基于PIV的石油工程中螺旋流动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒子图像测速技术(particle image velocimetry,PIV)是一种全新的无扰、瞬态、全场速度测量方法。它不仅能够显示流体流场、流动的物理形态,而且能够提供瞬时全场流动的定量信息。
     螺旋流是湍流中的一种特殊的、规则的涡旋运动,是在石油工程实际中广泛存在的一种流动现象,如地面驱动螺杆泵井筒流体流动、水力旋流器中流体流动等都是螺旋流动。随着石油工程新技术的发展和推广,螺旋流在石油工程中的应用范围将进一步扩大。在地面驱动螺杆泵采油系统中,采出液由旋转的抽油杆与油管间的环空流到地面,部分螺杆泵的压头要用于克服流体在环空中做螺旋流动的摩阻。由于聚合物溶液的黏弹性,聚驱井中含聚采出液在环空中的螺旋运动更为复杂。水力旋流器是一种应用非常广泛的非均相混合物分离设备,其在石油工程中常被用来进行油水分离等。水力旋流器内部存在复杂的内、外螺旋运动,内、外螺旋流场的分布影响其分离效率。国内外学者已经对水力旋流器的结构和分离效率进行了大量的研究,但未对其内部螺旋全流场进行研究。聚合物驱油可以提高采收率,对保持油田稳产可起到十分重要的作用。但同时由于聚合物溶液复杂的黏弹性,也给采油工艺带来了新的问题,如抽油杆偏磨等现象。国内外学者采用了抽油杆加装扶正器等方法来解决偏磨问题。但以上方法均不能减小由于聚合物的黏弹性导致抽油杆所受的法向应力差。
     本文利用粒子图像测速系统研究了垂直管中不同介质螺旋流的流动规律、聚驱井地面驱动螺杆泵井筒中螺旋流动规律、水力旋流器内部螺旋全流场特征和螺旋流抑制聚驱井杆管偏磨的机理。研究结果标明,垂直管中的螺旋流与典型的轴向流明显不同,螺旋流的轴向速度分布不是典型轴向流的凸抛物线形,且随着聚合物溶液浓度的增大,其轴向速度分布曲线由凹形抛物线逐渐变化到中间凹的双峰抛物线,具有螺旋流断面流速分布的特殊规律。聚驱井地面驱动螺杆泵井筒中流体的轴向速度呈M形分布,不是典型的凸抛物线形,轴向速度有小的波动,轴向速度的大小随着抽油杆转速的增大而增大。随着抽油杆转速的增大,井筒中聚合物溶液的压力梯度有拐点,存在最小值。此抽油杆转速条件下,井筒中压头损失最小。水力旋流器旋流腔中流体切向速度呈中心对称的凹形抛物线分布,旋转动量主要集中在管壁和气柱附近。径向速度近似呈双M形分布,且气柱附近的径向速度大于管壁处。上锥段中不同介质的零轴向速度轴包络面(LZVV)是向左侧倾斜的近似圆锥面。下锥段中零轴向速度包络面不是圆锥面,而是向左侧倾斜的不规则圆柱面,右侧中间段有不规则向内突起。两个切向入射管中流体的流量影响着零轴向速度包络面的形状和分布位置。抽油杆与油管偏心环空间螺旋流的轴向速度分布不是典型的左右对称的凸抛物线形,而是有明显凹陷且左右不对称的抛物线,其轴向速度最大值点右移,偏向油管内壁,导致轴向速度梯度减小,其中窄间隙更为明显,因而能减小由于聚合物溶液的黏弹性所引起的偏心抽油杆法向应力差。螺旋流能抑制由于含聚采出液黏弹性造成的杆管偏磨现象,为解决聚驱井杆管偏磨提供了新的理论依据。
Particle image velocimetry(PIV) is a new velocity measuring technique, transient and full field measurement with no interference. It can not only show such as fluid flow field, the physical form of the flow, but also provide quantitative information on the instantaneous flow field.
     As a special and regular vortex motion turbulent, spiral flow is widely applicated in petroleum engineering, such as the fluid flowj in a ground-driven screw pump well or in a Hydrocyclone.with the development of many new technologies in petroleum engineering, range of application of spiral flow would be broadened in this field.For a ground-driven screw pump production system, the produced fluid flows to the surface from the annulus between the rotating rod and tubing, and portion of pressure head, the screw pump supplied for, is losing to overcome the friction resistance along the annulus for produced fluid with spiral flow. It might be more complex for the spiral flow of the produced polymer in the annular in a polymer flooding well for the viscoelastic behavior of the polymer solution. Hydrocyclone, a kind of separation equipment for the non-homogeneous mixture, is widely used to separate oil-water mixture in petroleum engineering. Both inside and outside spiral flow are complex in a hydrocyclone,and distribution of the two kinds of spiral flow field do impact its separation efficiency .Though some domestic and foreign scholars have done a lot of research on the structure optimization and separation efficiency of the hydrocyclone, up-to-date the study on full flow field of spiral flow in a hydrocyclone is not found.Polymer flooding can enhance oil recovery, playing an important role in maintaining stable production of oil. However, as the complexity of the viscoelastic polymer solution, it has also brought new problems to the production technology, such as rod eccentric wear and so on. Some scholars deal with the problem by installing stabilizer rod or other methods, Yet none of mentioned methods can reduce the normal stress on the rod for the viscoelasticity of polymer solution.
     In this paper, the particle image velocimetry system is used, to study the law of spiral flow in the vertical pipe with different media, the law of fluid flow in the bore hole of surface driving screw pump with polymer flooding, the mechanism of spiral flow inhibitng the rod and tube eccentric wear in the polymer flooding wells, the characteristics of full flow field in a hydrocyclone. The results indicates,that the spiral flow in the vertical pipe is apparently different from typical axial flow, and the Axial velocity distribution of spiral flow is not a convex parabolic shape of the typical axial flow, moreover, with the increase of fluid viscosity, the trend of the radial velocity curve is gradually changed from a concave parabolic shape to a parabolic shape with two peaks and concave in the middle , which is the special velocity distribution law owned in a spiral flow section.The curve of axial velocity shows the M-type distribution in a bore hole of the surface driving screw pump symtem, not the typical convex parabolic one, and the axial velocity, with a little fluctuation, increases as the rod speed raises. With the rod speed increasing, the pressure gradient in the wellbore exists inflection point or a minimum value, thus the minimum wellbore pressure head loss is available at an optimum value of rod speed.Tangential velocity distribution in a hydrocyclone is a symmetrical concave parabolic distribution with the center of swirl chamber as the symmetry axis, and the spin momentum mainly accumulated near the wall of the hydrocyclone and air column. Radial velocity distribution approximlately shows a double“M”shape, and the radial velocity is larger near the air column than beside the wall of hydrocyclone. at the up part, the zero axial velocity envelope (LZVV) is a left-acclive similar circular conical surface in the condition of different media; at the lower part, the LZVV is no longer a circular conical surface, but a left-acclive irregular cylinder surface, with an irregular inward bulge in the right side at the middle segment.the shape and distribution location of the LZVV is affected by fluid influx from the two tangentialy incident tube.The axial velocity distribution of spiral flow between the rod and eccentric tube is not the typically dissymmetric convex paracurve, but a left-right asymmetry concave paracurve, the maxima of axial velocity shifts to the right and tends to tubing walls, leading the shear rate the rod to the fluid decreases and particularly prominent for the narrow gap, thus the normal stress of rod suffered also decreases owing to the viscoelasticity of polymer solution. Hence , the spiral flow can suppress eccentric wear of the rod and tube resulted from viscoelasticity of the production fluids, which offering a new theoretical foundation to solve eccentric wear of the rod and tube in a polymer flooding well.
引文
[1]申功圻.面向新世纪的粒子图像测速[J].流体力学实验与测量.2000,14(2):1-15.
    [2] Adrian R.J.Multi-point optical measurements of simultaneous vectors in unsteady flow-a review,Int[J].Iournal of Heat and Fluid Flow,1986,7:127-145.
    [3] Adrian R.J.Partical-imaging techniques for experimental fluid mechanics,Ann,Rew[J].Fl- uid Mechanics,1991,23:261-304.
    [4] Adrian RJ.PIV processing technique:mage plane and Fourier plane Von kartnem Institute for fluid dynamics ecture Series 1988-06:article Image velocimetry,Brussels Belgium,1988.
    [5]许联锋,陈刚,李建中.粒子图像测速技术研究进展[J] .力学进展.2003,33(4):533-539.
    [6]韩洪升,魏兆胜,崔海清等.石油工程非牛顿流体力学[M] .哈尔滨:哈尔滨工业大学出版社,1993:116-117.
    [7] Lee M.H. The Stability of Spiral Flow Between Coaxial Cylinders[J]. Computers and Mathematics with Applications,2001,41(3):289-300.
    [8]张军,闻建龙,王军.地面驱动螺杆泵泵送油水乳化液时的摩阻研究[J] .石油钻采工艺,2003,25(4):41-44.
    [9]张军,陈听宽,金友煌.地面驱动螺杆泵采油系统管道里流体磨阻分析[J] .石油机械,1999,27(8):35-38.
    [10]吴晓东,吕彦平,高士安.地面驱动螺杆泵井杆管环空螺旋流数值模拟[J] .石油学报,2007,28(2):133-136.
    [11]庞学诗.水力旋流器工艺计算[M] .北京:中国石化出版社,1999.
    [12]刘晓敏,蒋明虎.脱油型水力旋流器空气核的稳定性分析[J] .石油学报,2004,25(6):105-108.
    [13]刘晓敏,檀润华,刘银梅.水力旋流器内分离介质流动分布特征数值模拟[J] .石油学报,2006,27(2):129-136.
    [14]蒋明虎,刘晓敏,王尊策等.静态水力旋流器压力场分布测试研究[J] .石油学报,2003,24(5):104-107.
    [15]倪玲英,李涛江.炼油厂污水旋流除油实验研究[J] .石油大学学报(自然科学版),2002,26(3):62-64.
    [16]赵国庆,薛敦松.单锥水力旋流器的迁移率模型[J] .石油大学学报(自然科学版),2000,24(6):62-65.
    [17]文和平,何利民.双锥型污水处理旋流器分离效果研究[J] .石油大学学报(自然科学版),1999,25(3):1-4.
    [18]李玉星,冯叔初,李安星等.水力旋流器压降及压力分布特性的数值模拟[J] .流体机械,2002,30(10):15-19.
    [19]杨琳,梁政.液-液水力旋流器油水乳化机理研究[J] .石油机械,2007,35(12):8-11.
    [20]赵焕卿,李增亮,孙浩玉.井下旋流油气分离器流场数值模拟[J] .石油大学学报(自然科学版),2007,31(4):94-101.
    [21]韩洪升,王德民,国丽萍.粘弹性流体法向应力对抽油杆偏磨的影响机理[J] .石油学报,2004,25(4):92-95.
    [22]董世民.水驱抽油机井杆管偏磨原因的力学分析[J] .石油学报,2003,24(4):108-112.
    [23]崔振华.有杆抽油系统[M] .北京:石油工业出版社,1994:2-10.
    [24]杨海滨,狄勤丰,王文昌.抽油杆柱与油管偏磨机理及偏磨点位置预测[J] .石油学报,2005,26(2):100-103.
    [25]韩修廷,王德喜,王研等.利用低摩阻柱塞抽油泵提高泵效及防偏磨技术的应用[J] .石油学报,2007,28(4):138-141.
    [26]谢东,王汉青.粒子图像速度场仪的特点及其应用[J] .南华大学学报(理工版),2003,17(3);62-64.
    [27]康琦,申功圻.全场测速技术进展[J] .力学进展, 1997,27(1):1O6-120.
    [28]申功折.场观测技术概念、进程与展望[J] .京航空航天大学学报,1997,3(3):332-340.
    [29] Adrian R J.Par ticle-im aging techniques for experimental fluid mechanics.Annual Review o|Fluid Mechanics.1991,23:261-304.
    [30]杨华,刘超,汤方平.采用PIV研究离心泵转轮内部瞬态流场[J] .水动力学研究与进展,2002,17(5) .547-551.
    [31]王晓飞.管里螺旋流的实验研究与分析[D] .武汉:武汉理工大学,2004.
    [32] Niu Zhengming,Zhang mingyuan.Basic hydrodynamics characteristics of cavity spiral flow in a large size level pipe [J].Journal of Hydrodynamics,2005,17(4):503-513.
    [33]黄国鲜,周建军,吴伟华.弯曲河道螺旋流作用下的物质输运三维模拟[J] .清华大学学报,2008,48(6);977-982.
    [34]刘晓敏,蒋明虎,王尊策等.动态水力旋流器圆管螺旋流场特性研究[J] .石油学报,2003,24(2):89-93.
    [35]郑应人.非牛顿液体环空螺旋流的精确解[J] .石油学报,1998,19(2);89-96.
    [36]崔海清,刘希圣.非牛顿流体偏心环形空间螺旋流的速度分布[J] .石油学报,1996,17(2);76-82.
    [37]张景富,代奎.圆管内Herschel-Bulkely液体层流螺旋流及稳定性[J] .水动力学研究与进展,2003,18(5);607-612.
    [38]熊鳌魁,魏庆鼎.轴对称螺旋流解析解的探讨[J] .力学与实践,1999,21(5):15-16.
    [39]熊鳌魁,魏庆鼎.一种强螺旋流现象的实验研究[J] .流体力学实验与测量,1999,13(4):8-13.
    [40] Bradley D.Hydrocyclones[M].London:Permamon Press,1965.
    [41] Kesall D F.A study of the motion of solid particles in a hydraulic cyclone[J]. Chemical Engineering Research and Design,1952,30(1):87-108.
    [42] Bradley D and Pulling D J.Flow pattern in the hydraulic cyclone and their interpretation in terms of performance[J]. Chemical Engineering Research and Design,1959,37(1):34-45.
    [43]褚良银,陈文梅,戴光清等.水力旋流器[M] .北京:化学工业出版社,1998.
    [44]梁振山,隋秀兰,赵小朵.毕托管测试技术[J] .华北电力术,1999,44(11) :24-25.
    [45]施卫平,舒玮.慢周期性流动中毕托管和热线测速的对比[J] .实验力学,1992, 7(4):377-381.
    [46]周兴华,赶当玉.智能数字式毕托管[J] .力学与实践,1995,17(6):24-27.
    [47]舒秋贵,陈英,刘崇建.小尺寸环空螺旋衰减流测速方法探讨[J] .天然气工业,2004,24(2):30-32.
    [48]孙冬,张春梅,吴剑华.几种典型流动测量技术的原理及应用现状[J] .辽宁化工,2007,36(2):131-135.
    [49]盛森芝,徐月婷,袁辉靖.热线热膜流速计[M] .北京:中国科学技术出版社,2003.
    [50]盛森芝,徐月婷,袁辉靖.近十年来流动测量技术的发展[J] .力学与实践,2002,24(5):1-15.
    [51]沈熊.激光多普勒技术及应用[M] .北京:北京大学出版社,1987.
    [52]田坦,张殿伦,卢逢春.相控阵多普勒测速技术研究[J]. .哈尔滨工程大学学报,2002,23(1):80-85.
    [53]叶宏勇,李芬,刘军.激光多普勒测速仪使用维护[J] .设备管理与维修,2009,11(2):27-28.
    [54]陈国,刘代俊,梁斌.使用激光多谱勒测速仪研究管式反应器中的湍动规律[J] .四川大学学报(工程科学版),2002,34(2):124-126.
    [55]朱义伦,邓康耀.用激光多普勒测速仪测量发动机缸头冷却水流场[J] .中国造船,2000,41(1):60-63.
    [56]肖克俭.应用激光多普勒测速仪研究湍流有旋自由射流[J] .热能动力程,1999, 14(83):343-346.
    [57]李昌烽,霍然.在纹影仪上应用双频光栅测量温度分布的实验[J] .物理实验,1994,14(6):243-245.
    [58]沙勇,成弘,孙志发等.激光纹影仪观测传质过程中RBM对流结构[J] .天津大学报,2002,35(2):155-158.
    [59]郭辉,连淇祥.氢气泡法图像的数字化处理分析[J] .流体力学实验与测量,2003,17(1):80-83.
    [60]常跃峰,姜楠,夏振炎.沟槽壁湍流减阻机理的氢气泡流动显示及数字图像分析[J] .天津大学学报,2009,42(9):839-844.
    [61]李岭,周建和.氢气泡显示流动的跟随性问题[J] .气动实验与控制,1994, 8(1):42-46.
    [62]陈秀娟,杨秉俭,苏俊义.氢气泡测速法在连铸水模拟实验中的应用[J] .甘肃工业大学学报,1994,20(4):21-24.
    [63]杨国华,洪流,李鳌.丙酮平面激光诱导荧光技术在喷嘴混合研究中的应用[J] .实验流体力学,2008,22(4):22-28.
    [64]孙田,苏万华,郭红松.应用激光诱导荧光法研究超高压喷雾气液相浓度场分布特性[J] .内燃机学报,2007,25(2):97-103.
    [65]黄真理,李玉梁,余常昭.平面激光诱导荧光技术测量横流中射流浓度场的研究[J] .水力学报,1994,94(11):1-7.
    [66]林柯利,毕荣山,谭心舜.利用面激光诱导荧光技术研究喷射器内液-液湍流混合特性[J] .高校化学工程学报,2009,23(1):28-33.
    [67]张顺康,陈月明,侯健.岩石孔隙中微观流动规律的CT层析图像三维可视化研究[J] .石油天然气学报(江汉石油学院学报),2006.28(4):102-106.
    [68]黄志尧,金宁德,李海青.层析成像技术在多相流检测中的应用[J] .化学反应工程与工艺,1996,12(4):394-405.
    [69] Xu Jinglei,Sha Jiang and Lin Chunfeng ea al. Piv experimental research of instantaneous flow characteristics of circilar orifice synthetic jet[J]. Journal of Hydrodynamics,2007,19(4):453-458.
    [70]胡海豹,宋保维,阮驰. PIV水下流场测试系统试验研究[J].光子学报,2007,36(10):1928-1932.
    [71]龚安龙,王连泽.旋风分离器减阻杆减阻的PIV实验研究[J] .工程力学,2006,23(1):160-164.
    [72]刘凤霞,刘志军,王琳.用PIV测试涡旋波流场的速度和剪应力分布[J] .实验力学,2006.21(3):278-284.
    [73]魏润杰,申功圻,丁汉泉.数字全息粒子图像测速技术研究[J] .北京航空航天大学学报,2004,30(5):456-460.
    [74]中功炘,张永刚,曹晓光.数字全息罻油枷癫馑偌际酰―HPIV)研究进展[J] .力学进展,2007,37(4):563-574.
    [75]王昊利,王元.Micro-PIV技术——粒子图像测速技术的新进展[J] .力学进展,2005,35(1):77-90.
    [76]傅新,谢海波,杨华勇.Micro-DPIV技术在微型无阀泵瞬变流场检测中的应用[J] .高等化学学校学报,2004,25(1):33-34.
    [77]谢海波,傅新,杨华勇.基于Micro-PIV的微观流场检测技术[J] .机械工程学报,2005,41(9):106-111.
    [78]谢海波傅新杨华勇.典型微管道流场数值模拟与Micro-PIV检测研究[J] .机械工程学报,2006,42(5):32-38.
    [79]贾月飞,蔡坤宝,蒋稼欢.圆截面PDMS微通道内微流动的Micro—PIV分析[J] .重庆工学院学报(自然科学版),2008,22(6);60-63.
    [80]段俐,康琦.PIV技术的粒子图像处理方法[J] .北京航空航天大学学报,2000,26(1):79-82.
    [81]魏润杰,申功炘.DPIV系统研制及其应用[J] .流体力学实验与测量,2003,17(2);88-92.
    [82]唐洪武.现代流动测试技术及应用[M] .北京:科学出版社,2009:35-38.
    [83]戴光清,吴燕华.激光片光源技术在水垫塘流场显示中的应用[J] .实验力学,1997,12(4):544-548.
    [84]于殿泓.图像检测预处理技术[M] .西安:西安电子科技大学出版社,2006:35-44.
    [85]张国兵,孟令军,王宏涛.CCD相机高速数据存储系统中的无缝缓存技术[J] .水电能源科学,2010,28(2):69-71.
    [86]李彬华,叶彬浔.CCD相机读出噪声、电荷转移效率的测试和归算的改进方法[J] .天文研究与技术,2005,2(3):177-185.
    [87]江孝国,许婉清.科学CCD相机同步控制器[J] .爆轰波与冲击波,1996,13(1):37-40.
    [88] Adrian R.J.Particle Image Velocimetry[M]. New York:Springer Verlag Berlin Heidelberg,1998:14-20.
    [89] Kenneth R. Castleman(朱志刚译).Digital Image Processing[M] .北京:电子工业出版社,2004;10-230.
    [90] Adrian R.J.Particle Image Velocimetry[M]. New York:Springer Verlag Berlin Heidelberg,1998:104-130.
    [91]魏润杰.数字全息粒子图像测速技术(DHPIV)研究及其应用[D] .北京:北京航空航天大学,2002:20-23.
    [92]王延颤,张永明,廖光煊.DPIV的FFT互相关算法[J] .中国科学技术大学学报,1999,29(3):316-321.
    [93]魏润杰,申功炘,丁汉泉.数字全息罻油枷癫馑偌际跹芯縖J] .北京航空航天大学学报,2004,30(5):456-460.
    [94]王灿星,林建忠,山本富士夫.二维PIV图像处理算法[J] .水动力学研究与进展,2001,16(4) :399-404.
    [95]王小兵,韩洪升,崔海清等.基于粒子图像测速技术的垂直管中螺旋流的研究[J] .石油学报,2009,30(4):83-87.
    [96]张建伟.井下采油单螺杆泵的现状及发展[J] .石油机械,2000,28(8):56-58.
    [97]屈文涛,赵宁,徐建宁.同步式双螺杆泵螺杆瞬态动力学分析[J] .石油机械,2007,35(3):38-40.
    [98]盖伟涛,戴瑾华.井下螺杆泵定子的失效分析及解决方法[J] .石油矿场机械, 2008,37(9):71-73.
    [99]陈涛平,胡靖邦.石油工程[M] .北京:石油工业出版社,2001:328-334.
    [100]顾国芳.聚合物流变学基础[M] .上海:同济大学出版社,2000:61-242.
    [101] Yutaka Yamada. Resistance of a flow through an annulus with an inner rotaling cylinder [J]. Bulletin of JSME, 1962, 5(18): 302-310.
    [102]王小兵,韩洪升,杨海滨.地面驱动螺杆泵抽油杆旋转效应的研究[J] .流体机械,2009,37(10):11-18.
    [103]王小兵,刘扬,崔海清等.地面驱动螺杆泵井筒中流体流动规律的研究[J]石油机械,2010,38(1 ):8-10.
    [104]陈文梅,褚良银.旋转流分离理论[M] .北京:冶金工业出版社,2002:1-24.
    [105]赵国庆,张明贤.水力旋流器分离技术[M] .北京:化学工业出版社,2003:1-31.
    [106]贺凤云,孙岩,王秀莲.水力旋流器在老化油处理中的应用[J] .大庆石油学院学报,2008,32(2):52-55.
    [107]蒋明虎,赵立新.含油污水高效处理系统试验研究[J] .化学工程,2002, 30(1);45-47.
    [108]蒋明虎,贺杰.油水分离用水力旋流器的模拟试验[J] .石油机械,1994,22(5):15-17.
    [109]蒋明虎,芦存财,张勇.井下油水分离系统串联结构设计[J] .石油矿场机械,2007,36(12):59-62.
    [110]郭广东,邓松圣,张福伦.固-液-液三相分离水力旋流器现状及发展趋势[J] .石油矿场机械,2009,11(16):16-18.
    [111]周孙彪,康宜华.油田采油污水回注处理技术回顾与展望[J].石油机械,2002(12):38-41.
    [112]高常庆,李苏平,程振华,等.旋流器的现场使用[J].石油矿场机械,2005,34(5):98-100.
    [113]褚良银,陈文梅.水力旋流器流场研究成果与展望[J].化工机械,1992,19(5):299-302.
    [114]刘晓敏,檀润华,蒋明虎.水力旋流器结构形式及参数关系研究[J] .机械设计, 2005,22(2):26-28.
    [115]赵丹,雷武刚.抽油井杆管偏磨原因及防治措施[J] .长江大学学报:理工卷,2009,6(4):177-178.
    [116]党永峰,徐广杰,石丽华.双河油田抽油机井管杆偏磨及防治对策研究[J] .石油天然气学报,2009,31(5):396-399.
    [117]杨海滨,刘松林,李汉周.三维井眼抽油杆与油管防偏磨技术研究与应用[J] .钻采工艺,2008,31(6):94-97.
    [118] H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯[J] .北京.中国石化出版社,1992:66-74.
    [119]史铁军,吴德峰.高分子流变学基础[M].北京:化学工业出版社,2009.14-22.