引线键合铜球可变形性在线测量及Cu/Al界面反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速检测铜丝可变形能力、提高铜球可变形性和铜丝热影响区(Heat Affected Zone, HAZ)拉伸强度以及系统研究Cu/Al键合点可靠性问题是铜丝球焊技术应用和发展的关键。本文建立了一种新型、快速、高效的在线测量方法来评估铜丝以及铜球可变形性和铜丝HAZ最大拉伸载荷,并采用该方法研究了不同烧球电流对铜球可变形性、铜丝HAZ最大拉伸载荷的影响。研究了烧球工艺参数对铜球成形质量的影响,对铜球的冷却凝固过程进行了描述。对Cu/Al键合点进行高温老化实验,系统研究了Cu/Al键合界面处金属间化合物(Inter-metallic Compounds, IMC)以及裂纹的生长演变机制,并对IMC成分进行了解析。
     在线测量方法对测试环境敏感,金属丝型号、基板类型、劈刀类型等会对在线测量结果产生明显影响,因此在比较不同金属丝样品以及它们对应金属球的可变形性过程中,基板类型、基板温度、劈刀类型以及劈刀的装夹位置须保持一致。在线测量结果表明可变形性高的铜丝未必能生成可变形性高的铜球。
     烧球工艺参数对铜球可变形性、铜丝HAZ影响的研究结果表明大烧球电流配合短烧球时间可以提高铜球可变形性,有效降低键合过程中所必需的变形压力;能获得最大拉伸载荷更高、长度更短的HAZ,有利于小外形封装场合中的应用。烧球电流为250 mA时的铜球经0.6 N压力变形后的球高比45 mA下的小14 %,铜球整体可变形性高出7-8 %。250 mA下的铜丝HAZ最大拉伸载荷比45 mA下的高7.5-9.4 %,HAZ长度短22.45 %。
     针对于直径为50.8μm的铜丝,当烧球电流在120 mA以上、直径设定值为101.6μm时,铜球在直径、圆度、对称度以及表面质量等几个方面表现最佳。尾丝与打火杆距离(Electrode and Wire Distance, EWD)为0μm时烧球质量最佳。保护气体流量为0.8 l/min时烧球质量最佳,过大保护气体流量将会降低烧球效率。
     铜球主要由几个大尺寸柱状晶粒组成。凝固过程开始后,柱状晶粒基于未熔铜丝末端部分晶粒同质外延生长并以辐射状向铜球周围延伸。各柱状晶晶向略有不同,决定柱状晶晶向的主要因素为铜球内部热传递方向。冷却凝固过程中铜球内部热量散失的主要途径为热传导。
     可靠性研究结果表明在新形成的Cu/Al键合界面处没有发现IMC。高温老化1小时后键合点边缘区域开始出现Cu/Al IMC。IMC的生长速度随着老化时间的延长而不断下降,IMC层不断横向及纵向生长并延伸至键合点中心位置。在IMC出现之后,IMC层与铜球之间出现了孔洞,萌生位置也为键合点的边缘。随着IMC层的生长孔洞向键合点中心扩展。老化时间超过81小时后,在IMC层与铜球之间形成了贯穿的裂纹,此时IMC停止生长。Cu/Al键合界面间IMC的生长机制为扩散控制反应,其生长行为符合抛物线规律。IMC层主要由三种不同的相组成,分别为CuAl、CuAl2和Cu9Al4,其中CuAl的生成量相对较少。
It has great siginificance to develop a new high efficient method to evaluate the deformabilities of Cu wires. Furthermore, for further application of copper wire bonding, it is well recommended to study the effects of Electrical Flame Off(EFO) process on the Cu Free Air Ball(FAB) deformability and the Cu HAZ breaking strength, and to study the reliability issues of Cu bonds on Al metallization pad. In this thesis, a new on-line measurement is firstly presented to quickly evaluate the deformabilities of Cu wires and Cu FABs with high precision. The effects of EFO process on Cu FAB deformability and Cu HAZ maximum breaking force are investigated using the on-line measurements. We also investigate the effects of EFO parameters on Cu FAB quality and the solidification process during the Cu FAB formation. The growth behaviors of IMCs and cracks in Cu/Al bonds during thermal aging are studied in details. The main phases of the IMCs in the Cu bond are determined using the micro-XRD.
     The on-line measurement is found to be sensitive to the bonding conditions. The effects of wire types, substrate types, or capillary types on the measurment result are great pronounced. For a wire or FAB deformability comparison study, it is well recommended that the capillary type, substrate type, and substrate temperature are kept constant and the capillary or its position with respect to the horn should not be changed during the study. It is suggested by the on-line measurement results that the Cu wires with high deformabilities will not produce the Cu FABs with high deformabilities automatically.
     During EFO process, the Cu FABs with higher deformabilities which can reduce the impact force for bond deformation during bonding are obtained with a higher EFO current combining a shorter firing time. Furthermore, higher EFO current combining shorter firing time can lead to a stronger and shorter Cu HAZ which is benefical for the wire looping in the application of small scale packaging. Under the deforming force of 0.6 N, the deformed Cu ball height from the FAB with the EFO current of 250 mA is 14 % lower than that from the EFO current of 45 mA. The deformability of Cu FAB from the higher EFO current increases up to 7-8 %. As a consequence, the impact force required for the ball deformation can be decreased up to 7-8 % and the underpad stress can be reduced siginificantly during ball bonding. The Cu HAZ from the EFO current of 250 mA have 7.5-9.4 % higher maximum breaking load and 22.45 % shorter HAZ length compred to that from the EFO current of 45 mA.
     For the Cu wire with the diameter of 50.4μm, the optimum Cu FAB can be obtained with the EFO current of 120 mA, the EWD of 0μm, and the FAB preset size of 101.6μm. The flow rate of shielding gas of 0.8 l/min is preferred during Cu FAB formation and the excessive shielding gas will lead to the decrease of the EFO efficiency.
     The microstrctural study reveals that the Cu FAB is composed by a few big columnar grains. During solidification, the columnar grains initiates from the unmelted wire end and then grow downwards radially to the free end of the ball. As no nucleation is required, the initial solidification simply adopts and extends the crystal structure of the adjacent solid with which it is in contact and the columnar grain comprises a subset of the solid crystal orientation. The orientation of the columnar grains are mainly controlled by the heat flow direction. During solidification, the principal way to lose heat in the molten ball is conduction through the wire.
     In the as-bonded Cu/Al bond, there is no obvious IMC observed at the bonding interface under SEM with the magnification of 1500 times. After 1 h aging at 250°C, the Cu/Al IMC forms at the bond periphery. The IMC grow rate decreases with the increase of the aging time. The IMCs develop laterally and vertically to the bond centre area. Furthermore, some cavities occur between the IMC layers and the Cu bond bottom. With the growth of the IMCs, the cavities start from the ball periphery and grow inward to the bond centre and keep growing to form the cracks as a result. A complete gap between the Cu bond bottom and the upper IMC layer is formed after 81 h aging. The IMCs growth stopes completely as the formation of the cracks. The Cu/Al IMC growth is controlled by diffusion control mode and obeys the parabolic law. The main phases in the Cu/Al IMC layers are confirmed to be Cu9Al4, and CuAl2. CuAl with a smaller amount is believed to be another phase.
引文
1 S. L. Khoury, D. J. Burkhard, D. P. Galloway, et al., A Comparison of Copper and Gold Wire Bonding on Integrated Circuit Devices. IEEE Transactions on Components, Hybrids and Manufacturing Technology. 1990, 13(4): 673-681.
    2 S. Mori, H. Yoshida. The development of new copper ball bonding-wire. Electronics Components Conference. Los Angeles, USA, 1988: 539-545.
    3 G. G. Harman. Wire Bonding in Microelectronics. McGraw-Hill, New York, 1989.
    4 L. T. Nguyen. Optimization of Copper Wire Bonding on Al-Cu Metallization. IEEE Transactions on components, packaging and manufacturing technology A. 1995, 18(2): 423-429.
    5 M. Sheaffer, R. Chylak, J. peters. Using copper materials in semiconductor packaging. www.kns.com/news.html.
    6王春青.电子封装和组装中的微连接技术.现代表面贴装资讯, 2004, 3(6): 1-10.
    7李志远,钱乙余,张九海.先进连接技术.北京:机械工业出版社, 2004.
    8何田.先进封装技术的发展趋势.电子工业专用设备. 2005, 34(5): 5-8.
    9祝延香,朱颂春.现代微电子封装技术.成都:四川省电子学会SMT专委会, 1998.
    10中国电子学会生产技术分会丛书编委会.微电子封装技术.合肥:中国科学技术大学出版社, 2003.
    11马鑫,何小琦.集成电路内引线键合工艺材料失效机制及可靠性.电子工艺技术. 2001, 2(5): 185-191.
    12 C. A. Harper.电子组装制造.贾松良等译.北京:科学出版社, 2005.
    13 B. L. Gehman. Bonding Wire Microelectronic Interconnections. IEEE Transactions on Components Hybrids and Manufacturing Technology. 1980, CHMT-3(30): 375-383.
    14 M. Petzold, L. Berthold, D. Katzer, et al., Surface Oxide Films on Aluminum Bondpads: Influence on Thermosonic Wire Bonding Behavior and Hardness. Microelectronics Reliability. 2000, 40: 1515-1520.
    15 D. T. Rooney, D. Nager, D. Geriger, et al., Evaluation of Wire BondingPerformance, Process Conditions, and Metallurgical Integrith of Chip on Board Wire Bonds. Microelectronics Reliability. 2005, 45: 379-390.
    16 R. R. Tummala.微系统封装基础.黄庆安,唐洁影译.南京:东南大学出版社, 2005.
    17 M. H. Li, Improving Bonding Strength of Tape-automated Bonding Technology by Implementing Statistical Process Control: A Case Study. International Journal of Advanced Manufacturing Technology. 2006, 27(3/4): 372-380.
    18谢晓明,倒装芯片技术简介.环球SMT与封装. 2004, 4(2): 28-32.
    19张如明.凸点实现的倒装焊推进微电子封装技术的发展.世界产品与技术. 2002(11): 29-31.
    20李福权,王春青,张晓东.倒装芯片凸点制作方法.电子工艺技术. 2003, 24(2): 62-66.
    21 J. H. Liu. Cost Analysis: Solder Bumped Flip Chip versus Wire Bonding. IEEE Transactions on Electronics Packaging Manufacturing. 2000, 23(1): 4-11.
    22 J. Brunner, I. Qin, B. Chylak. Advanced wire bond looping technology for emerging packages. Proceedings of 2004 IEEE/SEMI International Electronics Manufacturing Technology Symposium. USA. 2004.
    23 I. M. Cohen, K. Ramakrishna, P. S. Ayyaswamy. An Experimental Study of Ball Formation Processes with Aluminum and Copper. Experimental Thermal and Fluid Science. 1989, 12(1): 51-64.
    24 C. D. Breach, F. Wulff, C. W. Tok. An Unusual Mechanical Failure Mode in Gold Ballbonds at 50μm Pitch due to Degradation at the Au-Au4Al Interface during Ageing in Air at 175°C. Microelectronics Reliability. 2006, 46: 543-557.
    25 H. S. Chang, J. X. Pom, K.C. Hsieh, et al., Intermetallic Growth of Wire-bond at 175°C High Temperature Aging. Journal of Electronic Materials. 2001, 30(9): 1171-1176.
    26 L. Ainouz. The use of copper wire as an alternative interconnection material in advanced semiconductor packaging. www.kns.com/news.html.
    27 T. W. Ellis, L. Levine, R. Wicen, et al., Copper ball bonding, an evolving process technology. In: Proceedings of SEMICON Conference. Singapore,May 2000; 44-48.
    28 K. Toyozawa, K. Fujita, S. Minamida, et al., Development of copper wire bonding application technology. Electronic Components & Technology Conference. May 1990, 1: 762-767.
    29 L. T. Nguyen and F. J. Lim. Wire sweep during molding of integrated circuit. Electronic Components & Technology Conference. May 1990, 1: 777-785.
    30 H. S. Chang, K. C. Hsieh, T. Martens, et al., Wire-Bond Void Formation during High Temperature Aging. IEEE Transactions on Components and Packaging Technologies. 2004, 27(1): 155-160.
    31 J. E. Krzanowski. A Transmission Electron Microscopy Study of Ultrasonic Wire Bonding. IEEE Transaction on Component, Hybrids, and Manufacturing Technology. 1990(13): 176-181.
    32 J Qi, N. C Hung, M. Li, D. M. Liu. Mechanism analysis of process parameters effects on bondability in ultrasonic ball bonding. High Density Microsystem Design and Packaging and Component Failure Analysis Conference. 2005: 1-5
    33 Y. Takahashi, S. Shibamoto, K. Inoue. Numerical Analysis of the Interfacial Contact Process in Wire Thermocompression Bonding. IEEE Transaction on Component, Packaging, and Manufacturing Technology-Part A. 1996, 19(2): 213-223.
    34 H. A. Mohamed, J. Washburn. Mechanism of Solid State Pressure Welding. Welding Journal. 1975, 54(9): 302-310.
    35 B. Langenecker. Effects of Ultrasound on Deformation Characteristics of Metals. IEEE Transaction on Sonics and Ultrasonics. 1966, 13(1): 1-8.
    36 Y. Zhou, X. Li, N. J. Noolu. A Footprint Study of Bond Initiation in Gold Wire Crescent Bonding. IEEE Transactions on Components and Packaging Technologies. 2005, 28(4): 810-816.
    37 R. D. Mindlin. Compliance of Elastic Bodies in Contact. Journal of Applied Mechanics. 1949, 16: 259-268.
    38 I. LUM, J. P. JUNG, Y. ZHOU. Bonding Mechanism in Ultrasonic Gold Ball Bonds on Copper Substrate. Metallurgical and Materials Transactions A. 2005, 36A: 1279-1286.
    39 W. R. Chang, I. Etsion, D. B. Bogy. Static Friction Coefficient Model forMetallic Rough Surfaces. Journal of Tribology. 1988, 110: 57-63.
    40 L. Kogut, I. Etsion. A Semi-analytical Solution for Sliding Inception of a Spherical Contact. Journal of Tribology. 2003, 125: 499-506.
    41 ITRS roadmap 2003. http://public.itrs.net
    42 K. W. Lam; H. M. Ho, S. Stoukatch, et al., Fine pitch copper wire bonding on copper bond pad process optimization. Proceedings of the 4th International Symposium-Electronic Materials and Packaging. Dec. 2002, 4-6: 63-68.
    43 L. A. Lim, J. Castaneda, S. Shirakawa. Fine pitch copper wire bonding process and materials study. www.kns.com/news.html.
    44 M. Sivakumar, V. Kripesh, L. A. Lim, et al., Fine pitch copper wire bond process development for dual damascene Cu metallized chips. Proceedings of the 4th Electronics Packaging Technology Conference. Dec. 2002, 10-12: 350-355.
    45 Insulated bonding wire for microelectronic packaging. US Patent 6670214. 2003.
    46 S. Kaimori, T. Nonaka, A. Mizoguchi. The Development of Cu Bonding Wire with Oxidation-resistant Metal Coating. IEEE Transactions on Advanced Packaging. 2006, 29(2): 227-231.
    47 J. Baliga. Coating can improve copper bond wires. Proceedings of Semiconductor International. 2006.
    48 J. T. Moon, J. S. Hwang, J. S. Cho. New Materials for Bonding Wire. Proceedings of SEMICON Singapore. 2008.
    49 R. J. Lyn, J. I. Persic and Y. K. Song. Overview of X-wire Insulated Bonding Wire Technology. Proceedings of 39TH International Symposium on Microelectronics. 2006.
    50 O. Susumu, T. Michio, W. Hiroshi, et al., Development of a Coated Wire Bonding Technology. IEEE Transaction, Component, Hybrids and Manufacturing Technology. 1989, 12(4): 603-608.
    51 Summary of MKE’s catalog. www.mke.co.kr/english/.
    52 C. J. Hang, C. Q. Wang, Y. H. Tian. Effect of Ultrasonic Power and Bonding Force on the Bonding Strength of Copper Ball bonds. China Welding. 2007, 16(3): 46-50.
    53 D. Degryse, B. Vandebelde, E. Beyne. FEM study of deformation andstresses in copper wire bonds on Cu Low-k structures during processing. Proceedings of 54th Electronic Components and Technology Conference. 2004, 1: 906-912.
    54 J. F. J. M. Cares, A. Bischoff, J. Falk, et al., Conditions for reliable ball-wedge bopper wire bonding. Proceedings of 1993 Japan International Electronics Manufacturing Technology Symposium. 1993: 312-315.
    55 R. Pantaleon, J. Sanchez-Mendoza, M. Mena. Rationalization of gold ball bond shear strengths. Electronic Components and Technology Conference. 1994: 733-740.
    56 S. Murali, N. Srikanth, Charles J. Vath. Grains, Deformation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding. Materials Characterization. 2003, 50: 39-50.
    57 C. D. Breach, F. Wulff. New Observation on Intermetallic Compound Formation in Gold Ball Bonds: General Growth Patterns and Identification of Two Forms of Au4Al. Microelectronics Reliability. 2004, 44: 973-981.
    58 I. Qin. Free air ball control in fine pitch application. www.kns.com/news.html.
    59 I. Qin, I. M. Cohen, P. S. Ayyaswamy. Ball Size and HAZ as Functions of EFO Parameters for Gold Bonding Wire. Advances in Electronic Packaging. 1997, 19(1): 391-398.
    60 J. Lee, M. Mayer, Y. Zhou, et al., Iterative Optimization of Tail Breaking Force of 1 mil Wire Thermosonic Ball Bonding Processes and the Influence of Plasma Cleaning. Microelectronics Journal. 2007, 38: 842-847.
    61 J. L. Chen, Y. C. Lin A New Approach in Free Air Ball Formation Process Parameters Analysis. IEEE Transactions on Electronics Packaging Manufacturing. 2000, 23(2): 116-122.
    62 J. Tan, B. H. Toh, H. M. Ho. Modelling of free air ball for copper wire bonding. Proceedings of 6th Electronics Packaging Technology Conference. 2004: 711-717.
    63 P. J. Ross, Taguchi Techniques for Quality Engineering. New York: McGraw-Hill, 1988.
    64 I. M. Cohen, L. J. Huang, P. S. Ayyaswamy. Melting and Solidification of Thin Wires: A Class of Phase-change Problems with A Mobile Interface-II.Experimental confirmation. International Journal of Heat Mass Transfer. 1995, 38(9): 1647-1659.
    65 Z. W. Zhong, H. M. Ho, Y. C. Tan, et al., Study of Factors Affecting the Hardness of Ball Bonds in Copper Wire Bonding. Microelectronic Engineering. 2007, 84: 368-384.
    66 H. M. Ho, J. Tan, Y. C. Tan, et al., Modelling energy transfer to copper wire for bonding in an inert environment. Proceedings of the 7th Electronic Packaging Technology Conference. Singapore, December 2005: 292-297.
    67 E. Ricci, R. Novakovic. Wetting and Surface Tension Measurements on Gold Alloys. Gold Bulletin. 2001, 34(2): 41-49.
    68 K. J. Chung, J. B. Bernstein, L. Y. Yang. Experimental Study of EFO Wand Electrode Wear, Surface Pollution, and Discharge Gaps in Wire Bonding Process. Tamkang Journal of Science and Engineering. 2003, 6(1): 43-48.
    69 M. Deley, L. Levine. Copper ball bonding advances for leading edge packaging. Proceedings of SEMICON Conference. Singapore, 2005.
    70 C. M. Tan, E. Er, Y. Hua, et al., Failure Analysis of Bond Pad Metal Peeling Using FIB and AFM. IEEE Transactions on Components Hybrids and Manufacturing Technology-Part A. 1998, 21(4): 585-591.
    71 A. Shah, M. Mayer, Y. Zhou, et al., Reduction of underpad stress in thermosonic copper ball bonding. 2008 Electronic Components and Technology Conference. USA, May 2008: 2123-2130.
    72 J. Onuki, M. Koizumi, H. Suzuki. Influence of Ball-forming Conditions on the Hardness of Copper Balls. Journal of Applied Physics. 1990, 68(11): 5610-5614.
    73 E. P. P. Saraswati, D. Theint, H. M. Stephan, et al., High temperature storage (HTS) performance of copper ball bonding wires. Proceedings of the 7th Electronic Packaging Technology Conference. Singapore, 2005: 602-607.
    74 I. M. Cohen, P. S. Ayyaswamy. Ball Formation Process in Aluminum Bonding Wire. Solid State Technology. 1985, 28(12): 89-92.
    75 S. S. Sripada, I. M. Cohen, P. S. Ayyaswamy, et al., Heat Affected Zone in the Wire Electrode During Electronic Flame Off in Bonding. The International Journal of Microcircuits and Electronic Packaging. 1999, 22(3): 203-211.
    76 D. S. Liu, Y. C. Chao, C. H. Wang. Study of Wire Bonding LoopingFormation in the Electronic Packaging Process using the Three-dimensional Finite Element Method. Finite Elements in Analysis and Design. 2004, 40: 263-286.
    77 S. Ramminger, P. Turkes, G. Wachutka. Crack Mechanism in Wire Bonding Joints. Microelectronics Reliability. 1998, 38: 1301-1305.
    78 Z. N. Liang, F. G. Kuper, M. S. Chen. A Concept to Relate Wire Bonding Parameters to Bondability and Ball Bond Reliability. Microelectronics Reliability. 1998, 38: 1287-1291.
    79 G. G. Harman, C. A. Cannon. The Microelectronic Wire Bond Pull Test-How to Use It, How to Abuse It. IEEE Transactions on Components Hybrids and Manufacturing Technology. 1978, CHMT-1(3): 203-210.
    80 W. J. Tomlinson, R. V. Winkle, L. A. Blackmore. Effect of Heat Treatment on the Shear Strength and Fracture Modes of Copper Wire Thermosonic Ball Bonds to Al-1% Si Device Metallization. IEEE Transactions on Components, Hybrids, and Manufacturing Technology. 1990, 13(3): 587-591.
    81 H. J. Kim, J. Y. Lee, K. W. Paik, et al., Effects of Cu/Al Intermetallic Compound on Copper Wire and Aluminum Pad Bondability. IEEE Transactions on components and packaging technology. 2003, 26(2): 367-371.
    82 N. Srikanth, S. Murali, Y. M. Wong, et al., Critical Study of Thermosonic Copper Ball Bonding. Thin Solid Films. 2004, 462-463: 339-345.
    83 C. W. Tan, A. R. Daud. Bond Pad Cratering Study by Reliability Tests. Journal of Materials Science: Materials in Electronics. 2002, 13: 309-314.
    84 J. Onuki, M. Koizumi, H. Suzuki, et al., Investigation on Enhancement of Copper Ball Bonds during Thermal Cycle Testing. IEEE Transactions on Components, Hybrids, and Manufacturing Technology. 1991, 14(2): 392-395.
    85 L. J. Huang, P. S. Ayyaswamy, I. M. Cohen. Melting and Solidification of Thin Wires: A Class of Phase-change Problems with a Mobile Interface-I. Analysis. International Journal of Heat Mass Transfer. 1995, 38(9): 1637-1645.
    86 V. S. Ananthan, T. Leffers, N. Hansen. Cell and Band Structures in Cold Rolled Polycrystalline Copper. Material Science Technology. 1991, 7: 1069-1075.
    87 D. A. Hughes, N. Hansen. A Comparison of the Evolution of Cold and Hot Deformation Microstructures and Textures in FCC Metals. In: Advances in Hot Deformation Textures and Microstructures. Warrendale (PA): Minerals, Metals & Materials Society. 1994: 427-444.
    88 N. Hansen. Cold Deformation Microstructures. Material Science and Technology. 1990, 6: 1039-1047.
    89 S. Murali, N. Srikanth, C. J. Vath III. An Analysis of Intermetallics Formation of Gold and Copper Ball Bonding on Thermal aging. Material Research Bulletin. 2003, 38: 637-646.
    90 F. W. Wulff, C. D. Breach, D. Stephan, et al., Characterization of intermetallic growth in copper and gold ball bonds on aluminum metallization. Proceedings of 6th EPTC Singapore. 2004.
    91 F. W. Wulff, C. D. Breach, D. Stephan, et al., Further Characterization of Inter Metallic Growth in Copper and Gold Ball Bonds on Aluminum Metallization. Proceedings of SEMICON Conference. Singapore, 2005.
    92 M. Sheaffer, L. R. Levine, B. Schlain. Optimizing the Wire-bonding Process for Copper Ball Bonding, Using Classic Experimental Designs. IEEE Transactions on Components, Hybrids, and Manufacturing Technology. 1987, 10(3): 321-326.
    93 S. Murali, N. Srikanth, C. J. Vath III. Effect of Wire Size on the Formation of Intermetallics and Kirkendall Voids on Thermal Aging of Thermosonic Wire bonds. Materials Letters. 2004, 58: 3096-3101.
    94 C. W. Tan, A. R. Daud. Mechanical and Electrical Properties of Au-Al and Cu-Al Intermetallics Layer at Wire Bonding Interface. Journal of Electronic Packaging. 2003, 125: 617-620.
    95 A. H. Cottrell. Theoretical Structural Metallurgy, Edward Arnold Publisher, London. 1954: 125-138.
    96 J. H. Westbrook, R. L. Fleischer. Intermetallic Compounds. 1994, 91-125: 227-275.
    97 Y. Tamou, J. Li, S. W. Russell, et al., Thermal and Ion Beam Induced Thin Film Reactions in Cu-Al Bilayers. Nuclear Instruments and Methods in Physics Research B. 1992, 64: 130-133.
    98 K. Rajan, E. R. Wallach, A Transmission Electron Microscopy Study ofIntermetallic Formation in Aluminum-copper Thin Film Couples. Journal of Crystal Growth. 1980, 49: 297-302.
    99 J. Onuki, M. Koizumi, I. Araki. Investigation of the Reliability of Copper Ball Bonds to Aluminum Electrodes. IEEE Transactions on Components, Hybrids, and Manufacturing Technology. 1987, 12(4): 550-555.
    100 D. Ostwaldt, P. Klimanek. The Influence of Temperature and Strain Rate on Microstructural Evolution of Polycrystalline Copper. Materials Science and Engineering A. 1997, 234-236: 810-813.
    101张少实.新编材料力学.北京:机械工业出版社, 2002.
    102 G. F. V. Vander. Metallography: principles and practice. McGraw-Hill. 1984.
    103 S. Kou. Welding Metallurgy. New York, NY: John Wiley and Sons. 1987: 129-177.
    104 S. S. Sripada, I. M. Cohen, P. S. Ayyaswamy. Melting of a Wire Anode Followed by Solidification: A Three-Phase Moving Interface Problem. Journal of Heat Transfer. 2003, 125: 661-668.
    105前滨江,武贻文.简明传热手册.高等教育出版社, 1983.
    106 S. Murali, N. Srikanth, C. J. Vath III. Part II: Grains, Deformation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding of 6-mil-diameter Wire. Materials Characterization. 2005, 54(1): 93-95.
    107 http://www.matweb.com/
    108 B. V.卡里卡, R. M.戴斯蒙德.工程传热学.人民教育出版社, 1983.
    109田艳红.多次重熔及老化过程中钎料凸点/焊盘界面组织演变.哈尔滨工业大学博士论文. 2003.
    110冯端,师昌绪,刘治国.材料科学导论.化学工业出版社, 2002.
    111 Y. Takahashi, M. Inoue. Numerical Study of Wire Bonding-analysis of Interfacial Deformation between Wire and Pad. Journal of Electronic Packaging. 2002, 124: 27-36.
    112 A. Lasalmonle, J. L. Strudel. Influence of Grain Size on the Mechanical Behavior of Some High Strength Materials. Journal of Materials Science. 1986, 21: 1837-1852.
    113 M. Zhao, J. C. Li, Q. Jiang. Hall–Petch Relationship in Nanometer Size Range. Journal of Alloys and Compounds. 2003, 361: 160-164.
    114 H. M. Ho, W. Lam, S. Stoukatch, et al., Direct Gold and Copper Wires Bonding on Copper. Microelectronics Reliability. 2003, 43: 913-923.
    115 G. Y. Jang, J. G. Duh, H. Takahashi, et al., Solid-State Reaction in an Au Wire Connection with an Al-Cu Pad during Aging. Journal of Electronic Materials. 2006, 35(2): 323-332.
    116 M. Braunovic, N. Alexandrov. Intermetallic Compounds at Aluminum to Copper Electrical Interfaces: Effect of Temperature and Electric Current. IEEE Transaction of Component, Packaging, and Manufacturing Technology. 1994, A17: 78-85.
    117 T. B. Massalski. Binary Alloy Phase Diagrams. ASM International, 2nd edition, 1990.
    118 C. L. J. Carr. Accelerated Testing of Gold-Aluminum Ball Bond. M.S.D. Dissertation, University of waterloo, Canada, 2005.
    119 C. D. Breach, F. Wulff, D. Calpito. Degradation of the Au4Al Compound in Gold Ball Bonds during Isothermal Aging in Air at 175 oC. Journal of Material Science. 2004, 31(19): 6125-6128.
    120 J. Philibert. Reactive Diffusion in Thin Films. Applied Surface Science. 1991, 53: 74-81.
    121 D. L Beke, I. A Szabó, Z. Erdélyi, et al., Diffusion Induced Stresses and Their Relaxation. Material Science and Engineering A. 2004, 387-389: 4-10.