民机机身结构稳定性和水上迫降分析与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国大型民用飞机研制项目的启动,开发设计新型机身结构是提高大型客机寿命、可靠性、经济性、安全性和舒适性的有效手段。因此迫切需要开展民用飞机机身结构设计方面的系统研究,其中包括对目前民机机身壁板结构进行剪切,轴压载荷的试验与结构强度分析,以及整机水上迫降计算分析。
     首先,进行了民机机身十六种构型组装壁板在剪切载荷下试验研究,得出壁板失效形式,破坏载荷以及许用剪流与桁条剖面积、框剖面积和蒙皮板厚的关系曲线。通过国外材料与国产材料的壁板试验结果比较对使用张力场法计算的壁板剪切许用力进行修正,修正后的壁板剪切应力许用值只有4种构型壁板的估算值略高于试验值,且偏差小于5%,满足工程使用要求。通过名义壁板厚度与实测壁板厚度的许用剪流计算对比发现壁板破坏剪流计算值十分相近,说明蒙皮厚度只要控制在合理的公差范围内,则蒙皮厚度的偏差对壁板剪切强度影响很小。
     其次,进行了民机机身十一种构型组装壁板在轴压载荷下试验研究,得出壁板失效形式和破坏载荷。在试验的基础上对三种工程算法进行对比评估,发现“Johnson抛物线法”对此类构型壁板计算结果与试验最为接近。建立了基于试验验证的壁板非线性有限元模型,进行了组装壁板截面尺寸敏感度分析,发现长桁的剖面积是壁板轴压破坏载荷主要影响因素,敏感度指标为44.2%,同时给出了该构型壁板精确的轴压载荷二次响应面多项式。通过等重量设计的整体壁板有限元计算发现,其破坏形式与组装壁板不同;整体壁板长桁没有明显的弯扭,最终蒙皮达到塑性屈曲应力发生壁板破坏;并且轴压破坏载荷相对组装壁板提高了18.4%。根据有限元计算结果对整体壁板的“Johnson抛物线法”中的蒙皮有效宽度取法进行定义。在试验设计的基础上,采用多岛遗传算法和序列二次规划算法对整体壁板结构尺寸进行了优化设计,优化后的壁板结构强度保持不变,重量减轻了8.8%,对整体壁板结构设计具有很好的参考价值。
     最后分别建立了某型飞机的刚体与弹性体水上迫降模型,通过对水体用光滑粒子流体动力学(SPH)无网格单元进行模拟,所得结果体现了水体飞溅、晃动对机体结构坠撞的影响。通过飞机水上迫降刚体模型计算,得到飞机在迫降过程中的运动轨迹和飞机各个部位的过载曲线,分析结果表明飞机起落架放下使迫降过程中整个机体产生横向摆动,增加了飞机横向不稳定性,因此最终确定了该型飞机最佳的水上迫降姿态为:起落架全收,襟翼全偏,最佳着水姿态角为7o。进行了民机机身乘客段的局部弹性体水上迫降模型计算,得到机身结构在水上坠撞过程中的冲击响应,校核了飞机在最大下沉速率情况下的机体结构完整性,为民机机身结构设计及适航认证提供了很好的参考依据。
As the starting of commercial aircraft project, the development and application of high performance panel is one of effective ways to improve the life, reliability, economics, safety and comfortableness of the airplanes. Thus, the research of civil aircraft fuselage panel is necessary. The thesis includes the analysis and experiments of the present fuselage structures under shear load and axial compression load, and the numerical analysis of ditching.
     At first, the test results of failure modes, failure loads and the curves of allowable shear flow with area of the stringers, frames and the thickness of the skin were implemented by 16 configurations of build-up panels under the shear loads. In the comparison between the test results using different panels made of imported materials and domestic materials respectively, the calculated stress has been modified. There are only four estimation values of panel configurations are higher than the test results under the corrected allowable shear flows. Moreover, the errors are less than 5% and meet the requirement of engineering. According to the comparison between the calculation of nominal panel thickness and measured thickness, it can be found that the panel failure shear flows are close. This indicates that once the error is controlled within the tolerance range, the deviation of the skin thickness would not affect the panel shear strength.
     Secondly, the experiments of 11 build-up panels under the axial compression loads have been carried out. And then the results of the failure modes and failure loads have been obtained. On the other hand, the assessments of three approximate computational methods have been implemented. Based on the experiment, it is found that Johnson's Parabola Method is the closest to test results. Nonlinear finite element models on the test validation have been built up. Through the analysis of the section dimensions sensitivity, it reveals that the main effect of axial compression load is the cross-sectional area of the stringer, whose sensitivity coefficient is 44.2%. And the panel precise response surface polynomial of the axial compression is given. According to the finite element calculation on the equal weight design, the failure mode is different from the build-up panel: the integral panel stringers do not show obviously crankle and reaches the plastic yield stress of the skin till damaged at last; moreover, the maximum of axial compression is improved 18.4% compared with the build-up panel. According to the finite element calculation result, the valid skin width in the Johnson's Parabola Method for the integral panel has been defined. Then, the integral structure has been optimized by using the Multi-Island Genetic Algorithm and Sequential Quadratic Programming. Compared to the initial design, the weight after optimization is reduced by 8.8% and the strength remains same, which is very valuable for the design of integral panel.
     At last, the rigid and elastic models of an aircraft ditching have been built respectively. Through the SPH unit simulation in a meshless method, the results both show effects of the splashing and sloshing flow to the airframe structure strike. Base on the simulation of ditching rigid model, it has been obtained the ditching track and deceleration-time curves of each part of the aircraft. The analysis result indicates that the release of the landing gears could cause transverse oscillation and increase the transverse instability, therefore, the best ditching attitude is identified as: landing gears retraction, flap deflection and the attitude angle to dipping water is 7°. On the other hand, the calculation of a partial elastic body in the passenger section is carried out, which obtains that the response of airframe structure under water strike, and also checks the structure integrity under the maximum sinking velocity of the aircraft. All the tests and calculations above provide a valuable reference to the design of fuselage and airworthiness verification.
引文
[1]崔德刚.结构稳定性设计手册,北京:航空工业出版社, 1996.
    [2] Coltman J W, Arndt S M. The Naval Aircraft Crash Environment: Aircrew Survivability and Aircraft Structural Response, A528402, 1988.
    [3] http://news.sina.com.cn/w/2009-01-16/061417055666.shtml: 2009.
    [4]运输类飞机适航标准(第三次修订): CCAR-25-R3, 2001.
    [5] Timoshenko S P, Gere J M. Theory of Elastic Stability, New York: McGraw-Hill, 1961.
    [6] Gerard G. Handbook of Structural Stability: Supplement to Part III—Buckling of Curved Plates and Shells, NASA TN D-163, 1959.
    [7] Gerard G, Becker H. Handbook of Structural Stability: Part III—Buckling of Curved Plates and Shells, NACA-TN-3783, 1957.
    [8] Gerard G, Becker H. Handbook of Structural Stability Part I: Buckling of Flat Plates, NACA-TN-3781, 1957.
    [9] Gerard G, Becker H. Handbook of Structural Stability: Part VI—Strength of Stiffened Curved Plates and Shells, NACA-TN-3786, 1958.
    [10]飞机设计员手册编辑委员会.飞机设计员手册(第四册),北京:国防工业出版社, 1965.
    [11]飞机设计手册(第三册),北京:国防工业出版社, 1983.
    [12] Karman T V, Tsien H S, et al. The Buckling of Thin Cylindrical Shells under Axial Compression. J. Aeronaut.Sci., 1941, 8(8): 303-312.
    [13] Donnell L H, Wan C C. Effect of Imperfections on Buckling of Thin Cylinders and Columns Under Axial Compression. J. Appl. Mech., 1950, 17(1): 73-83.
    [14] Koiter W T, Tjardus W. A Translation of the Stability of Elastic Equilibrium, AFFDL-TR-70-25, Wright-Patterson Air Force Base, 1970.
    [15] Seide P, Weingarten V I, Peterson J P. Buckling of Thin-Walled Circular Cylinders. NASA Space Vehicle Design Criteria: 1968.
    [16] Weingarten V I, Seide P. Buckling of Thin-Walled Truncated Cones. NASA Space Vehicle Design Criteria: 1968.
    [17] Weingarten V I. Buckling of Thin-Walled Doubly Curved Shells. NASA Space Vehicle Design Criteria/Structures, NASA SP-8032, 1969.
    [18] Seide P, Weingarten V I, Morgan E J. The Development of Design Criteria for Elastic Stability of Thin Shell Structures: U.S. Air Force, 1960.
    [19] Vinson J R. The Behavior of Shells Composed of Isotropic and Composite Materials, Netherlands: Kluwer Academic Publ., 1993.
    [20]黄怀纬,韩强.侧压下含缺陷功能梯度材料圆柱壳的屈曲.华南理工大学学报, 2008, 36(6): 40-46.
    [21] Stein M. The Effect on the Buckling of Perfect Cylinders of Prebuckling Deformations and Stresses Induced by Edge Support, NASA TN D-1510, 1962.
    [22] Stein M. The Influence of Prebuckling Deformations and Stresses on the Buckling of Perfect Cylinders, NASA TR R-190, 1964.
    [23] Arbocz J. Comparison of Level-1 and Level-2 Buckling and Postbuckling Solutions, Report LR-700, Faculty of Aerospace Engineering, 1992.
    [24] Sridharan S, Alberts J, et al. Numerical Modeling of Buckling of Ring-Stiffened Cylinders. AIAA J., 1997, 35(1): 187-195.
    [25]白雪飞,任文敏,郭日修.前屈曲应力状态对组合加肋旋转壳失稳临界压力影响的探讨.固体力学学报, 2007, 28(2): 195-199.
    [26] Nemeth M P, Britt V O, Collins T J, et al. Nonlinear Analysis of the Space Shuttle Superlightweight External Fuel Tank, NASA TP-3616, 1996.
    [27] Brogan F A, Rankin C C, Cabiness H D. STAGS User Manual: Lockheed Palo Alto Research Laboratory Report, 1994.
    [28] MIL-HDBK-1530B: Department of Defense Handbook Aircraft Structural Integrity Program, 2002.
    [29] JSSG-2006,美国国防部联合使用规范指南《飞机结构》翻译版:中国飞行试验研究院, 1998.
    [30] FAR-Part 25 Foreign Acquisition: 2007.
    [31] Munroe J, Wilkins K, Gruber M. Integral Airframe Structures (IAS)—Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs, NASA/CR-2000-209337, Hampton, 2000.
    [32] Pettit R G, Wang J J, Toh C. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs, NASA/CR-2000-209342, Long Beach, 2000.
    [33]曾元松,许春林,王俊彪,等. ARJ21飞机大型超临界机翼整体壁板喷丸成形技术.航空制造技术, 2007, 3: 38-41.
    [34]曾元松,黄遐.大型整体壁板成形技术.航空学报, 2008, 29(3): 721-727.
    [35] Von Karman T. The Impact of Seaplane Floats During Landing, NACA-TN-321, National Advisory Committee for Aeronautics, Washington, 1929.
    [36] Wagner H, Trans. Phenomena Associated with Impacts and Sliding on Liquid Surfaces. Math Mech, 1932, 12(4): 193-215.
    [37] Sedov L. The Impact of a Solid Body Floating on the Surface of an Incompressible Fluid, Report 187, CAHI, Moscow, 1934.
    [38] Yu Y. Virtual Masses of Rectangular Plates and Parallelepipeds in Water. J Appl Phys, 1945, 16(11): 724-729.
    [39] Shiffman M, Spencer D C. The Force of Impact on a Sphere Striking a Water Surface (approximation by the flow about a lens), AMP Report 42.1R AMG-NYU no.15, 1945.
    [40] Shiffman M, Spencer D C. The Force of Impact on a Sphere Striking a Water Surface (second approximation), Report 42.2R AMG-NYU no. 133, 1945.
    [41] Shiffman M, Spencer D C. The Force of Impact on a Cone Striking a Water Surface (vertical entry). Commun Pure Appl Mech, 1951, 4: 379-417.
    [42] Trilling L. The Impact of a Body on a Water Surface at an Arbitrary Angle. J Appl Phys, 1950, 21(2): 161-170.
    [43] Pierson J D. The Penetration of a Fluid Surface by a Wedge, Towing Tank Report 381, Stevens Institute and Technology, 1950.
    [44] Weible A. The Penetration Resistance of Bodies with Various Head Forms at Perpendicular Impact on Water, Translation no 286, Naval Research Laboratory, 1952.
    [45] Monaghan R J. A Review of the Essentials of Impact Force Theories for Seaplanes and Suggestions for Approximate Design Formulae, Rep. Mem. 2720, Aeronautics Research Council, London, 1947.
    [46] Monaghan R J. A Theoretical Examination of the Effect of Deadrise on Wetted Area and Associated Mass in Seaplane Impacts, Rep. Mem. 2681, Aeronautical Research Council, London, 1949.
    [47] Bisplinghoff R L, Doherty C S. Some Studies on the Impact of Vee Wedges on a Water Surface. J Franklin Inst, 1952, 253(6): 547-561.
    [48] Schnitzer E. Estimation of Hydrodynamic Impact Loads and Pressure Distribution on Bodies Approximating Elliptical Cylinders with Special Reference to Water Landings of Helicopters, NACA-TN-2889, National Advisory Committee for Aeronautics, Washington, 1953.
    [49] Szebehely V G. Progress in Theoretical and Experimental Studies of Ship Slamming. Proceedings of the first conference on ships and waves research, 1955, 230-250.
    [50] Monaghan R J, Crewe P R. Formulae for Investigating Forces in Seaplane–Water Impacts without Rotation or Chine Immersion, Rep. Mem 2804, Aeronautics Research Council, London, 1956.
    [51] Fabula A G. Ellipse Fitting Approximation of two Dimensional Normal Symmetric Impact of Rigid Bodies on water. Proceedings of the fifth midwestern conference on fluid mechanics, 1957: 299-315.
    [52] Szebehely V G. Hydrodynamic Impact. Appl Mech Rev, 1959, 12(5): 297-300.
    [53] http://www-pao.ksc.nasa.gov/kscpao/history/mercury/mercury.htm.
    [54] Mcgehee J R, Hathaway M E, Vaughan V L. Water Landing Characteristics of a Re-entry Capsule, Memorandum 5-23-59L, NASA Langley Research Center, Hampton, 1959.
    [55] http://www-pao.ksc.nasa.gov/kscpao/history/gemini/gemini.htm.
    [56] Thompson W C. Dynamic Model Investigation of the Landing Characteristics of Manned Spacecraft, NASA-TN-D-2497, NASA Langley Research Center, Hampton, 1965.
    [57] Herting D N, Pohlen J C, Pollock R A. Analysis and Design of the Apollo Landing Impact System. Proceedings of the AIAA and NASA third manned space flight meeting, Houston,1964: 166-178.
    [58] Stubbs S M. Dynamic Model Investigation of Water Pressures and Accelerations Encountered During the Landings of the Apollo Spacecraft, NASA TN D-3980, NASA, Washington, 1967.
    [59] Benson H E. Water Impact of the Apollo Spacecraft. J Spacecraft Rockets, 1966, 3(8): 1282-1284.
    [60] Baker W E, Westine P S. Model Tests for Structural Response of Apollo Command Module. J Spacecraft Rockets, 1967, 4(2): 201-208.
    [61] Li T, Sigimura T. Study of Apollo Water Impact. Volume 1—Hydrodynamic Analysis of Apollo Water Impact Final Report, NASA-CR-92019, North Aviation Inc., California, 1967.
    [62] Capelli A P. Study of Apollo Water Impact Volume 9- Mode Shapes and Frequencies Analysis, NASA-CR-92025, North Aviation Inc., California, 1967.
    [63] Capelli A P, Nishimoto T, Pauley K E, et al. Study of Apollo Water Impact Volume 8—Unsymetric Shells of Revolution Analysis Final Report, NASA-CR-92024, North Aviation Inc., California, 1967.
    [64] Capelli A P, Furuike S C. Study of Apollo Water Impact Volume 7—Modification of Shell of Revolution Analysis Final Report, NASA-CR-92023, North Aviation Inc., California, 1967.
    [65] Rn R N S, Wilkinson J. Study of Apollo Water Impact Volume 6—User's Manual—Interaction Final Report, NASA-CR-65861, North Aviation Inc., California, 1967.
    [66] Wilkinson J. Study of Apollo Water Impact Volume 5—Final Report, NASA-CR-65860, North Aviation Inc., California, 1967.
    [67] Wilkinson J. Study of Apollo Water Impact Volume 4—Comparison with Experiments Final Report, NASA-CR-92022, North Aviation Inc., California, 1967.
    [68] Capelli A P, Salzman R N, Wilkinson J. Study of Apollo Water Impact Volume 3—Dynamic Response of Shells of Revolution During Vertical Impact into Water—Hydroelastic Interaction, NASA-Cr-92021, North Aviation Inc., California, 1967.
    [69] Capelli A P, Wilkinson J. Study of Apollo Water Impact Volume 2—Dynamic Response of Shells of Revolution During Vertical Impact into Water, NASA-CR-92020, North Aviation Inc., California, 1967.
    [70] Carrion E, Furuike S C, Nishimoto T. Study of Apollo Water Impact Volume 11—User's Manual for Unsymmetric Shell of Revolution Analysis Final Report, NASA-CR-65863, North Aviation Inc., California, 1967.
    [71] Capelli A P, Furuike S C. Study of Apollo Water Impact Volume 10—User's Manual for Modification of Shell of Revolution Analysis Final Report, NASA-CR-65862, CA, North Aviation Inc., California, 1967.
    [72] Buyukozturk O, Hibbit H D, Sorensen E P. Water Impact Analysis of Space Shuttle Solid Rocket Motor by the Finite Element Method, NASA-TR73-7, Marshall Space Flight Center, Alabama, 1974.
    [73] Thomas W L. Ditching Investigation of a 1/20-scale Model of the Space Shuttle Orbiter,NASA-CR-2593, Grumman Aerospace Corporation, New York, 1975.
    [74] Kross D A, Keifling L A, Murphy N C, et al. Space Shuttle Solid Rocket Booster Initial Water Impact Loads and Dynamics—Analysis, Tests, and Flight Experience, AIAA Paper 83-0956, NASA Marshall Space Flight Center, Alabama, 1983.
    [75] Schmidt A A, Kross D A. Water Impact Testing of a Filament Wound Case. Shock Vib Inform Cent Shock Vib Bull, 1985, 55(2): 57-67.
    [76] Wierzbicki T, Yue D K. Impact Damage of the Challenger Crew Compartment. J Spacecraft Rockets, 1986, 23: 646-654.
    [77] Wierzbicki T, Yue D K. Spacecraft Crashworthiness– Towards Reconstruction of the Challenger Accident. Symposium on Vehicle Crashworthiness Including Spacecraft Crashworthiness, 1986, 31-46.
    [78] Cointe R. Two-Dimensional Water Solid Impact. J Offshore Mech Arctic Eng, 1989, 111: 109-114.
    [79] Miloh T. On the Oblique Water Entry Problem of a Rigid Sphere. J Eng Math, 1991, 25(1): 77-92.
    [80] Miloh T. On the Initial Stage Slamming of a Rigid Sphere in a Vertical Water Entry. Appl Ocean Res, 1991, 13: 43-48.
    [81] Howison S D, Ockendon J R, Wilson S K. Incompressible Water-entry Problems at Small Deadrise Angles. J Fluid Mech, 1991, 222: 215-230.
    [82] Cole J K, Hailey C E, Gutierrez W T, et al. An Experimental Investigation of High-speed Water Entry for Full Size and Scale Model Pointed Nose Vehicles. Los Angeles, CA, USA: 1992.
    [83] Zhao R, Faltinsen O. Water Entry of Two-dimensional Bodies. J Fluid Mech, 1993, 246: 593-612.
    [84] Zhang Q, Qin Q, Wang J. A Theoretical Model on Coupled Fluid Structure Impact. Appl Math Model, 1993, 17(1): 25-33.
    [85] Lin M C, Ho T Y. Water Entry for a Wedge in Arbitrary Water Depth. Eng Anal Boundary Elements, 1994, 14(2): 179-185.
    [86] Brooks J R, Anderson L A. Dynamics of a Space Module Impacting Water. J Spacecraft Rockets, 1994, 31(3): 509-515.
    [87] Anghileri M, Spizzica A. Experimental Validation of Finite Element Models for Water Impacts. Proceedings of the second international crash users seminar, 1995.
    [88] MSC/DYTRAN Version 4 User's Manual: Los Angeles, CA, USA: The MacNeal-Schwendler Corporation, 1997.
    [89] Lu C, He Y. Nonlinear Fluid—Structure Interaction During Two Dimensional Water Impact. Proceedings of the third international conference on nonlinear mechanics, 1998.
    [90] Crasurv. Commercial Aircraft—Design for Crash Survivability: IMT/AERO Project, 1996.
    [91] Thuis H, Wiggenraad J. A Tensor Skin Concept for Crashworthiness of Helicopters in case of Water Impact: Washington, DC, USA, American helicopter society 50th annual forum, 1994.
    [92] Thuis H, De Vries H, Wiggenraad J. Sub Floor Skin Panels for Improved Crashworthiness of Helicopters in Case of Water Impact: Texas, USA: American helicopter society 51st annual forum, 1995.
    [93] Michielsen A, Wiggenraad J, Ubels L, et al. Design, Test and Analysis of Tensor Skin Panels for Improved Crashworthiness in Case of Water Impact, NLR-TP-98356, National Aerospace Laboratory NLR, Amsterdam, 1998.
    [94] Wittlin G, Rapaport M. Naval Rotorcraft Water Impact Crash Simulation Using Program KRASH: St Louis, MO, USA: American helicopter society 49th annual forum, 1993.
    [95] Gamon M A, Wittlin G, Labarge W L. KRASH 85 User's Guide, DOT/FAA/CT-85/10, 1985.
    [96] Wittlin G, Smith M, Richards M. Airframe Water Impact Analysis Using a Combined MSC/DYTRAN—DRI/ KRASH Approach: Virginia Beach, VA, USA: American Helicopter society 53rd annual forum, 1997.
    [97] Wittlin G, Schultz M, Smith M. Rotary Wing Aircraft Water Impact Test and Analyses Correlation: Virginia Beach, VA, USA: American Helicopter society 56th annual forum, 2000.
    [98] Richards M K, Kelley E A. Development of a Water Impact Dynamic Test Facility and Crash Testing of a UH-1H Aircraft onto a Water Surface: Virginia Beach, VA, USA: American helicopter society 53rd annual forum, 1999.
    [99] Sareen A K, Smith M R, Hashish E. Crash Analysis of an Energy Absorbing Subfloor During Ground and Water Impacts: Montreal, Quebec, Canada: American helicopter society 55th annual forum, 1999.
    [100] Cast. Crashworthiness of Helicopter on Water: Design of Structures Using Advanced Simulation Tools, G4RD-CT2000-00178, 2000.
    [101] Vigliott A, Pentecote N, Clifford S. Crashworthiness of Rotorcraft on Water, An Experimental Test Campaign: Bristol, UK: 28th European rotorcraft forum, 2002.
    [102] Kohlgruber D, Kamoulakos A. Validation of Numerical Simulation of Composite Helicopter Sub-floor Structures under Crash Loading: Washington, DC: American Helicopter Society 54th Annual Forum, 1998.
    [103] Kohlgruber D. Numerical Simulation of Composite Aircraft Structures under Crash Loading: CIRA, Capua: CEAS Forum on Crash Questions, 2000.
    [104] Kohlgruber D, Vigliotti A, Weissberg V. Numerical Simulation of a Composite Helicopter Sub-floor Structure Subjected to Water Impact: Baltimore, MD: the American Helicopter Society 60th Annual Forum, 2004.
    [105] Vignjevic R, Meo M. A New Concept for Helicopter Subfloor Structure Crashworthy in Impacts on Water and Rigid Surfaces. Int J Crashworthiness, 2002, 7(3): 321-330.
    [106] Pentecote N. Validation of PAM-CRASH Code for the Simulation of the Impact on Water, DLR-IB 435.2003/3, 2003.
    [107] Pentecote N, Vigliotti A. Crashworthiness of Helicopters on Water: Test and Simulation of a Full-scale WG30 Impacting on Water. Int. J Crashworthiness, 2003, 8(6): 559-572.
    [108] Crahvi. Crashworthiness of Aircraft for High Velocity Impact, G4RD-CT-2000-00395, 2000.
    [109] Seddon C M, Moatamedi M. Review of Water Entry with Applications to Aerospace Structures. International Journal of Impact Engineering, 2006, 32: 1045-1067.
    [110] Climent H, Morell M A. CN-235-300M Ditching– Task Description and Schedule, EADS-CASA NT-3-AA0-02004, Issue A., 2002.
    [111] Wernsdorfer T, Keller K, Climent H. CN-235-300M Deepwater–Subscale Model, Ditching and Floatation Tests Plan, EADS-CASA NT-3-AA0-03005, Issue A., 2003.
    [112] Wernsdorfer T, Keller K, Climent H. CN-235-300M Deepwater–Ditching Tests Model Specification, EADS-CASA NT-3-AA0-03004, Issue A., 2004.
    [113] Wernsdorfer T, Keller K, Climent H. CN-235-300M Deepwater–Ditching Tests Evaluation Report, EADS-CASA NT-3-AA0-04004, Issue A, 2005.
    [114] Merchan A, Rueda F, Climent H. CN-235-300M Deepwater-Explicit Finite Element Model Description, EADS-CASA DT-3-AA0-05002, Issue A, 2005.
    [115] Benitez L, Rueda F, Climent H. CN-235-300M Deepwater-Structure response to Ditching Loads, EADS-CASA DT-3-AA0-05003, Issue A, 2005.
    [116] PAM-CRASH/PAM-SAFE Solver Reference Manual: PAM SYSTEM International, 2002.
    [117] Rouse M, Young R D. Structural Stability of a Stiffened Aluminum Fuselage Panel Subjected to Combined Mechanical And Internal Pressure Loads: 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Confere. Norfolk: 2003.
    [118] Kuhn P, Peterson J P, Levin L R. A Summary of Diagonal Tension Part I-Methods of Analysis, NACA-TN-2661, Washington, 1952.
    [119] Vercammen R W, Ottens H H. Full-scale Fuselage Panel Tests, NLR-TP-98148, National Aerospace Laboratory NLR, Amsterdam, 1998.
    [120]朱合华,缪圆冰,梁伟,等.组合结构有限元计算存在的问题和处理方法.岩土力学, 2005, 26(9): 1437-1442.
    [121]杨剑,张璞,陈火红.新编MD Nastran有限元实例教程,北京:机械工业出版社, 2008.
    [122] MD Nastran 2006 Implicit Nonlinear User's Guide: MSC.Software Corporation, 2006.
    [123]熊广楞.并行工程的理论与实践,北京:清华大学出版社, 2001.
    [124] Samareh J A. Use of CAD Geometry in MDO, AIAA-96-3991-CP, 1996.
    [125] Box G E P, Draper N R. A Basis for the Selection of a Response Surface Design. Journal of the American Statistical Association, 1959, 54: 622-654.
    [126]拜尔斯W E,斯温J J.最优化与工业实验,上海:华东化工学院出版社, 1990.
    [127] Myers R H, Montgomery D C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, New York: John Whiley & Sons, 1995.
    [128] Knill D L, Giunta A A, Baker C A, et al. Response Surface Model Combining Linear and Euler Aerodynamics for Super Sonic Transport Design. Journal of Aircraft, 1999, 36(1): 75-86.
    [129]茆诗松.回归分析及其试验设计,上海:华东师范大学出版社, 1981.
    [130]陈立周.工程稳健设计,北京:北京科技大学, 1997.
    [131] Koch P N, Evans J P, Powell D. Interdigitation for Effective Design Space Exploration Using iSIGHT. Journal of Structural and Multidisciplinary Optimization, 2002, 23(2): 111-126.
    [132] Giunta A, Wojtkiewicz J, Eldred M. Overview of Modern Design of Experiments Methods for Computational Simulations, AIAA 2003-0649, 2003.
    [133]余雄庆,丁运亮.多学科设计优化算法及其在飞行器设计中应用.航空学报, 2000, 21(1): 1-6.
    [134]吴世德.旅客机水上迫降动力模型试验-适航标准验证试验之一.航空标准化与质量, 1987, (2): 19-30.
    [135] Transport Water Impact and Ditching Performance: DOT/FAA/AR-95/54, 1996.
    [136]吴世德,季洪兴. C-5A飞机的水上迫降动力模型试验.民用飞机设计与研究, 1991, 2: 52-57.
    [137]于治会,徐刚.小型弹箭转动惯量的测定.物理与工程, 2002, 12(2): 20-27.
    [138] Thompson W C. Rough Water Ditching Investigation of a Model of a Jet Transport with the Landing Gear Extended and with Various Ditching Aids, NASA TN D-101, 1959.
    [139] Fisher L J, Morris G J. Ditching Tests of a 1/18 Scale Model of the Lockheed Constellation Airplane, NACA-RM-L8K18, 1950.
    [140] Belytschko T, Krongauz Y, Organ D, et al. Meshless Methods: An Overview and Recent Developments. Comput. Methods Appl. Mech. Engrg., 1996, 139: 3-47.
    [141] Li S, Liu W K. Meshfree and Particle Methods and their Application. Appl. Mech. Rev., 2002, 55(1): 1-34.
    [142]张雄,宋康祖,陆明万.无网格法的研究进展及其应用.计算力学学报,2003, 20(6): 136-148.
    [143] Lucy L B. A Numerical Approach to the Testing of the Fission Hypothesis. The Astron. J., 1977, 8(12): 1013-1024.
    [144] Gingold R A, Monaghan J J. Smoothed Particle Hydrodynamics: Theory and Applications to Non-spherical Stars. Mon Not. Roy. Astrou. Soc., 1977, 18: 375-389.
    [145] Benz W. Smoothed Particle Hydrodynamics: A Review. In: Buchler J R ed. The Numerical Modelling of Stellar Pulsation. Kluwer, 1990.
    [146] Monaghan J J. An Introduction to SPH. Comput. Phys. Comn., 1988, 48: 89-96.
    [147] Monaghan J J. Smoothed Particle Hydrodynamics. Annual Review Astronomical and Astrophysics, 1992, 20: 534-574.
    [148] Monaghan J J. Why Particle Methods Work. SIAM J. SCI. Stat. Comput., 1982, 3(4): 422.
    [149] Swegle J W, Hicks D L, Attaway S W. Smoothed Particled Hydrodynamics Stability Analysis. J, Comput. Phys., 1995, 116: 123-134.
    [150] Dyka C T. Addressing Tension Instability in SPH Methods, NRL/MR/6384, 1994.
    [151] Chen K J, Beraun J E, Jih C J. An Improvement for Tensile Instability in Smoothed Particle Hydrodynamics. Comput. Mech., 1999, 23: 279-287.
    [152] Johson G R, Beissel S R. Normalized Smoothing Functions for SPH Impact Computations. Int.J. Num. Meth. Engng, 1996, 39: 2725-2741.
    [153] Vignjevic R, Canpbell J, Libersky L. A Treatment of Zero-energy Modes in the Smoothed Particle Hydrodynamics Method. Comput. Methods Appl. Mech. Engrg., 2000, 184: 67-85.
    [154] Monaghan J J, Gingold G A. Shock Simulation by the Particle Method SPH. J. Comput. Phys., 1983, 52: 374-389.
    [155] Monaghan J. J. Particle Method for Hydrodynamics. Comput. Phys. Rep., 1985, 3: 71-124.
    [156] Gingold R A, Monaghan J J. Kernel Estimates as a Basis for General Particle Methods in Hydrodynamics. J. Comput. Phys., 1982, 46: 429-453.
    [157] Swegle J W, Attaway S W. On the Feasibility of Using Smoothed Particle Hydrodynamics for Underwater Explosion Calculations. Comput. Mech., 1995, 17: 151-168.
    [158] Johson G R, Stryk R A, Beissel S R. SPH for High Velocity Impact Computations. Comput. Methods Appl. Mech. Engrg., 1996, 139: 347-373.
    [159] Johson G R, Beissel S R, Stryk R A. A Generalized Particle Algorithm for High Velocity Impact Computations. Comput. Mech., 2000, 25: 245-256.
    [160] Johson G R, Stryk R A, Beissel S R. An algorithm to Automatically Convert Distorted Finite Elements into Meshless Particles During Dynamics Deformation. Int. J. Num. Meth. Engrg, 2002, 27: 997-1013.
    [161] Johson G R, Stryk R A. Conversion of 3D Distorted Elements into Meshless Particles During Dynamics Deformation. Int. J. Num. Meth. Engrg, 2003, 28: 947-966.
    [162] Libersky L D, Petschek A G. High Strain Lagrangian Hydrodynamics: A Three Dimensional SPH Code for Dynamics Material Response. J. Comput. Phys, 1993, 109: 67-75.
    [163] Randles P W, Libersky L D. Smoothed Particle Hydrodynamics Some Recent Improvements and Applications. Comput. Methods Appl. Mech. Engrg, 1996, 139: 375-408.
    [164]张锁春.光滑质点流体动力学(SPH)法(综述).计算物理, 1996, 13(4): 385-397.
    [165]贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理, 1997, 14(2): 155-166.
    [166] Swegle J W, Hicks D L, Attaway S W. Smoothed Particle Hydrodynamics Stability Analysis. J.Comput.Phys., 1995, 116: 123-134.
    [167] Mayo W L. Analysis and Modification of Theory for Impact of seaplane on Water, NACA-Report-810, 1945.
    [168] Milwitzky B. A Generalized Theoretical and Experimental Investigation of the Motions and Hydrodynamic Load Experienced by V-Bottom Seaplanes During Step-Land Impacts, NACA-TN-1516, 1948.
    [169] Steiner M F. Analysis of Planing Data for Use in Predicting Hydrodynamic Impact Loads, NACA-TN-1694, 1948.
    [170] Simley R F. The Application of Planing Characteristics to the Calculation of the Water-Landing Loads and Motions of Seaplanes of Arbitrary Constant Cross Section, NACA-TN-2814, 1952.
    [171] Fisher L J, Hoffman E L. Ditching Investigation of Dynamic Models and Effects of Design Parameters On Ditching Characteristics, NACA-TR-1347, 1958.
    [172]正常类、实用类、特技类和通勤类飞机适航规定: CCAR-23-R3, 2005.
    [173] Fisher L J, Hoffman E L. Model Ditching Investigation of the Douglas DC-4 and DC-6 Airplanes, NACA-RM-SL9K02a, 1949.