316不锈钢金属粉末的选择性激光烧结成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为快速成形技术的一个重要分支,利用选择性激光烧结技术烧结金属粉末成形金属零件或块体是 20 世纪 90 年代初发展起来的能直接制造任意几何形状的金属零部件的一项新技术。由于材料和工艺因素的限制,直接用金属粉末激光烧结制造金属零件还存在一定不足之处,球化是其中的突出问题之一。球化效应的产生使得烧结线不连续,成形过程难于持续进行;又导致成形件的内部孔隙增加,成形件强度和密度减小、表面粗糙度增大及尺寸精度降低。 本文对 316 不锈钢粉末进行了激光烧结实验,从材料和工艺参数两方面入手,初步分析和探讨了球化产生机理和影响球化的因素,并在优化粉末体系和工艺参数的基础上,成功烧结出具有一定形状、无明显球化的块体。
     在对单组元粒度为 45μm 的 316 不锈钢粉末进行激光烧结的研究中发现,球化现象在较宽广的工艺条件下表现十分严重,成形困难,烧结试样由较大的球形颗粒构成。球化颗粒尺寸随扫描速度和粉层厚度(0.25-0.4mm 范围内)的增加而减小;球化颗粒尺寸随激光功率的增大而增大,但激光功率增大超过500W 时,球化颗粒尺寸则随功率的增大而有所减小。
     本文还进行了双组元 45μm 与 80μm 不同粒度 316 不锈钢粉末的混合粉末体系和在 45μm 的 316 不锈钢粉末中添加特制的添加剂的激光烧结实验研究。研究发现,对该双组元粉末,在 750W 的激光功率、0.02m/s 的扫描速度下,成形出具有较好表面质量、无明显球化的块体。研究结果表明,采用颗粒尺寸成双峰分布的混合粉末体系有助于减小球化倾向。
     实验还发现,316 不锈钢粉末的激光烧结对添加剂具有一定的选择性。选用 CuP 作为添加剂对改善 316 不锈钢粉末的球化没有明显作用,烧结结果不是很理想;选用钎剂 102 作为添加剂,在 750W 的激光功率、0.02m/s 的扫描速度条件下,可以烧结成形出具有一定形状的块体试样,研究发现,球化现象得到明显抑制,结果表明,对 316 不锈钢粉末的激光烧结成形,钎剂 102 是一种抑制球化的合理添加剂。
     对以上两个烧结块体的微观组织分析表明,烧结试样组织以柱状晶和等轴晶两种组织形态交替叠加而成,形成整个烧结件的组织周期性重复出现。
As an important branch of Rapid Prototyping (RP), Selective Laser Sintering(SLS) of metal powder, which is also named Direct Metal Laser Sintering (DMLS),is a recently developed technique which owns the capability of fabricating metalparts with the arbitrary geometry. Due to the limitation of material properties andprocessing conditions used, lots of defects exist in the parts processed by DMLS,such as “balling” effect, warping deformation, low sintered density, and poormechanical strength. Balling effect is the most serious defect which is unique toDMLS. The occurrence of balling resulted in the formation of discontinuoussintered tracks and high porosity in the sintered structure. This may in turnlowered the density and strength of the sintered parts, increased the surfacecoarseness of the parts, and decreased the dimension precision.
     In the presented paper, some experiments on DMLS of 316 stainless steelpowder were carried out. Basing on these, the mechanism of balling occurrenceand the effects of process parameters (laser power, scan speed, and layer thickness)on balling effect were investigated. Using optimized powder system and processparameters, two specimens without obvious balling particles were sinteredsuccessfully, in approximate oblong shape.
     At different process parameters, DMLS of 316 stainless steel powder with theparticle size of 45μm were done. It was found that the balling was serious duringlaser sintering, and sintered specimens were made up of big balling particles. Thesize of balling particles reduced with increasing scan rate and layer thicknesswithin the range 0.25-0.4mm. The size of balling particles increased withincreasing laser power below 500W; while the laser power increased above 500W,the balling trend showed a decrease.
     DMLS of a powder mixture, which was blended with two kinds of 316stainless steel powder with different particle size of 45μm and 80μm, wassuccessfully carried out. At the laser power of 750W and the scan rate of 0.02m/s,the part was sintered, with sound surface quality and without obvious balling. Themicrostructures of the sintered part were mainly consisted of directional crystalsand isometric crystals.
    
    The result showed that a bimodal mixture produced by mixing coarse and finepowders, each of which has the particle size in Gauss distribution, can be used toreduce the trend of balling. It also was found that pre-alloyed CuP powder was useless to improvesintering ability of 316 stainless steel powders. Using the QJ102 as an additive,the part without obvious balling was sintered. It showed that QJ102 was aneffective additive in restraining balling occurrence during laser sintering of 316stainless steel powders.
引文
[1] Chua Chee Kai, Leong Kah Fai. Rapid prototyping in Singapore: 1988 to 1997. Rapid Prototyping Journal, 1997, 3(3): 116-119.
    [2] Kruth J P. Material increase manufacturing by rapid prototyping technique. Annals of the CIPP, 1999, 40(2): 603-604.
    [3] 朱剑英. 增材制造法-MIM 技术. 航空精密制造技术,1993,(1):29-32.
    [4] J.P. Kruth, X. Wang, T. Laoui, et al. Progress in Selective Laser Sintering. Annals of the CIPP, 2001, 21-38.
    [5] 张剑峰,张建华,赵剑峰,等. 激光快速成形制造技术的应用研究进展. 航空制造 技术,2002,7:34-37.
    [6] Harris L. Marcus, David L. Bourell. Solid freeform fabrication, Finds New Applications. Advanced Materials Processes, 1993, 28(5): 148-152.
    [7] J.P. Kruth, M.C. Leu, T. Nakagawa. Progress in additive manufacturing and rapid prototyping. Annals of the CIPP, 1998, 47(2): 525-540.
    [8] Mukesh Agarwala, David Bourell, Joseph Beaman, et al. Direct selective laser sintering of metals. Rapid Prototyping Journal, 1995, 1(1): 26-36.
    [9] Jan-Erik Lind, Juha Kotila, Tatu Syv?nen, et al. Dimensionally accurate mold inserts and metal components by direct metal laser sintering. Materials Research Society, 2000, 625: 45-50.
    [10] 邓琦林. 选择激光烧结陶瓷粉末的研究. 制造技术与机床,1998,12:26-28.
    [11] 赵剑峰. 基于选区激光烧结快速成形的快速制造技术研究. 南京航空航天大学,博 士学位论文,1999.
    [12] F. Costache, A. Marian, D. M. Buca, et al. Selective laser sintering processing of metallic components by using a Nd:YAG laser beam, In SIOEL 99, Sixth Symposium on Optoelectronics. Proceedings of SPIE, 2002, 4068: 555-561.
    [13] 杨森,钟敏霖,张庆茂,等. 激光快速成型金属零件的新方法. 激光技术,2001, 25(4):254-257.
    [14] 张剑峰. Ni 基金属粉末激光直接烧结成形及关键技术研究. 南京航空航天大学,博 士学位论文,2002.
    [15] 潘琰峰,沈以赴,顾冬冬,等. 选择性激光烧结技术的发展现状. 工具技术,2004, 38(6):3-7.
    
    [16] Gabriel Bugeda, Miguel Cervera, Guillermo Lombera. Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyping Journal, 1999, 5(1): 21-26.
    [17] P. Fischer, V. Romano, H.P. Weber, et al. Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Materialia, 2003, 51: 1651-1662.
    [18] 张剑峰,沈以赴,赵剑峰,等. 激光烧结成形金属材料及零件的进展. 金属热处理, 2001, 26(12):1-4.
    [19] 朱林泉,白培康,朱江淼. 快速成型与快速制造技术. 北京:国防工业出版社,2003.
    [20] 李鹏,熊惟皓. 选择性激光烧结的原理及应用. 材料导报,2002,16(6):55-58.
    [21] 王树杰. 国内外快速原型技术的发展与展望. 机械制造,1998,1:5-7.
    [22] Turning Two Months into Two Weeks. Technical Review DTM Corporation, 1996.
    [23] 冯涛,孙建民,宗贵升. 用选择性激光烧结实现快速精密铸造. 中国机械工程, 1997,8(5):1-23.
    [24] Engel B, Bourell D.L.. Titanium alloy power preparation for selective laser sintering. Rapid Prototyping journal, 2000, 6(2): 97-106.
    [25] Y.P. Kathuria. Microstructuring by selective laser sintering of metallic powder. Surface and Coatings Technology, 1999, 116-119: 643-647.
    [26] Laoui T, Froyen L, Kruth J P. Effect of mechanical alloying on selective laser sintering of WC-9Co powder. Powder Metallurgy, 1999, 42(3): 203.
    [27] Robet Irving. Taking a Powder: laser processing. Inter J Powder Metallurgy, 2000, 36(4): 69.
    [28] 陈森昌,黄树槐,史玉升. 选择性激光烧结间接成型金属件及其在机械工业中的应 用. 机械工程材料,2002,26(8):1-7.
    [29] Yong-Ak Song. Experimental study of the basic process mechanism for direct selective laser sintering of low-melting metallic powder, Annals of the CIRP, 1997, 46(1): 127-130.
    [30] F. E. H. Tay, E. A. Haider, J. Mater. Laser sintered rapid tools with improved surface finish and strength using plating technology. Process Technology. 2002, 121: 318-322.
    [31] Nikolay K. Tolochko, Sergei E. Mozzharov, Igor A. Yadroitsev, et al. Selective laser sintering and cladding of single-component metal powders. Rapid Prototyping journal, 2004, 10(2): 88-97.
    [32] Nikolay K. Tolochko, Sergei E. Mozzharov, Igor A. Yadroitsev, et al. Balling processes during selective laser treatment of powders. Rapid Prototyping journal, 2004, 10(2): 78-87.
    
    [33] B.Vander Schueren, J. P. Kruth. Powder deposition in selective metal powder sintering. Rapid Prototyping Journal, 1995, 1(3): 23-31.
    [34] 郭庚辰. 液相烧结粉末冶金材料. 北京:化学工业出版社,2003.
    [35] Abdolreza Simchi, Frank Pelzoldt, Haliko Pohl. Direct metal laser sintering: material considerations and mechanisms of particle bonding. The International Journal of Powder Metallurgy, 2001, 37(2): 49-61.
    [36] H. J. Niu, I. T. H. Chang. Liquid phase sintering of M3/2 high speed steel by selective laser sintering. Scripta Materialia, 1998, 39(1): 67-72.
    [37] H. J. Niu, I. T. H. Chang. Selective laser sintering of gas and water atomized high speed steel powders. Scripta Materialia, 1999, 41(1): 25-30.
    [38] H. H. Zhu, L. Lu, J. Y. H. Fuh. Development and characterisation of direct laser sintering Cu-based metal powder. Journal of Materials Processing Technology, 2003, 140: 314-317.
    [39] Y. Tang, H. T. Loh, Y. S. Wong, et al. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. Journal of Materials Processing Technology, 2003, 140: 368-372.
    [40] 赵剑峰,余承业. 液相 SLS 零件精度的几个因素. 电加工,1998,(6):34-37.
    [41] Suman Das, Joseph J. Beaman, Martin Wohlert, et al. Direct laser freeform fabrication of high performance metal components. Rapid Prototyping Journal, 1998, 4(3): 112-117.
    [42] Jouni H?nninen. Direct metal laser sintering. Advanced Materials & Processes, 2002, 157: 33-36.
    [43] 黄树槐,张祥林,马黎,等. 快速原型制造技术的进展. 中国机械工程,1997, 8(5):8-12.
    [44] 李湘生,韩明,史玉升,等. SLS 成形件的收缩模型和翘曲模型. 中国机械工程, 2001,12(8):887-889.
    [45] 严仁军,刘子建. SLS成型精度的分析和控制. 机械研究与应用,2003,16(1): 28-30.
    [46] M.Von. 奥尔曼[德]著. 激光束与材料相互作用的物理原理及应用,北京:科学出版 社,1994.
    [47] Wang X., Kruth J. P. A simulation model for direct selective laser sintering of metal powders. Computational structures technology, 2000, 5: 57-71.
    [48] 陆建,倪晓武,贺安之. 激光与材料相互作用物理学,北京:机械工业出版社,1996.
    [49] 邓琦林. 激光烧结陶瓷粉末生成三维零件的研究. 南京航空航天大学,博士学位论 文,1997.
    
    [50] 黄培云. 粉末烧结理论,北京:冶金工业出版社,1982.
    [51] 张建华,赵剑峰,田宗军,等. 镍基合金粉末的选择性激光烧结试验研究. 中国机 械工程,2004,15(5):434-434.
    [52] Khang M. W.. Direct metal laser sintering for rapid tooling: processing and characterization of EOS parts. Journal of Material Processing Technology, 2001, 113: 262-272.
    [53] 沈以赴,顾冬冬,余承业,等. 直接金属粉末激光烧结成形过程温度场模拟. 中国 机械工程,2005,16(1):67-73.
    [54] 果世驹. 粉末烧结理论. 北京:冶金工业出版社,1998,3:169.
    [55] Nikolay K. Tolochko, Tahar Laoui, Yurii V. Khlopkov, Sergei E. Mozzharov, Victor I. Titov, and Michail B.Ignatiev. Absorptance of powder materials suitable for laser sintering. Rapid Prototyping Journal, 2002, 6(3): 155-160.
    [56] 中国金属学会,中国有色金属学会. 金属材料物理性能手册①金属物理性能及测试 方法. 北京:冶金工业出版社,1987.
    [57] 邓琦林,方建成. 选择性激光烧结粉末的参数分析. 制造技术与机床,1997,10: 26-29.
    [58] 张剑峰,沈以赴,赵剑峰,等. Ni 基金属粉末激光快速制造的研究. 航空学报,2002, 23(3):221-225.
    [59] 唐亚新. 激光烧结快速成形技术及其在精密铸造中的应用研究. 南京航空航天大 学,博士学位论文,1999.
    [60] 李湘生,史玉升,黄树槐. 激光选区烧结成形机的粉末预热研究. 机械工程学报, 2002,38(3):94-98.
    [61] Mukesh K. Agarwala, David L. Bourell, Benny Wu, et al. An evaluation of the mechanical behavior of bronze-Ni composition produced by selective laser sintering. Proceedings of the Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, TX, 1993: 193-202.
    [62] 张剑峰,黄因慧,张建华,等. Ni 基 16Cr4B4Si 粉末激光成形试验研究. 应用激光, 2001,21(4):233-236.
    [63] 顾冬冬,沈以赴,潘琰峰,等. 直接金属粉末激光烧结成形机制的研究. 材料工程, 2004,(5):42-48.
    [64] 张人佶,单忠德,隋光华,等. 粉末材料的 SLS 工艺激光扫描过程研究. 应用激光, 1999,19(5):299-302.
    [65] Zhang Jianfeng, Huang Yinhui, Shen Yifu, et al. Study on selective laser sintering of metallic powders. Transactions of Nanjing University of Aeronautics & Astronautics,
     2002, 19(1): 77-83.
    
    [66] A. Simchi, H. Pohl. Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Materials Science and Engineering A, 2003, 359(2): 119-128.
    [67] R. Morgan, C. J. Sutcliffe, W. O’ Neill. Density Analysis of Direct Metal Laser Re-melted 316L Stainless Steel Cubic Primitives. Journal of Materials Science, 2004, 39(4): 1195-1205.
    [68] 邓琦林,余承业. 金属粉末的选择性激光烧结. 航空工艺技术,1996,2:19-21.
    [69] 顾冬冬,沈以赴,杨家林,等. 多组分铜基金属粉末选区激光烧结致密化机理. 中 国有色金属学报,已录用.
    [70] 顾冬冬,沈以赴,杨家林,等. 多组分铜基金属粉末选区激光烧结试验研究. 航空 学报,已录用.
    [71] 孙珍宝等编著. 合金钢手册(上册),北京:冶金工业出版社,1984 年第 1 版.