视锥细胞功能异常眼病的致病基因研究和全色盲小鼠模型的基因治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:Alstrom综合征(Alstrom syndrome, AS)是一种少见的常染色体隐性遗传病,临床表现时视锥视杆细胞营养不良和多器官功能障碍。目前唯一已知的致病基因ALMS1基因突变可引起Alstrom综合征。本研究的目的是鉴定Alstrom综合征患者的致病突变并评价该综合征的临床特点。
     方法:收集患者病史,进行眼部和与该疾病相关的全身检查,并采集患者及其父母静脉血,提取基因组DNA。对致病基因ALMS1的外显子、外显子和内含子交界区序列进行PCR (polymerase chain reaction, PCR1扩增,目的产物切胶纯化后直接测序。与基因库中ALMS1的转录本(NM015120.4)进行比对,排除单核苷酸多态(single nucleotide polymorphism, SNP)并确定致病突变。
     结果:共有来自5个家系的7名患者诊断为Alstrom综合征,并且这些家系都是非近亲家系。这些患者均有视锥视杆细胞营养不良的临床表现,视力差,畏光和眼球震颤。另外患者还伴有感音性耳聋、肥胖、胰岛素抵抗、2型糖尿病、肝肾功能障碍、高胰岛素血症、甲状腺功能减退、智力障碍、黑棘皮症和脊柱侧凸等其他临床症状。基因检测结果发现:患者1的两个新移码突变p.N3150Kfs2X和p.V3154Xfs;患者2的新移码突变p.N3672Ifs11X和曾经报道过的错义突变p.R3703X;患者3的新错义突变和移码突变p.S2479X和p.R3611Efs7X;患者4和5的未曾报道的纯合错义突变p.S695X;患者6和7的新移码突变p.H688HfsX和p.Q3147Qfs2X。在100个无关的健康对照人群中没有发现这些突变。共分离分析显示父母分别是这些突变等位基因的杂合携带者。
     结论:本研究中7名患者全部都具有Alstrom综合征典型的眼部异常和多系统异常。这些ALMS1的突变导致翻译错误的截短的蛋白不能发挥正常功能,是该综合征发病的遗传基础。
     目的:研究全色盲患者的临床表现的特征并确定致病基因突变。
     方法:分别来自于10个家系的15名全色盲患者进行分析。收集患者病史,进行眼部相关检查包括BCVA、色觉、裂隙灯检查、眼底检查、视网膜电流图检查、视野检查和黄斑部的SD-OCT检查。采集患者及其父母静脉血,提取基因组DNA。对致病基因CNGA3、CNGB3、GNAT2、PDE6C和PDE6H的外显子、外显子和内含子交界区进行PCR扩增,目的产物切胶纯化后直接测序。运用Blat tool工具与基因库中标准序列进行比对,排除SNP并确定致病突变,并在家系里进行共分离分析验证突变。突变结果在1000genomes进行比对排除SNP。
     结果:患者均表现为畏光、眼球震颤和辨色力完全丧失或残存部分辨色能力。患者的最佳矫正视力在0.05~0.2。视锥细胞ERG反应未记录到波形或振幅显著降低,SD-OCT示IS/OS层不同程度消失和黄斑区视网膜厚度变薄。共有8个家系13名患者均发现CNGA3突变。这些突变包括7个新的错义突变和3个新的缺失突变和4个曾经报导过的错义突变。另外2名患者没有检测到5个已知致病基因的任何突变。
     结论:CNGA3是中国全色盲患者最常见的致病基因。本研究发现10个新的CNGA3突变。发现全色盲患者的遗传学特点对于遗传咨询和将来的基因治疗都很关键。本研究是目前关于中国全色盲患者的首次遗传学报道。
     目的:对上一部分研究所确定的CNGA3新发纯合错义突变进行初步的体外突变蛋白功能研究。
     方法:针对CNGA3的纯合错义突变D211E的蛋白功能研究,构建突变型CNGA3基因真核表达载体。在野生型CNGA3基因真核表达载体CNGA3-pCMV6的基础上,利用定点诱变技术,构建D211E突变型CNGA3基因真核表达载体。体外培养HEK293细胞,将野生型以及突变型CNGA3基因真核表达载体CNGA3-pCMV6转染至HEK293细胞,经免疫荧光染色,荧光显微镜观察比较野生型以及突变型CNGA3蛋白在人胚肾细胞(HEK293)中的表达和分布。
     结果:成功构建突变型CNGA3基因真核表达载体,体外转染至HEK293细胞后,野生型与突变型蛋白分布差异很大。荧光显微镜证实野生型CNGA3蛋白主要分布于细胞膜,在细胞胞浆内仅有少量呈点状、散在分布,而突变型CNGA3蛋白则明显聚集在一起堆积于胞浆中。
     结论:通过对本研究中所确定的CNGA3基因新发错义突变D211E进行突变蛋白功能研究,提示该突变会明显影响蛋白在细胞中的分布,失去功能的蛋白质是引起发病的分子机制。
     目的:探讨AAV5载体介导的基因治疗能否恢复全色盲小鼠模型Cnga3Cldfl5的视锥细胞功能。
     方法:对出生后21天的Cnga3cpfl5进行视网膜下腔注射AAV5-IRBP/GNAT2-hCNGA3载体,注射后视网膜脱离达80%以上并且没有并发症的小鼠用于后续的实验观察。小鼠只接受注射单侧眼,另一眼用作对照观察。注射载体5-6月时记录视网膜电流图。小鼠麻醉颈椎脱臼处死后,将眼球包埋进行冰冻切片。用视蛋白抗体和CNGA3抗体作为一抗,免疫荧光检测视网膜的视蛋白和CNGA3蛋白是否表达。
     结果:和未注射眼相比较,经过基因治疗视锥细胞的功能得到了明显的恢复。Cnga3Cpfl5小鼠视网膜视锥细胞外节检测到了CNGA3和视蛋白的表达,并且治疗有效的时间至少维持了5-6个月。
     结论:本研究是在生后3周进行基因治疗的,而且使自然发生的全色盲小鼠Cnga3cpfl5小鼠视锥细胞功能得到了一定程度的恢复。该研究结果对于人类CNGA3突变引起的全色盲的基因治疗有一定的启示作用。
Purpose:Alstrom syndrome (AS) is a rare monogenic autosomal recessively inherited disorder characterized by cone rod dystrophy and multiple organs dysfunction. Mutations in the ALMS1have been found to be causative for AS. The purpose of this study was to identify ALMS1mutations and to assess the clinical features of Chinese patients with AS.
     Methods:Detailed ocular and laboratory examinations were performed. Peripheral blood samples were collected from patients and their parents. Genomic DNA was extracted. Exons and exon/intron junctions of ALMS1were amplified by polymerase chain reaction (PCR) and screened for mutations with Sanger sequencing. The results were compared with ALMS1transcript (NM_015120.4) to exclude polymorphism and confirm pathogenic mutations.
     Results:Seven patients from five unrelated non-consanguineous families were diagnosed as AS. All patients had cone rod dystrophy with impaired visual acuity, photophobia and nystagmus. Other clinical features, including sensorineural hearing loss, truncal obesity, insulin resistance, type2diabetes mellitus, renal and hepatic dysfunction, hyperlipidemia, hypothyroidism, mental retardation, acanthosis nigricans and scoliosis were present. Sequencing revealed two novel frameshift mutations p.N3150Kfs2X and p.V3154Xfs in patient1, one novel frameshift mutation p.N3672Ifs11X and one previously reported nonsense mutation p.R3703X in patient2, novel nonsense mutation p.S2479X and frameshift mutation p.R3611Efs7X in patient3, one novel homozygous nonsense mutationp.S695X in patient4and5, two novel frmeshift mutations p.H688HfsX and p.Q3147Qfs2X in patient6and7. These mutations were not present in100unrelated healthy Chinese control subjects. Parents were heterozygous carriers of the mutant allele respectively.
     Conclusions:Seven Chinese patients affected with AS showed typical ophthalmic features and multiple organs dysfunction. Novel loss of function mutations in the ALMS1are the underlying genetic defects.
     PurposeTo study the clinical features and identify the pathogenic mutationsin Chinese achromats.
     Methods15patients from10unrelated familieswere included in this study.Detailed ocular examinations including best corrected visual acuity (BCVA), color vision, slit lamp, fundus, electroretinography, perimetry and optical coherent topography (SD-OCT) were performed for affected subjects. Peripheral blood samples were obtained from all patients and their family members for genomic DNA extraction. All exons of CNGA3,CNGB3,GNAT2,PDE6C and PDE6H were amplified by polymerase chain reaction and screened for mutation by direct Sanger sequencing. The sequences were analyzed using Blat tool compared with the gene transcript. Segregation test was confirmed in patients' parents if they were available. The variants were compared with the database of1000genomes to exclude polymorphism.There were2patients who found none mutation of5known pathogenic mutations.
     ResultsNystagmus, photophobia and impaired color discrimination were occurred in all patients. The BCVA of the affected subjects ranged from0.05to0.2. Severely depressed and non-recordable cone electroretinograms were observed. Noticeable structural changes including disruption or loss of the macular inner/outer segments (IS/OS) junction of the photoreceptors under SD-OCT. CNG A3mutations were identified in13patientsfrom8families. Sequencing revealed7novel missense mutations,3novel deletion mutations and4previously reported mutations among those patients.
     ConclusionsCNGA3mutation is the most frequent cause of Chinese patients with achromatopsia.10novel mutations were identified in CNGA3. Genetic characterization of patients with achromatopsia is important for genetic counseling and future gene therapies. To the best of our knowledge this is the first report of genetic study related to Chinese achromats.
     Purpose:To elucidate the exact pathogenic effects of novel homozygous missense mutations D211E of CNGA3identified in the previous study.
     Methods:To functionally characterize one novel homozygous missense mutationD211E of CNGA3, site-directed mutagenesis, using CNGA3-pCMV6(wildtype) as a template, polymerase chain reaction(PCR) based site-specific mutagenesis was performed to construct CNGA3-pCMV6(D211E mutant).HEK293cells were cultured and transfected with CNGA3-pCMV6(wildtype) and CNGA3-pCMV6(D211E mutant). Localization of the wild and mutant protein in HEK293cells after immunofluorescent staining.Thesubcellular distribution ofCNGA3(D211E) in HEK293cells wascompared to wild-type by visualizing with fluorescence microscopy.
     Results:CNGA3-pCMV6(D211E mutant) was successfully constructed in vitro.Functional analysis of mutant protein HEK293cells were transfectedwith CNGA3-pCMV6(wildtype), CNGA3-pCMV6(D211E mutant) encoding wild-type (WT) CNGA3protein and mutational CNGA3proteinrespectively.WT localized predominantly to the plasmamembraneindicating the normal biogenesis and transportation of theprotein to the membrane. By contrast, the D211E mutant was nottrafficked to the plasma membrane butaccumulatedintracellularly.
     Conclusions:Expression analyses of mutant CNGA3protein confirmed that the missense mutation D211Eled to abnormalprotein accumulation in the cytoplasm and the correct intracellular formation.
     PurposeTo clarify whetherthe AAV5vector-mediated gene therapy could restore cone function in the cnga3cpf15mouse model of achromatopsia.
     MethodsAAV5-IRBP/GNAT2-hCNGA3were injected subretinally into one eye ofmice at postnatal day21. The mice that had more than80%retinal detachment and minimal complications after surgery were kept for follow-up experiments. Contralateral eyes were uninjected as controls. Electroretinographic were recorded to detect cone response at170days after treating. Then eyes were enucleated after sacrifice and prepared for cryosections. Experimentwhich were designed to detect the opsinand CNGA3expression of retina were conducted with immunofluorescenceusing S-opsinand CNGA3antibodies as primary antibodies.
     ResultsCompared with the untreated eyes, AAV5mediated gene therapy could rescuecone response evidently. Both M-and S-opsins were expressedin outer segment of the retina. The curative effect of gene therapy for cnga3cpfl5lasted for at least5~6months after injection.
     ConclusionsIn this study,the time of gene therapy a week later usual postnatal14days, but we show that therapeutic effect is also distinct in a naturally occurring mouse model of CNGA3achromatopsia. The results provide us theillumination for future AAV5-based gene therapy for human CNGA3achromatopsia.
引文
[1]Marshall JD, Hinman EG, Collin GB, et al. Spectrum of ALMS 1 variants and evaluation of genotype-phenotype correlations in Alstrom syndrome [J]. Hum Mutat,2007b,28:1114-23.
    [2]Marshall JD, Bronson RT, Collin GB, et al. New Alstrom syndrome phenotypes based on the evaluation of 182 cases[J]. Arch Intern Med,2005,165:675-83.
    [3]Collin GB, Marshall JD, Ikeda A, et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome [J]. Nat Genet, 2002,31:74-8.
    [4]Collin GB, Marshall JD, Boerkoel CF,et al.Alstrom syndrome:further evidence for linkage to human chromosome 2p13[J].Hum. Genet,1999,105:474-479.
    [5]Liu L, Dong B, Chen X,et al. Identification of a novel ALMS1 mutation in a Chinese family with Alstrom syndrome[J]. Eye,2009,23(5):1210-2.
    [6]Marshall JD, Beck S, Maffei P,et al. Alstrom syndrome[J]. Eur J Hum Genet,2007, 15(12):1193-202.
    [7]Joy T, Cao H, Black G,et al.Alstrom syndrome (OMIM 203800):a case report and literature review[J]. Orphanet J Rare Dis,2007,2:49.
    [8]Bond J, Flintoff K, Higgins J, et al. The importance of seeking ALMS1 mutations in infants with dilated cardiomyopathy[J]. J Med Genet,2005,42:e10.
    [9]Alstrom, CH, Hallgren, B, Nilsson, LB, et al. Retinal degeneration combined with obesity, diabetes mellitus and neurogenous deafness:a specific syndrome (not hitherto described) distinct from the Laurence-Moon-Bardet-Biedl syndrome: aclinical, endocrinological and genetic examination based on a large pedigree[J]. Acta Psychiatr. Neurol. Scand. Suppl,1959,129:1-35.
    [10]Baker K, Beales PL. Making sense of cilia in disease:the human ciliopathies[J]. Am. J. Med. Genet. C Semin. Med. Genet,2009,151c:281-295.
    [11]Hearn T, Renforth GL, Spalluto C, et al.Mutation of ALMS 1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome[J]. Nat Genet,2002,31:79-83.
    [12]Kinoshita T, Hanaki K, Kawashima Y, et al. A novel non-sense mutation in Alstrom syndrome:subcellular localization of its truncated protein[J]. Clin Pediatr Endocrinol,2003,12:114.
    [13]Titomanlio L, De Brasi D, Buoninconti A, et al. Alstrom syndrome:intrafamilial phenotypic variability in sibs with a novel nonsense mutation of the ALMS1 gene[J]. Clin Genet,2004,65:156-7.
    [14]Minton JA, Owen KR, Ricketts CJ,et al. Syndromic obesity and diabetes: changes in body composition with age and mutation analysis of ALMS 1 in 12 United Kingdom kindreds with Alstrom syndrome[J]. J Clin Endocrinol Metab,2006,91:3110-6.
    [15]Marshall JD, Maffei P, Collin GB,et al.Alstrom syndrome:genetics and clinical overview[J]. Curr Genomics.2011; 12(3):225-35.
    [1]Sharpe LT, Stockman A, Jagle H, et al. Opsin genes, cone photopigments and colourblindness. Cambridge:Cambridge University Press,1999;3-52.
    [2]Kohl S, Marx T, Giddings I, et al. Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel[J]. Nat Genet,1998,19:257-259.
    [3]Kohl S, Baumann B, Broghammer M, et al. Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMPgated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21[J]. Hum Mol Genet,2000,9: 2107-2116.
    [4]Aligianis IA, Forshew T, Johnson S, et al. Mapping of a novel locus for achromatopsia (ACHM4) to 1p and identification of a germline mutation in the alpha subunit of cone transducin (GNAT2)[J]. J Med Genet,2002,39:656-660.
    [5]Thiadens AA, den Hollander AI, Roosing S, et al. Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders [J]. Am J Hum Genet,2009,85:240-7.
    [6]Kohl S, Coppieters F, Meire F, et al. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia[J]. Am J Hum Genet,2012,91: 527-32.
    [7]Lamb TD and Pugh EN, Jr. Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture[J]. Invest Ophthalmol Vis Sci,2006,47:5137-52.
    [8]Wissinger B, Gamer D, Jagle H, et al. CNGA3 mutations in hereditary cone photoreceptor disorders[J]. Am J Hum Genet,2001,69:722-37.
    [9]Carvalho LS, Xu J, Pearson RA, et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy[J]. Hum Mol Genet,2011,20:3161-75.
    [10]Kohl S, Marx T, Giddings I,et al. Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel[J]. Nat Genet,1998,19(3):257-9.
    [11]Johnson S, Michaelides M, Aligianis IA, et al. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3[J]. J Med Genet,2004,41(2):e20.
    [12]Nishiguchi KM, Sandberg MA, Gorji N, et al. Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases[J]. Hum Mutat,2005,25:248-58.
    [13]Goto-Omoto S, Hayashi T, Gekka T, et al. Compound heterozygous CNGA3 mutations (R436W, L633P) in a Japanese patient with congenitalachromatopsia[J]. Vis Neurosci,2006, 23(3-4):395-402.
    [14]Reuter P, Koeppen K, Ladewig T, et al. Mutations in CNGA3 impair trafficking or function of cone cyclic nucleotide-gated channels, resulting in achromatopsia[J]. Hum Mutat,2008,29:1228-36.
    [15]Ahuja Y, Kohl S, Traboulsi EI. CNGA3 mutations in two United Arab Emirates families with achromatopsia[J].Mol Vis,2008,14:1293-7.
    [16]Koeppen K, Reuter P, Kohl S, et al. Functional analysis of human CNGA3 mutations associated with colour blindness suggests impaired surface expression of channel mutants A3(R427C) and A3(R563C)[J]. Eur J Neurosci,2008, 27:2391-401.
    [17]Koeppen K, Reuter P, Ladewig T, et al. Dissecting the pathogenic mechanisms of mutations in the pore region of the human cone photoreceptor cyclic nucleotide-gated channel[J]. Hum Mutat,2010,31:830-9.
    [18]Azam M, Collin RW, Shah ST, et al. Novel CNGA3 and CNGB3 mutations in two Pakistani families with achromatopsia [J]. Mol Vis,2010,16:774-81.
    [19]Saqib MA, Awan BM, Sarfraz M,et al. Genetic analysis of four Pakistani families with achromatopsia and a novel S4 motif mutation of CNGA3[J]. Jpn J Ophthalmol,2011,55:676-80.
    [20]Kohl S, Varsanyi B, Antunes GA, et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia[J]. Eur J Hum Genet,2005,13: 302-8.
    [21]Poloschek CM, Kohl S. Achromatopsia[J]. Ophthalmologe,2010,107:571-80; quiz 81-2.
    [22]Genead MA, Fishman GA, Rha J, et al. Photoreceptor structure and function in patients with congenital achromatopsia[J]. Invest Ophthalmol Vis Sci,2011, 52:7298-308.
    [23]Sundaram V, Wilde C, Aboshiha J, et al. Retinal structure and function in achromatopsia:implications for gene therapy[J]. Ophthalmology,2014,121:234-45.
    [1]Matveev AV1, Quiambao AB, Browning Fitzgerald J, et al.Native cone photoreceptor cyclic nucleotide-gated channel is a heterotetrameric complex comprising both CNGA3 and CNGB3:a study using the cone-dominant retina of Nrl-/-mice[J]. J Neurochem,2008,106(5):2042-55.
    [2]Wissinger B, Gamer D, Jagle H, et al. CNGA3 mutations in hereditary cone photoreceptor disorders[J]. Am J Hum Genet,2001,69:722-37.
    [3]Kizhatil K, Baker SA, Arshavsky VY, et al. Ankyrin-G promotes cyclic nucleotide-gated channel transport to rod photoreceptor sensory cilia[J]. Science, 2009,323:1614-1617
    [4]Michaelides M. The cone dysfunction syndromes [J]. Br J Ophthalmol 2004;88:291-7.
    [5]Trankner D, Jagle H, Kohl S, et al. Molecular basis of an inherited form of incomplete achromatopsia[J]. J Neurosci,2004,24:138-47.
    [6]JohnsonS, Michaelides M, Aligianis IA,et al. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3[J].J Med Genet,2004,41(2):e20.
    [7]Biel M, Seeliger M, Pfeifer A, et al. Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3[J]. Proc Natl Acad Sci USA,1999, 96:7553-7.
    [8]Michalakis S, Muhlfriedel R, Tanimoto N, et al. Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function[J]. Mol Ther,2010,18:2057-63.
    [9]Carvalho LS, Xu J, Pearson RA, et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy[J]. Hum Mol Genet,2011,20:3161-75.
    [10]Alexander JJ, Umino Y, Everhart D, et al. Restoration of cone vision in a mouse model of achromatopsia[J]. Nat Med,2007,13:685-7.
    [1]Pang JJ, Alexander J, Lei B, et al. Achromatopsia as a potential candidate for gene therapy[J]. Adv Exp Med Biol,2010,664:639-46.
    [2]Chang B, Grau T, Dangel S, et al.A homologous genetic basis of the murine cpfll mutant and human achromatopsia linked to mutations in the PDE6C gene[J].Proc Natl Acad Sci U S A,2009,106(46):19581-6.
    [3]Chang B, Hawes NL, Pardue MT, et al. Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene[J]. Vision Res,2007,47(5):624-33.
    [4]Pang JJ, Chang B, Hawes NL, et al. Retinal degeneration 12 (rd12):a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA) [J]. Mol Vis,2005,28(11):152-62.
    [5]Michalakis S, Muhlfriedel R, Tanimoto N,et al.Gene therapy restores missing cone-mediated vision in the CNGA3-/- mouse model of achromatopsia[J].Adv Exp Med Biol,2012,723:183-9.
    [6]Michalakis S, Muhlfriedel R, Tanimoto N, et al. Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function[J]. Mol Ther,2010,18:2057-63.
    [7]Pang JJ, Deng WT, Dai X, et al.AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia[J].PLoS One,2012,7(4):e35250.
    [8]Sidjanin DJ, Lowe JK, Mcelwee JL. Canine CNGB3 mutations establish cone degeneration as orthologous to the human achromatopsia locus ACHM3 [J]. Hum Mol Genet,2002, 11(16):1823-33.
    [9]Komaromy AM, Alexander JJ, Rowlan JS, et al. Gene therapy rescues cone function in congenital achromatopsia[J]. Hum Mol Genet,2010,19:2581-93.
    [10]Carvalho LS, Xu J, Pearson RA, et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy[J]. Hum Mol Genet,2011,20:3161-75.
    [11]Alexander JJ, Umino Y, Everhart D, et al. Restoration of cone vision in a mouse model of achromatopsia[J]. Nat Med,2007,13:685-7.
    [12]Koenekoop RK. Successful RPE65 gene replacement and improved visual function in humans[J].Ophthalmic Genet,2008,29(3):89-91.
    [13]Cideciyan AV, Jacobson SG, Beltran WA, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement[J]. Proc Natl Acad Sci U S A,2013,110(6):E517-25.
    [1]Sharpe LT, Stockman A, Jagle H, et al. Opsin genes, cone photopigments andcolourblindness. Cambridge:Cambridge University Press,1999:3-52.
    [2]Varsanyi B, Somfai GM, Lesch B, et al. Optical coherence tomography of the macula in congenital achromatopsia[J]. Invest Ophthalmol Vis Sci,2007,48(5):2249-2253.
    [3]Kizhatil K, Baker SA, Arshavsky VY, et al. Ankyrin-G promotes cyclic nucleotide-gated channel transport to rod photoreceptor sensory cilia[J]. Science, 2009,323:1614-1617
    [4]Michaelides M. The cone dysfunction syndromes [J]. Br J Ophthalmol,2004, 88:291-7.
    [5]Lamb TD, Pugh EN, Jr. Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture[J]. Invest Ophthalmol Vis Sci,2006,47:5137-52.
    [6]Wissinger B, Gamer D, Jagle H, et al. CNGA3 mutations in hereditary cone photoreceptor disorders[J]. Am J Hum Genet,2001,69:722-37.
    [7]Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels[J]. Physiol Rev,2002, 82:769-824.
    [8]Trankner D, Jagle H, Kohl S, et al. Molecular basis of an inherited form of incomplete achromatopsia[J]. J Neurosci,2004,24:138-47.
    [9]Patel KA, Bartoli KM, Fandino RA, et al. Transmembrane S1 mutations in CNGA3 from achromatopsia 2 patients cause loss of function and impaired cellular trafficking of the cone CNG channel[J]. Invest Ophthalmol Vis Sci,2005, 46:2282-90.
    [10]Koeppen K, Reuter P, Kohl S, et al. Functional analysis of human CNGA3 mutations associated with colour blindness suggests impaired surface expression of channel mutants A3(R427C) and A3(R563C)[J]. Eur J Neurosci,2008, 27:2391-401.
    [11]Kohl S, Varsanyi B, Antunes GA, et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia[J]. Eur J Hum Genet,2005,13:302-8.
    [12]Khan NW,Wissinger B, Kohl S, et al. CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function[J]. Invest Ophthalmol Vis Sci,2007,48:3864-3871.
    [13]Wiszniewski W, Lewis RA, Lupski JR. Achromatopsia:the CNGB3 p.T383fsX mutation results from a founder effect and is responsible for the visual phenotype in the original report of uniparental disomy 14[J]. Hum Genet,2007,121:433-9.
    [14]Aligianis IA, Forshew T, Johnson S, et al. Mapping of a novel locus for achromatopsia (ACHM4) to 1p and identification of a germline mutation in the a subunit of cone transducin (GNAT2)[J]. J Med Genet,2002,39:656-60.
    [15]Cai K, Itoh Y, Khorana HG. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking:use of a photoactivatable reagent[J]. Proc Natl Acad Sci U S A,2001,98:4877-82.
    [16]Michaelides M, Aligianis IA, Holder GE, et al. Cone dystrophy phenotype associated with a frameshift mutation (M280fsX291) in the alpha-subunit of cone specific transducin (GNAT2)[J]. Br J Ophthalmol,2003,87:1317-20.
    [17]Rosenberg T, Baumann B, Kohl S, Zrenner E, Jorgensen AL, Wissinger B. Variant phenotypes of incomplete achromatopsia in two cousins with GNAT2 gene mutations[J]. Invest Ophthalmol Vis Sci,2004,45:4256-62.
    [18]Grau T, Artemyev NO, Rosenberg T, Dollfus H, Haugen OH, Cumhur Sener E, et al. Decreased catalytic activity and altered activation properties of PDE6C mutants associated with autosomal recessive achromatopsia[J]. Hum Mol Genet,2011, 20:719-30.
    [19]Muradov KG, Boyd KK, Martinez SE, Beavo JA, Artemyev NO. The GAFa domains of rod cGMP-phosphodiesterase 6 determine the selectivity of the enzyme dimerization[J]. J Biol Chem,2003,278:10594-601.
    [20]Thiadens AA, den Hollander AI, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RW, et al. Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders[J]. Am J Hum Genet,2009,85:240-7.
    [21]Kohl S, Coppieters F, Meire F, et al. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia[J]. Am J Hum Genet,2012, 91:527-32.
    [22]Liu C, Varnum MD. Functional consequences of progressive cone dystrophy-associated mutations in the human cone photoreceptor cyclic nucleotide-gated channel CNGA3 subunit[J]. Am J Physiol Cell Physiol,2005, 289:C187-98.
    [23]Reuter P, Koeppen K, Ladewig T, et al. Mutations in CNGA3 impair trafficking or function of cone cyclic nucleotide-gated channels, resulting in achromatopsia[J]. Hum Mutat,2008,29:1228-36.
    [24]Biel M, Seeliger M, Pfeifer A, et al. Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3[J]. Proc Natl Acad Sci USA,1999, 96:7553-7.
    [25]Michalakis S, Muhlfriedel R, Tanimoto N, et al. Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function[J]. Mol Ther,2010,18:2057-63.
    [26]Pang JJ, Alexander J, Lei B, et al. Achromatopsia as a potential candidate for gene therapy[J]. Adv Exp Med Biol,2010,664:639-646.
    [27]Pang JJ, Alexander J, Lei B, et al. Achromatopsia as a potential candidate for gene therapy[J]. Adv Exp Med Biol,2010,664:639-46.
    [28]Komaromy AM, Alexander JJ, Rowlan JS, et al. Gene therapy rescues cone function in congenital achromatopsia[J]. Hum Mol Genet,2010,19:2581-93.
    [29]Carvalho LS, Xu J, Pearson RA, Smith AJ, et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy [J]. Hum Mol Genet,2011,20:3161-75.
    [30]Alexander JJ, Umino Y, Everhart D, et al. Restoration of cone vision in a mouse model of achromatopsia[J]. Nat Med,2007,13:685-7.