et al., Critical role of calpain I in mitochondrial release ofapoptosis-inducing factor in ischemic neuronal injury. J Neurosci, 2007. 27(35): p.9278-93.
    [99]. Polster, B.M., et al., Calpain I induces cleavage and release of apoptosis-inducingfactor from isolated mitochondria. J Biol Chem, 2005. 280(8): p. 6447-54.
    [100]. Ferri, K.F., et al., Mitochondrial control of cell death induced by HIV-1-encodedproteins. Ann N Y Acad Sci, 2000. 926: p. 149-64.
    [101]. Shoshan-Barmatz, V., et al., Apoptosis is regulated by the VDAC1 N-terminal regionand by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo.Biochim Biophys Acta, 2010. 1797(6-7): p. 1281-91.
    [102]. Pardo, J., et al., A role of the mitochondrial apoptosis-inducing factor ingranulysin-induced apoptosis. J Immunol, 2001. 167(3): p. 1222-9.
    [103]. Kwon, C.H., et al., Ciglitazone induces apoptosis via activation of p38 MAPK andAIF nuclear translocation mediated by reactive oxygen species and Ca(2+) inopossum kidney cells. Toxicology, 2009. 257(1-2): p. 1-9.
    [104]. Vosler, P.S., et al., Calcium dysregulation induces apoptosis-inducing factor release:cross-talk between PARP-1- and calpain-signaling pathways. Exp Neurol, 2009.218(2): p. 213-20.
    [105]. Antignani, A. and R.J. Youle, How do Bax and Bak lead to permeabilization of theouter mitochondrial membrane? Curr Opin Cell Biol, 2006. 18(6): p. 685-9.
    [106]. Baines, C.P., et al., Voltage-dependent anion channels are dispensable formitochondrial-dependent cell death. Nat Cell Biol, 2007. 9(5): p. 550-5.
    [107]. Lindsten, T., et al., The combined functions of proapoptotic Bcl-2 family membersbak and bax are essential for normal development of multiple tissues. Mol Cell, 2000.6(6): p. 1389-99.
    [108]. Kluck, R.M., et al., The pro-apoptotic proteins, Bid and Bax, cause a limitedpermeabilization of the mitochondrial outer membrane that is enhanced by cytosol. JCell Biol, 1999. 147(4): p. 809-22.
    [109]. Roue, G., et al., Cyclin D1 mediates resistance to apoptosis through upregulation ofmolecular chaperones and consequent redistribution of cell death regulators.Oncogene, 2008. 27(36): p. 4909-20.
    [110]. Ruchalski, K., et al., Distinct hsp70 domains mediate apoptosis-inducing factorrelease and nuclear accumulation. J Biol Chem, 2006. 281(12): p. 7873-80.
    [111]. Ravagnan, L., et al., Heat-shock protein 70 antagonizes apoptosis-inducing factor.Nat Cell Biol, 2001. 3(9): p. 839-43.
    [112]. Eckelman, B.P., G.S. Salvesen and F.L. Scott, Human inhibitor of apoptosis proteins:why XIAP is the black sheep of the family. EMBO Rep, 2006. 7(10): p. 988-94.
    [113]. Huang, H., et al., The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-proteinligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem,2000. 275(35): p. 26661-4.
    [114]. Hofer-Warbinek, R., et al., Activation of NF-kappa B by XIAP, the Xchromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J BiolChem, 2000. 275(29): p. 22064-8.
    [115]. Mufti, A.R., E. Burstein and C.S. Duckett, XIAP: cell death regulation meets copperhomeostasis. Arch Biochem Biophys, 2007. 463(2): p. 168-74.
    [116]. Wilkinson, J.C., et al., Apoptosis-inducing factor is a target for ubiquitinationthrough interaction with XIAP. Mol Cell Biol, 2008. 28(1): p. 237-47.
    [117]. Kim, J.T., et al., Apoptosis-inducing factor (AIF) inhibits protein synthesis byinteracting with the eukaryotic translation initiation factor 3 subunit p44 (eIF3g).FEBS Lett, 2006. 580(27): p. 6375-83.
    [118]. Feshchenko, E.A., et al., TULA: an SH3- and UBA-containing protein that binds toc-Cbl and ubiquitin. Oncogene, 2004. 23(27): p. 4690-706.
    [119]. Collingwood, T.S., et al., T-cell ubiquitin ligand affects cell death through afunctional interaction with apoptosis-inducing factor, a key factor ofcaspase-independent apoptosis. J Biol Chem, 2007. 282(42): p. 30920-8.
    [120]. Cande, C., et al., AIF and cyclophilin A cooperate in apoptosis-associatedchromatinolysis. Oncogene, 2004. 23(8): p. 1514-21.
    [121]. Zhu, C., et al., Cyclophilin A participates in the nuclear translocation ofapoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med,2007. 204(8): p. 1741-8.
    [122]. Gurbuxani, S., et al., Heat shock protein 70 binding inhibits the nuclear import ofapoptosis-inducing factor. Oncogene, 2003. 22(43): p. 6669-78.
    [123]. Zhu, C., et al., Cyclophilin A participates in the nuclear translocation ofapoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med,2007. 204(8): p. 1741-8.
    [124]. Zhang, J. and M. Xu, Apoptotic DNA fragmentation and tissue homeostasis. TrendsCell Biol, 2002. 12(2): p. 84-9.
    [125]. Susin, S.A., et al., Two distinct pathways leading to nuclear apoptosis. J Exp Med,2000. 192(4): p. 571-80.
    [126]. Klein, J.A., et al., The harlequin mouse mutation downregulates apoptosis-inducingfactor. Nature, 2002. 419(6905): p. 367-74.
    [127]. van Empel, V.P., et al., Downregulation of apoptosis-inducing factor in harlequinmutant mice sensitizes the myocardium to oxidative stress-related cell death andpressure overload-induced decompensation. Circ Res, 2005. 96(12): p. e92-e101.
    [128]. Ghezzi, D., et al., Severe X-linked mitochondrial encephalomyopathy associatedwith a mutation in apoptosis-inducing factor. Am J Hum Genet, 2010. 86(4): p.639-49.
    [129]. Cheung, E.C., et al., Dissociating the dual roles of apoptosis-inducing factor inmaintaining mitochondrial structure and apoptosis. EMBO J, 2006. 25(17): p.4061-73.
    [130]. Praefcke, G.J. and H.T. McMahon, The dynamin superfamily: universal membranetubulation and fission molecules? Nat Rev Mol Cell Biol, 2004. 5(2): p. 133-47.
    [131]. Olichon, A., et al., Mitochondrial dynamics and disease, OPA1. Biochim BiophysActa, 2006. 1763(5-6): p. 500-9.
    [132]. Mizutari, K., et al., Vestibular dysfunction in a Japanese patient with a mutation inthe gene OPA1. J Neurol Sci, 2010. 293(1-2): p. 23-8.
    [133]. Huang, T., R. Santarelli and A. Starr, Mutation of OPA1 gene causes deafness byaffecting function of auditory nerve terminals. Brain Res, 2009. 1300: p. 97-104.
    [134]. Zanna, C., et al., OPA1 mutations associated with dominant optic atrophy impairoxidative phosphorylation and mitochondrial fusion. Brain, 2008. 131(Pt 2): p.352-67.
    [135]. Delettre, C., et al., Identification and characterization of AIFsh2, a mitochondrialapoptosis-inducing factor (AIF) isoform with NADH oxidase activity. J Biol Chem,2006. 281(27): p. 18507-18.
    [136]. Churbanova, I.Y. and I.F. Sevrioukova, Redox-dependent changes in molecularproperties of mitochondrial apoptosis-inducing factor. J Biol Chem, 2008. 283(9): p.5622-31.