谷胱甘肽S-转移酶M1、T1基因多态性与儿童白血病的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白血病是儿科常见恶性肿瘤,约占儿科恶性肿瘤的33%。其中急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)约占75%,急性髓细胞性白血病(acute myeloblastic leukemia,AML)约占20%。多数学者认为儿童白血病可能是遗传因素和环境因素共同作用的结果。而遗传性代谢酶纯合子缺失导致的机体对致畸变物质代谢解毒能力下降,可能是儿童白血病发生的遗传学基础之一。
     作为人体Ⅱ相代谢酶,谷胱甘肽S-转移酶超家族(glutathione S-transferase superfamily,GSTs)具有多种生理功能。GSTs主要通过催化还原型谷胱甘肽(reduced glutathione,GSH)的巯基(-SH)与致畸变物质的亲电子核团结合,参与其代谢解毒过程。偶尔,在代谢过程中活化某些致畸变物质。此外,GSTs尚籍其谷胱甘肽过氧化物酶作用和氢过氧化物酶作用,催化还原型GSH与过氧化物和氢过氧化物结合,保护细胞免受氧化损伤。目前,人类的GSTs至少可以分为8类:alpha(α)、mu(μ)、theta(θ)、kappa(κ)、pi(π)、sigma(σ)、zeta(ζ)和omega(Ω)。其中,GSTM1基因(编码GSTμ)、GSTT1基因(编码GSTθ)在人群中呈多态性分布,已经成为肿瘤病因学研究的新热点之一。据报道,GSTM1、GSTT1基因多态性与多种恶性肿瘤的发生密切相关。但GSTM1、GSTT1基因多态性与儿童急性白血病发生的关系尚不清楚,国内未见此方面的报道。
     此外,GSTs还参与白血病患者的多药耐药过程。GSTs的代谢底物广泛,尚包括部分抗肿瘤药物。GSTM1、GSTT1基因纯合子缺失的白血病患者对这些抗肿瘤药物的代谢能力下降,细胞内的药物浓度增加,可能影响患者的预后。但是,目前国内尚缺乏这一方面的研究报告。
    
    郑州大学2003届硕士学位论文
    谷肤甘肤S一转移酶MI、Tl基因多态性与儿童白血病的相关研究
     鉴于此,本研究将通过提取全血基因组DNA、进行多重聚合酶链反应
     (multiplex polymerase ehain reaCtlon,multi一pCR)的方法,检测GSTMI、GSTTI
    纯合子缺失基因型在急性白血病儿童和健康人群中的表达,探讨GSTMI、GSTTI
    基因多态性在儿童急性白血病病因及预后中的作用,为高危人群的筛查和预后评
    估提供理论依据。
    材料和方法:
    1.分组和临床资料的收集:
     (l)健康对照组:随机抽取146例健康献血者外周血作为对照;
     (2)ALL组:共计67例。其中,42例患者在确诊后接受了正规治疗;
     (3)AML组:共计犯例。
    2.实验方法:
     (1)采用蛋白酶K、无水乙醇,从全血组织中提取基因组DNA;
     (2)应用紫外分光光度计,测定DNA的纯度和浓度;
     (3)基因组DNA的multi一PCR扩增;
     (4)扩增产物经2%琼脂糖凝胶电泳(澳乙咤染色)(8OV60而n),判定其基
     因型。
    3.统计学分析:
     采用了检验和精确概率法,分析急性白血病儿童和健康对照组之间GSTM卜
    GsT’T1基因纯合子缺失率是否存在差异;采用秩和检验、精确概率法和了检验,
    比较GSTMI、GSTTI纯合子缺失基因型与急性白血病儿童的高危临床因素如发
    病年龄、性别、发病时的外周血白细胞数目、FAB形态学分型、早期治疗反应
    等之间的相关关系。以a=0.05作为显著性水准。同时以GSTMI、GSTTI纯合
    子缺失基因型为暴露因素,计算比值比(odds ratio,OR)和95%可信区间
     (eo吐dence Interval,Cl)。
    结果:
    1.健康人群的GSTMI纯合子缺失率为52.74%,GSTTI纯合子缺失率为49.32%,
     GST Ml一Tl纯合子联合缺失率为24.66%;
    2.ALL患者的GSTMI、GST Ml一Tl纯合子缺失率显著高于对照组(76.12%对
    
    郑州大学2003届硕士学位论文
    谷胧甘肤S一转移酶Ml、Tl基因多态性与儿童白血病的相关研究
     52.74%,OR=2.856,95%Cl=1.493一5.465,P=0.001;50.74%对24.66%,
     OR二3 .148,95%Cl=1.712一5.789,P=0.0001);
    3.AML患者的GSTMI纯合子缺失率显著高于对照组(71.88%对52.74%,
     OR二2 .290,95%Cl=0.992一5.285,P=0.048):
    4.ALL和AML患者的GSTTI纯合子缺失率与对照组之间差异无显著性(分别
     有62.69%对49.32%,OR二1.621,95%Cl=0.899一2.920,P=0.107;59.38%对
     49.32%,OR井1.502,95%Cl=0.691一3.265,P=0.303);
    5.GSTMI、GSTTI基因型与ALL和AML患者的性别、发病年龄、发病时的
    外周血白细胞数、
    无显著相关关系
    FAB(French一American一British,FAB)形态学分型之间均
    (均有P>0.05);
    6.GSTMI基因纯合子缺失的ALL患者,与有GSTMI功能性等位基因的ALL
     患者相比,其早期治疗反应差异无显著性(O卜2.500,95%Cl=0.262一23.864,
     P二0.733);但GSTTI基因纯合子缺失的ALL患者,其发生早期治疗反应差
     的风险低于有GSTTI功能性等位基因的ALL患者(OR=0.238,
     95%Cl=0.060~0.949,P=0.080)。
    结论:
    1 .GSTMI纯合子缺失基因型可能是儿童急性白血病发生的危险基因型;
    2.GSTMI、GSTTI纯合子缺失基因型对儿童急性淋巴细胞性白血病的发生有协
     同作用;
    3.GST’T1纯合子缺失基因型可能在儿童急性白血病的发生过程中不起关键作
     用,但具有该基因型的急性淋巴细胞性白血病患者其早期治疗反应较好;
    4.GSMI、GSTTI?
Leukemia is a common childhood cancer that constituting about 33% of all childhood cancers. Acute lymphoblastic leukemia (ALL) constitutes 75% of childhood leukemia and acute myeloblastic leukemia (AML) constitutes 20% of childhood leukemia. Some investigators suggest that childhood leukemia may be linked to inherited genetic susceptibility and environmental factors. The null genotypes for some inherited metabolic enzymes that cause less activity to the mutagenic substances may be one of the bases of childhood leukemia susceptibility.
    As the phase II metabolizing enzymes, the glutathione S-transferase superfamily (GSTs) enzymes have numerous functions. GSTs can catalyze the conjugation of the electrophilic binding sites of the mutagenic substances with reduced glutathione, and thereby plays a significant role in the inactivation and, occasionally, the activation of some xenobiotics. In addition, GSTs can catalyze the peroxides and hydroperoxides with reduced GSH via glutathione peroxidase and hydroperoxidase activities, then protect the cells from oxygenation. Until present, human's GSTs have been classified at least 8 groups, such as alpha(α), mu(μ), theta(θ), kappa(κ), pi(π), sigma(σ), zeta(ζ) and omega(Ω). GSTM1(μ ), GSTT1(θ) exhibit genetic polymorphisms in population distribution. Now, much attention are paid to the relationship between GSTM1 , GSTT1 genetic polymophisms and etiology of the malignancies. It has been reported that GSTM1, GSTT1 genetic polymorphisms are associated with several malignancies. But the re
    lationship between the GSTM1, GSTT1 genetic
    
    
    
    polymorphisms and childhood leukemia remains unknown in China.
    In addition, GSTs may contribute to anticancer drug resistance. The metabolic substances of GSTs are numerous including some anticancer drugs. The patients with the null genotypes may reduce the metabolic activity and decrease the concentrations of the anticancer drugs in the cells. So, GSTs genetic polymorphisms may influence the outcomes of the childhood leukemia. But there are no related reports in our country.
    In the present study, the genomic DNA of healthy controls and children with acute leukemia are analyzed, through multiplex polymerase chain reaction (multi-PCR) to determine whether GSTM1 , GSTT1 null genotypes could affect the etiology and outcome of childhood leukemia. It will contribute to the selection of high-risk population and the prediction of treatment outcome.
    Meterials and methods:
    1 . Categorizations and clinical data collection:
    (1) the healthy control group: One hundred and forty six healthy blood donors are selected at random as the controls;
    (2) ALL group: sixty seven cases. Forty two patients of this group received standard chemotherapy after diagnosis;
    (3) AML group: thirty two cases.
    2. Methods:
    (1) Using proteinase K and ethanol, the genomic DNA were extracted from the perpheral whole blood;
    (2) The purities and concentrations of the genomic DNA were assayed by spectrophotometer;
    (3) The genomic DNA were amplified by multi-PCR;
    (4) The amplified products were visuslized by electrophoresis in 2% agarose gels containing ethidium bromide at 80V for 60 min to determine the genotypes.
    3. Statistical analysis:
    The chi-square test and Fisher exact test are used to determine the differences in
    
    
    distribution of the GSTM1 ,GSTT1 null genotypes between the cases and the controls. The chi-square test, Fisher exact test and Pilixon rank-sum test are used to determine the association between the GSTM1 ,GSTT1 null genotype and some high-risk factors for the childhood leukemia. For example, sex, age and white blood cell (WBC) count at diagnosis , French- American-British (FAB) subgroups. The significant level is the rate of less than 0.05. When the null genotype is considered as exposed factor, Odds Ratio (OR) and 95% confidence interval (CI) are also calculated.
    Results:
    1. The frequencies of the GSTM1, GSTT1 and GST M1-T1 null genotypes are 52.74%, 49.32% and 24.66% in the healthy controls, respectively;
引文
1. Nelson WE,Behrman RE,Kliegman RM,et al.Nelson Textbook of Pediatrics (15th ed).张国成等主译.世界图书出版社,1999:417
    2. Hrusak O, Trka J, Zuna J, et al. Acute lymphoblastic leukemia incidence during socioeconomic transition: selective increase in children from 1 to 4 years. Leukemia, 2002, 16(4) : 720-5
    3. 肖志坚.急性白血病病因学研究现况.白血病·淋巴瘤,2001,10(2) :119-21
    4. 薛开先.肿瘤分子流行病变-肿瘤易感性、风险性评价与预防(续3) .癌 变·畸变·突变,2001,13(1) :62-5
    5. Strange RC, Spiteri MA, Ramachandran S, et al. Glutathione-S-transferase family of enzymes. Mutat Res, 2001, 482 (1-2) : 21-6
    6. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol, 1995, 30 (6) : 445-600
    7. Chen S, Xue K, Xu L, et al. Polymorphisms of the CYP1A1 and GSTM1 genes on relation to individual susceptibility to lung carcinoma in Chinese population. Mutat Res, 2001, 458 (1-2) : 41-7
    8. 石云,周新文,周宜开,等.CYP2E1、 GSTM1基因多态性与肺癌、食管癌易 感性研究.华中科技大学学报(医学版),2002,31(1) :14-7
    9. Lee SJ, Cho SH, Park SK, et al. Combined effect of glutathione S-transferase Ml and Tl genotypes on bladder cancer risk. Cancer Lett, 2002 , 177 (2) : 173-9
    10. Setiawan VW, Zhang ZF, Yu GP, et al. GSTT1 and GSTM1 null genotypes and the risk of gastric cancer: a case-control study in a Chinese population. Cancer Epidemiol Biomarkers Prev, 2000, 9 (1) : 73-80
    11 . Bian J, Shen F, Wang J, et al. The mutation of deletion for glutathione S-transferase M1 gene in the tissure of hepatocellar carcinoma. Zhonghua Yi Xue Yi Chuan Za Zhi, 1999, 16 (3) : 171-3
    12. Sasai Y, Horiike S, Misawa S, et al. Genotype of glutathione S-transferase and other genetic configurations in myelodysplasia. Leukemia, 1999, 23 ( 11 ): 975-81
    
    
    13.刘小军.谷胱甘肽转移酶与白血病多药耐药.国外医学输血及血液分册,2001,24(4):323-5
    14. Tsuchida S, Sato K. Glutathione transferases and cancer. Crit Rev Biochem Mol Biol, 1992, 27(4-5): 337-84
    15. Listowsky I. High capacity binding by glutathione S-transferases and glucocorticoid resistance. In: Tew KD, Pickett CB, Mantle TJ, et al. Structure and function of glutathione transferases. Boca Raton, FL: CRC Press. 1993: 199
    16. Stanulla M, Schrappe M, Brechlin AM, et al. Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in children B-cell precursor acute lymphoblastic leukemia: a case-control study. Blood, 2000, 95 (4): 1222-8
    17. Davies SM, Robison LL, Buckley JD, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol, 2001, 19(5): 1279-87
    18.张之南主编.血液病诊断及疗效标准(第1版).天津科学技术出版社.1991:152-65
    19.冷曙光,宋文佳,王雅文,等。中国汉族人口三种谷胱甘肽 S-转移酶基因多态性分析.中华预防医学杂志,2001,35(3):159-62
    20.顾龙君.调整策略循序渐进提高我国小儿急性淋巴细胞性白血病患者的长期存活率.白血病·淋巴瘤,2002,11(5):260-2
    21.王慕逖主编.儿科学(第5版).人民卫生出版社,2001:387
    22.郑德先,吴克复,褚建新主编.现代实验血液学研究方法与技术.北京医科大学、中国协和医科大学联合出版社,1999:354-5
    23.卢圣栋主编.现代分子生物学实验技术(第1版).高等教育出版社,1993:58-9
    24. Arand M, Muhlbauer R, Hengstler J, et al. A multiplex polymerase chain reaction protocol for the simultaneous analysis of the glutathione S-transferase GSTM1 and GSTT1 polymorphisms. Anal Biochem, 1996, 236(1): 184-6
    25. Fryer AA, Zhao L, Alldersea J, et al. Use of site-directed mutagenesis of allele-specific PCR primers to identify the GSTM1 A, GSTM1 B, GSTM1 A, B
    
    and GSTM1 null polymorphisms at the glutathione S-transferase GSTM1 locus. Biochem J, 1993, 295(pt1): 313-5
    26. Xu S J, Pearson WR. Characterization of the polymorphic human class mu GSTM1-0 deletion, in Glutathione S-transferase: Structure, function and clinical implications(Vermulen NPE, Mulder GJ, Nieuwenhuyse H, Peter WHM, and Bladerer PJV, eds)Tayer & Francis Ltd. London, 1996:227-38
    27. Mclellan RA, Oscarson M, Alexandrie A-K, et al. Characterization of a human glutathione S-transferase μ cluster containing a duplicated GSTM1 gene that causes ultrarapid enzyme activity. Mol Pharmacol, 1997, 52(6): 958-65
    28. Guo JY, Wan DS, Zeng RP, et al. The polymorphism of GSTM1, mutagen sensitivity in colon cancer and healthy control. Mutat Res, 1996, 372 (1): 17-22
    29. Warwick A, Sarhanis P, Redman C et al. Them class glutathione S-transferase GSTT1 genotypes and susceptibility to cervical neoplasia: interactions with GSTM1, CYP2D6 and smoking. Carcinogenesis, 1994, 15(12): 2841-5
    30. Chen CL, Liu Q, Relling MV. Simultaneous characterization of glutathione S-transferase M1 and T1 polymorphisms by polymerase chain reaction in American whites and blacks. Pharmacogenetics, 1996, 6(2): 187-91
    31.沈靖,王润田,王朝曦,等.中国南方汉族人群三种代谢酶基因多态性的分布特征.中华医学遗传学杂志,2002,19(4):302-7
    32.林国芳,马晴雯,查永林,等.上海“本地人”正常人群GSTT1和GSTM1基因型多态性研究.癌变·畸变·突变,2001,13(1):10-2
    33. Webb G, Vasks V, Coggan M, et al. Chromosomal localization of the gene for the human theta class glutathione transferase (GSTT1). Genomics, 1996, 33(1):121-3
    34.邹丽莉,林国芳,沈建华.上海地区白血病患者GSTT1和GSTM1基因纯合子缺失的初步研究.中华血液学杂志,1999,20(10):546-7
    35. Bian JC, Shen M, Shen L, et al. Susceptibility to hepatocellar carcinoma is associated with the null genotypes of GSTM1 and GSTT1. Chin J Dig, 1999, 19:87-90
    36. Lee EJ, Wong JY, Yeoh PN, et al. Glutathione S-transferase theta (GSTT1) genetic
    
    polymorphism among Chinese, Malays and Indians in Singapore. Pharmacogene-tics, 1995, 5 (5) : 332-4
    37. Nelson HH, Wiencke JK, Christiani DC, et al. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcino-genesis, 1995, 16 (5) : 1243-5
    38. Chen CL, Liu Q, Pui CH, et al. Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood, 1997, 89 (5) : 1701-7
    39. Saadat I, Assdat M. The glutathione S-transferase mu polymorphism and suspecti-bility to acute lymphocytic leukemia. Cancer Lett, 2000, 158 (1) : 43-5
    40. Alves V, Amorim A, Fereira F, et al. The GSTM1 and GSTT1 genetic polymorphisms and susceptibility to acute lymphoblastic leukemia in children from north Portugal. Leukemia, 2001, 16 (8) : 1565-7
    41. Krajinovic M, Labuda D, Richer C, et al. Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1 and GSTT1 genetic polymorphisms. Blood, 1999, 93 (5) : 1496-501
    42. Bernardini S, Hirvonen A, Jarventaus H, et al. Trans-stilbene oxide-induced sister chromatid exchange in cultured human lymphocytes: influence of GSTM1 and GSTT1 genotypes. Mutagenesis, 2001, 16 (3) : 277-81
    43. Salama SA, Abdel-Rahman SZ, Sierra-Torres CH, et al. Role of polymorphic GSTM1 and GSTT1 genotypes on NNK-induced genotoxicity. Pharmacogene-tics, 1999, 9 (6) : 735-43
    44. Rojas M, Cascorbi I, Alexander K, et al. Modulation of benzo[α]pyrene diolepoxide-DNA adduct levels in human white blood cells by CYP1A1, GSTM1 and GSTT1 polymorphism. Carcinogensis, 2000, 21 (1) : 35-41
    45. Kato S, Bowman ED, Harrington AM. Human lung carcinogen-DNA adduct levels mediated by genetic polymorphisms in vivo. J Natl Cancer Inst, 1995, 87 (12) : 902-7
    46. Davies SM, Bhatia S, Rs J, et al. Glutathione S-transferase genotype, genetic suscptility, and outcome therapy in childhood acute lymphoblastic leukemia.
    
    Blood, 2002, 100 (1): 671
    47. Davies SM, Robison LL, Buckley JD, et al. Glutathione S-transferase polymorphisms in children with myeloid leukemia: A Children Cancer Group Study. Cancer Epideomoil Biomarkers Prev, 2000, 9(6): 563-6
    48. Schlade-Bartusiak K, Sasiadek M, Kozlowska J. The influence of GSTM1 and GSTT1 genotypes on the induction of sister chromatid exchanges and chromosome aberrations by 1,2: 3,4-diepoxybutane. Mutat Res, 2000, 465 (1-2): 69-75
    49. Yong LC, Schulte PA, Wiencke JK, et al. Hemoglobin adducts and sister chromatid exchanges in hospital workers exposed to ethylene oxide: effects of glutathione S-transferase T1 and M1 genotypes. Cancer Epideomoil Biomarkers Prev, 2001, 10(5): 539-50
    50. Landi S. Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res, 2000, 463(3): 247-83
    51.中华医学会儿科学分会血液学组、中华儿科杂志编辑委员会.小儿急性淋巴细胞性白血病诊疗建议(第二次修订草案).中华儿科杂志,1999,37(5):305-7
    52. Stanulla M, Anderer G, Arens S, et al. Polymorphism within glutathione Stransferase genes in childhood acute lymphoblastic leukemia: results of three case-control studies. Leukemia, 2001, 15(3): 495
    53.吴瑞萍,胡亚美,江载芳主编.诸福棠实用儿科学(第6版)下册.北京人民卫生出版社,1995:2177
    54. Anderer G, Schrappe M, Brechlin AM, et al. Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukemia. Pharmacogenetics, 2000, 10(8): 715-26
    55. Ishikawa T, Bao JJ, Yamane Y, et al. Coordinatal induction of MRP/GS-X pump and γ-glutamylcysteine synthetase by heavy metals in human leukemia cells. J Biol Chem, 1996, 271(25): 14981-8
    56. Waxman DJ. Glutathione S-transferases: role in alkylating agent resistance and possible target for modulation chemotherapy--a review. Cancer Res, 1990, 50
    
    (20):6449-54
    57.郁知非,沈迪 合著.现代血液病学(白细胞系及血小板、凝血因子疾病分册)(第1版).浙江科学技术出版社,1992:138
    58.任金海,郭晓楠.急性髓细胞性白血病的治疗进展.国外医学·输血及血液学分册,2000,23(5):330-2