混杂FRP及其加固腐蚀混凝土柱抗震性能试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐蚀问题是目前混凝土结构领域面临的世界性难题之一,而FRP(Fiber Reinforced Polymer)复合材料由于具有耐腐蚀、轻质、高强、施工方便等突出优点,在腐蚀结构抗震加固领域具有广阔的应用前景,但单一FRP变形能力不足制约了其发展,混杂技术是解决以上问题的有效途径。因此,选取具有良好延性的混杂FRP(Hybrid FRP, HFRP)对腐蚀混凝土柱进行抗震加固具有重要的工程实际和理论意义。本文从试验、理论和设计方法三方面较系统地研究了HFRP及其加固腐蚀混凝土柱的抗震性能,主要研究内容包括:
     (1)为了制备优异综合性能的HFRP复合材料,首次提出了碳纤维(Carbon FRP, CFRP)/芳纶纤维(Aramid FRP, AFRP)/玻璃纤维(Glass FRP, GFRP)三种纤维混杂思路。完成了11个不同纤维种类、碳纤维相对体积含量、铺层方式的HFRP复合材料试件的单轴拉伸试验,并通过11根混凝土梁抗弯试验进一步验证HFRP加固混凝土结构的效果。在材料研究的基础上,建立了简单、实用的HFRP复合材料强度模型。研究表明:CFRP/AFRP/GFRP混杂FRP复合材料具有良好的混杂效应和加固效果,混杂效应系数可达0.647。
     (2)由于建立HFRP约束混凝土应力-应变曲线模型是进行结构抗震加固设计及其加固效果评价的前提,本文在试验和已有成果的基础上,建立了新的HFRP约束混凝土应力-应变曲线模型,该模型使用轴向、横向和体积应变来衡量约束混凝土的内部损伤,以体现HFRP变约束力对被约束混凝土微观损伤的影响,从而使模型简化且具有明确的物理含义;同时,该模型采用了更能真实体现约束效应的割线模量,并且引入依赖于混凝土本身特性的割线模量软化系数进行计算。
     (3)正确评估FRP加固腐蚀钢筋-混凝土粘结性能是评价FRP加固腐蚀结构效果的首要问题,本文通过96个试件的拉拔试验,研究了不同钢筋种类、不同保护层厚度、不同腐蚀率、不同FRP约束下腐蚀钢筋-混凝土粘结性能,并建立了简单的腐蚀钢筋粘结-滑移模型。结果表明:当钢筋腐蚀率小于5%时,影响试件峰值粘结强度的主要影响因素是钢筋种类、混凝土保护层厚度;FRP约束对试件峰值粘结强度影响较小,但对减缓粘结应力下降速度,维持粘结应力较为有效。
     (4)完成了10根CFRP/AFRP/GFRP层间混杂FRP布加固腐蚀混凝土柱在低周反复荷载下的抗震性能试验,分析了各柱强度、刚度、变形、累积耗能以及损伤的发展规律,探讨了钢筋腐蚀、轴压比、配箍率等因素对柱整体抗震特性的影响,揭示了HFRP加固腐蚀混凝土柱在反复荷载作用下的失效机制。结果表明:CFRP/AFRP/GFRP层间混杂FRP布可以显著改善腐蚀柱的抗震性能,累积耗能最大可提高12.5倍。
     (5)根据CFRP/AFRP/GFRP层间混杂FRP布加固腐蚀混凝土柱抗震性能试验结果,在完好钢筋混凝土构件截面分析和Clough滞回规则的基础上,建立了HFRP加固腐蚀混凝土柱恢复力模型,该模型率先引入钢筋粘结-滑移模型来考虑腐蚀对钢筋-混凝土粘结界面的影响。并且提出了HFRP加固腐蚀混凝土柱基于位移性能的抗震设计方法,该方法简单、适用,且精度较好。这将为HFRP加固腐蚀混凝土柱抗震性能评估和设计提供指导作用。
     本文的主要创新点如下:
     (1)建立了新的HFRP约束混凝土应力-应变曲线模型。该模型使用轴向、横向和体积应变来衡量约束混凝土的内部损伤,以体现HFRP变约束力对约束混凝土内部损伤的影响,从而使模型简化且具有明确的物理含义。同时,采用了更能真实体现变约束效应的割线模量。
     (2)完成了10根HFRP加固腐蚀混凝土柱在低周反复荷载下的抗震性能试验研究。首次提出了碳/芳纶/玻璃三种纤维混杂思路,该混杂布具有较高延性。分析了各腐蚀混凝土柱在低周反复荷载作用下的强度、刚度、变形、累积耗能以及损伤的发展规律。同时,试验研究了FRP加固腐蚀钢筋-混凝土粘结性能,为理论分析提供了试验数据。
     (3)提出了HFRP加固腐蚀混凝土柱恢复力模型及抗震设计方法。在完好钢筋混凝土构件截面分析和Clough滞回规则的基础上,建立了HFRP加固腐蚀混凝土柱恢复力模型,该模型率先引入钢筋粘结-滑移模型来考虑腐蚀对钢筋-混凝土粘结界面的影响。并且提出了HFRP加固腐蚀混凝土柱基于位移性能的抗震设计方法。
     总之,本文所研究的CFRP/AFRP/GFRP混杂FRP布抗震加固新方法能显著改善腐蚀混凝土柱的抗震性能,其施工工艺简便,在腐蚀结构抗震加固领域具有广泛的应用前景。
Reinforcement corrosion is one of the major worldwide deterioration problems for RC structures, and Fiber reinforced polymers (FRPs) are becoming popular for seismic strengthening of corroded RC structures, due to their corrosion resistance, high strength-to-weight ratios, ease of installation and so on, but the deformation capacity of single FRP composites is insufficient, which restrict severely FRP composites to further using widely in field. However, hybrid technique is an effective method for solving this problem. Therefore, the research on seismic strengthening of corroded RC columns with hybrid FRP (HFRP) composites with excellent comprehensive properties has important engineering and theoretical value. This paper researches systematically on hybrid FRP composites and seismic performance for strengthening corroded RC columns in three aspects including experiments, theory and design method, main contents are listed as follow:
     (1) In order to make up the HFRP composites with excellent comprehensive properties, a hybrid idea of Carbon FRP (CFRP), aramid FRP (AFRP) and Glass FRP (GFRP) is firstly proposed. this paper researches experimentally uniaxial tensile property of eleven HFRP composites specimens, hybrid parameters are fiber species, relative volume percent of carbon fiber, laminated mode, and the effects of HFRP composites on strengthening RC structures are verified in further by flexural experiments of eleven RC beams. Based on the experimental study of material properties, a simple and practical strength model for HFRP composites is established. The results show the CFRP/AFRP/GFRP hybrid FRP composites have good hybrid effect and strengthening effect for RC structures, the hybrid effect coefficient is 0.647.
     (2) Because the stress-strain model of concrete confined by HFRP composites is the premise of seismic strengthening design and strengthening effect evaluation for concrete structures strengthened with HFRP composites, based on the experimental data and the analysis on the research production, a stress-strain model is developed for concrete confined with HFRP composites. The feature of the model is that it includes the effects of HFRP confinement on the concrete microstructure by evaluating the internal concrete damage using the axial, lateral and volumetric strains, which introduces that the model is simple and has a physical and fundamental interpretation with the mechanical behavior of concrete. Meantime, the secant concrete modulus is used in the model and expressed as a function of the secant modulus softening coefficient.
     (3) Proper evaluation of the bond characteristics of corroded reinforcement in FRP-wrapped concrete is prime importance in FRP repair of corrosion-damaged RC members. Pull-out tests of 96 specimens with different reinforcement types, cover depths, corrosion degrees, with or without strengthening using FRP are carried out to study the bond behavior between corroded reinforcement and concrete. Meantime, a simple bond-slip model for corroded reinforcement is proposed. The results show that when the corrosion degree is below 5%, the main influencing factors for the peak bond strength are reinforcement type and cover depth, FRP confinement plays a less important role, but FRP confinement can effectively slow down the declining speed of bond stress.
     (4) The seismic experiments of ten corroded RC columns strengthened with CFRP/AFRP/GFRP laminated hybrid FRP sheets under low frequency cyclic loading are carried out, bearing capacity, stiffness, ductility, energy dissipation and damage evolution are analyzed, the effects of the reinforcement corrosion, axial compression ratio and stirrup reinforcement ratio on the seismic behavior are discussed, and the failure mechanism of corroded RC columns strengthened with HFRP composites under low frequency cyclic loading is revealed. Results show that the CFRP/AFRP/GFRP laminated hybrid FRP sheets can improve significantly the seismic performance of corroded RC columns, the accumulated energy dissipation can be increased by 12.5 times.
     (5) According to the experimental results of corroded RC columns strengthened with CFRP/AFRP/GFRP laminated hybrid FRP sheets, the restoring force model of RC corroded columns strengthened with HFRP composites is presented based on cross-section analysis for undamaged RC element and Clough hysteresis rule, the bond-slip model is firstly introduced to consider the effect of corrosion on bond characteristic in the model. And displacement-based seismic design method of corroded RC columns strengthened with HFRP composites is presented, this method is simple, practical and accurate, which will play a guiding role in seismic evaluation and design of corroded RC columns strengthened with HFRP composites.
     The main originalities of this paper lie in:
     (1) Stress-strain model of concrete confined by HFRP composites is developed. The model includes the effects of HFRP confinement on the concrete microstructure by evaluating the internal concrete damage using the axial, lateral and volumetric strains, which introduces that the model is simple and has a physical and fundamental interpretation with the mechanical behavior of concrete. Meantime, the secant concrete modulus is used in the model.
     (2) The seismic experiments of ten corroded RC columns strengthened with hybrid FRP sheets under low frequency cyclic loading are systematically carried out. The seismic performance of corroded RC columns strengthened with hybrid fiber sheets of CFRP, AFRP and GFRP is firstly researched, the hybrid fiber sheet has good ductility. Bearing capacity, stiffness, ductility, energy dissipation and damage evolution of ten corroded RC columns strengthened with hybrid FRP sheets under low frequency cyclic loading are analyzed. Meantime, the bond characteristic of corroded reinforcement in FRP-wrapped concrete is researched by pull-out tests, which provides experimental data for theoretical analysis.
     (3) Restoring force model and seismic design method of RC corroded columns strengthened with HFRP composites are presented. Based on cross-section analysis for undamaged RC element and Clough hysteresis rule, the restoring force model of RC corroded columns strengthened with HFRP composites is presented, the bond-slip model is firstly introduced to consider the effect of corrosion on bond characteristic in the model. And displacement-based seismic design method of corroded RC columns strengthened with HFRP composites is developed.
     In conclusion, the seismic strengthening technique of using CFRP/AFRP/GFRP laminated hybrid FRP sheets for corroded RC columns is developed, and the seismic performance of corroded RC columns can be improved significantly. The construction technology is simple and convenience, so that it has a wide application prospect in seismic strengthening field.
引文
1. A. Nanni. North American design guideline for concrete reinforcement and strengthening using FRP: principle, applications and unresolved issues [J]. Construction and Building Material,2003, (17):439-446.
    2.王全凤,杨勇新,岳清瑞. FRP复合材料及其在土木工程中的应用研究[J].华侨大学学报, 2005, 26(1):1-6.
    3.李建辉,邓宗才,杜修力. FRP在桥梁结构中的应用与发展[J].公路, 2007, (4):58-64.
    4.叶列平,冯鹏. FRP在工程结构中的应用与发展[J].土木工程学报, 2006, 39(3):24-36.
    5. Z. S. Wu, H. D. Niu. New concept and applications of FRP laminates for strengthening infrastructure[C]. Fifth China-Japan-US Joint Conference on Composite Materials, CJAJCC-5 Proceedings, 2002: 36-49.
    6.黄培彦,周绪平,赵琛. FRP片材在土木工程中应用的几个关键力学问题[J].华南理工大学学报, 2002, 30(11):101-104.
    7.朱梦君,刘宏伟.纤维增强复合材料(FRP)的研究与应用[J].淮海工程学院学报, 2002, 11(3):64-67.
    8.邓宗才,李建辉.混杂FRP复合材料及其加固混凝土结构性能[J].玻璃钢/复合材料, 2006, (4):50-54.
    9. Z. S. Wu, H. D. Niu. Recent developments in FRP strengthening techniques [A]. The 3th China FRP Academic Thesis Album [C], Nanjing: Industrial construction, 2004, 1-8.
    10. Z. S. Wu, H. D. Niu. Numerical simulations on strengthened structures with hybrid fiber sheets [A]. FRPRCS-6[C], singapore, 2003.
    11. F. P. Hampton, H. Lam, et all. Design methodology of a ductile hybrid FRP for concrete structures by the braidtrusion process [A]. 46th international SAMPE symposium [C], 2001.
    12. V. Tamuzs, R. Apinis, et all. Creep tests using hybrid composite rods for reinforcement in concrete [A]. 3rd international conference on advanced composite materials in bridges and structures [C], Canada, 2000.
    13. V. Tamuzs, R. Maksimovs, J. Modniks. Long-term creep of hybrid FRP bars [A]. FRPRCS-5 [C], London, 2001.
    14. H. G. Harris, F. P. Hampton, et all. Cyclic behavior of a second generation ductile hybrid fiber reinforced polymer for earthquake resistant concrete structures [A]. Society for the advancement of material and process engineering [C], California,2003.
    15.杨建中,熊光晶,严州等.高强玻璃纤维/碳纤维混杂复合材料加固混凝土梁的抗弯试验研究[J].土木工程学报, 2004, 37(7):18-22.
    16.熊光晶,蒋小青,杨建中等.高强玻璃纤维布碳纤维布混杂加固混凝土梁柱的试验研究[J].工业建筑, 2001, 33(9):14-16.
    17.姜浩,熊光晶.碳纤维/玻璃纤维复合加固混凝土柱的抗压性能研究[J].汕头大学学报, 2001, 16(1):13-16.
    18.李杰,薛元德.. FRP管混凝土组合结构试验研究[J].玻璃钢/复合材料, 2004, (6):7-10.
    19. H. Nordin, B. Taljsten. Testing of hybrid FRP composites beams in bending [J]. Composites Part B, 2004, 35:27-33.
    20. J. C. Li, S. Bijian, L. Ye, et all. Behaviour of concrete beam-column connections reinforced with hybrid FRP sheet [J]. Composites Structures, 2002, 57(1-4):357-365.
    21.单波. FRP加固钢筋混凝土柱考虑地震及使用损伤的长期性能和修复[D]. [学位论文].湖南:湖南大学, 2006, 1-2.
    22. M. Sobhy, S. Aled, T. Timothy. CFRP-Strengthened and Corroded RC Beams under Monotonic and Fatigue Loads.[J]. Journal of Composites for Construction,2001,5(4):228-236.
    23. M. Sobhy, S. Aled, T. Timothy. Post-repair Fatigue Performance of FRP-Repaired Corroded RC Beams: Experimental and Analytical Investigation [J]. Journal of Composites for Construction, 2005, 9(5):441-449.
    24. K. W. Neale, M. Demers, P. Labossiere. FRP protection and rehabilitation of corrosion damaged reinforced concrete columns [J]. International Journal of Materials and Product Technology, 2005, 23(3-4): 348-371.
    25.宋焕成,张佐光.混杂复合材料[M].北京:北京航空航天大学出版社, 1989.
    26. P. W. Manders, M. G. Baner. The strength of hybrid glass/carbon fibre composites, Part 1: Failure strain enhancement and failure mode [J]. Journal of Materials Science, 1981, (16):2233-2245.
    27. P. W. Manders, M. G. Baner. The strength of hybrid glass/carbon fibre composites, Part 2: A statistical model [J]. Journal of Materials Science, 1981, (16):2246-2256.
    28. Z. S. Wu, H. D. Niu. Recent developments in FRP strengthening techniques [A]. The 3th China FRP Academic Thesis Album [C], Nanjing: Industrial construction, 2004, 1-8.
    29.杨建中.混杂纤维复合材料的合理匹配及其在混凝土结构加固中的应用研究[D]. [学位论文].汕头:汕头大学, 2001.
    30.曾金芳,乔生儒,丘哲明等. F-12/CF混杂复合材料纵向拉伸性能研究[J].固体火箭技术, 2004, 27(1):60-63.
    31.纪梓斌.混杂纤维复合材料的合理匹配及其在混凝土结构加固中的应用研究[D]. [学位论文].汕头:汕头大学, 2003.
    32.张大兴,张佐光. CF/GF、CF/KF混杂纤维复合材料混杂效应实验与分析[J].新型碳材料, 1997,12(3):46-51.
    33.徐波,宋焕成.混杂纤维复合材料的混杂效应[J].复合材料学报, 1988, (1):10-15.
    34.范赋群,曾庆敦,黄小清.复合材料的统计断裂理论[J].力学与实践, 2000, 22(2):1-5.
    35.范赋群,曾庆敦.单向纤维增强复合材料的随机扩大临界核理论[J].中国科学A辑, 1994, 24(2):209-217.
    36. H. Fukunaga, T. W. Chou, H. Fukuda. Probabilistic strength analyses of interlam inated hybrid composites [J]. Composites Science Technology, 1989, 35:331-345.
    37. Q. D. Zeng, F. Q. Fan. A random critical-core theory of micro-damage in interplay hybrid composites: I-first failure and hybrid effect [J]. Composites Science and technology, 1993, (49):341-348.
    38. Q. D. Zeng. A random critical-core theory of micro-damage in interplay hybrid composites: II-Ultimate failure [J]. Composites Science and technology, 1994, (52):481-487.
    39.曾庆敦,余利杰.层间混杂叠层复合材料的最终拉伸破坏(I)应力集中分析[J].复合材料学报, 1999, 16(1):93-98.
    40.曾庆敦,余利杰.层间混杂叠层复合材料的最终拉伸破坏(II)强度的统计分析[J].复合材料学报, 1999, 16(1):99-104.
    41.史庆轩,牛荻涛,颜桂云.反复荷载作用下腐蚀钢筋混凝土压弯构件恢复力性能的试验研究[J].地震工程与工程振动, 2000,20(4):44-50.
    42.牛荻涛,陈新孝,王学民.腐蚀钢筋混凝土压弯构件抗震性能试验研究[J].建筑结构, 2004, 34(10):36-38.
    43.贡金鑫,仲伟秋,赵国藩.受腐蚀钢筋混凝土偏心受压构件低周反复性能的试验研究[J].建筑结构学报, 2004,25(5):92 -97.
    44.郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47 -51.
    45.陈新孝,牛荻涛,王学民.腐蚀钢筋混凝土压弯构件的恢复力模型[J].西安建筑科技大学学报(自然版), 2005,37(2): 155 -159.
    46.欧进萍,何政等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(1):21-30.
    47.贡金鑫,李金波,赵国藩.受腐蚀钢筋混凝土构件的恢复力模型[J].土木工程学报,2005,38(11):38-44.
    48.耿继国,李力.钢筋混凝土构件变轴力恢复力模型[J].四川建筑,2005,25(6): 106-108.
    49. M. J. N. Priestley, F. Seible, E. Fyfe. Column seismic retrofit using fiber galss/expoxy jackets [C]. Proceedings of Advanced Composite Materials in Bridges and Structures, Canada, 1992.
    50. R. F. Matasuda, H. Sato, H. Fujiwara, et all. Effect of carbon fiber reinforcement as a strengthening measure for reinforced concrete bridge concrete bridge piers [C]. Proceedings of the First Us-Japan Workshop on Seismic Retrofit of Bridge, Japan:Tsukuba Science City, 1990, 17-18.
    51.赵彤,刘明国,谢剑等.应用碳纤维布增强钢筋混凝土柱的抗震能力的试验研究[J].地震工程与工程振动, 2000, 20(4):66-72.
    52.赵彤,刘明国,谢剑.碳纤维布用于改善斜向受力高强混凝土柱抗震性能的研究[J].土木工程学报, 2002, 35(3):13-19.
    53. H. Saadatmanesh, M.R.Ehsani, L. Jin. Seismic Strengthening of Circular Bridge Pier Models with Fiber composites [J]. ACI Structural Journal, 1996, 93(6):639-647.
    54. A. S. Shamim, Y. Grace. Seismic Behavior of Concrete Columns Confined with Steel and Fiber-Reinforced Polymers [J]. ACI Structural Journal, 2002, 99(1):72-80.
    55.吴刚,吕志涛,张继文. CFRP加固钢筋混凝土柱抗震性能断面试验研究[A].第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集[C].北京:清华大学, 2002, 144-149.
    56.张柯,岳清瑞,叶列平.碳纤维布加固混凝土柱滞回耗能分析及目标延性系数的确定[A].首届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集[C].北京:密云, 2000, 227-232.
    57.张柯,岳清瑞,赵树红等.碳纤维布加固混凝土改善延性的试验研究[J].工业建筑, 2000, 30(2):16-19.
    58.范立础,卓卫东,薛元德. FRP筒套箍RC墩柱抗震性能的初步研究[C].中国首届纤维增强复合材料(FRP)混凝土结构学术交流会议论文集,北京:密云, 2000, 113-117.
    59. X.Yan, Member ASCE, R. Ma. Seismic retrofit of RC circular column using prefabricated composite jacketing [J]. ASCE, Journal of Structural Engineering, 1997, 123(10):1357-1364.
    60. X. Yan, H. Wu, R. Ma. Prefabricated glass fiber composites jackets for retrofitting reinforced concrete columns. Proceedings of the Sixth ASCCS International Conference on Steel-Concrete Composite Structures, Composed and Hybrid Structures, USA: Los Angeles, 2000, 952-958.
    61. S. Feieder, Member ASCE, M. J. N. Priestley, et all. Seismic retrofit of RC columns with continuous carbon fiber jackets [J]. ASCE, Journal of Composites for Construction, 1997, 1(2):52-62.
    62. A. Nanni, M. S. Norris. FRP jacketed concrete under flexure and combined flexure-compression [J]. Construction and Building Materials, 1995, 9(5):273-281.
    63. T. Ozbakkalogu, M. Saatcioglu. Seismic Performance of Square High-Strength Concrete Columns in FRP Stay-in-Place Formwork [J]. ASCE, Journal of Structural Engineering, 2007, 133(1):44-56.
    64. H. Saadatmanesh, M. R. Ehsani, L. Jin. Repair of Earthquake-Damaged RC Columns with FRP Wraps [J]. ACI Structural Journal, 1997, 94(2):206-215.
    65. S. Y. Chang, Y. F. Li, C. H. Loh. Experimental study of seismic behavior of as-built and carbon fiber reinforced plastics repaired reinforced concrete bridge columns [J]. Journal of Bridge Engineering, 2004, 9(4):391-402.
    66.倪永军,朱唏,魏庆朝,汤惠工.纤维增强聚合物抗震加固混凝土柱研究综述[J].北方交通大学学报. 2003, 27(4):21-26.
    67.李春雷. FRP约束钢筋混凝土柱的抗震性能研究现状[J].山西建筑, 2005, 31(3):30-31.
    68. M. N. Fardis, H. Khalili. FRP-encased concrete as a structural material [J]. Magazine of Concrete Journal, 1982, 34(121):191-202.
    69. J. B. Mander, M. J. N. Priestley, R. Park. Theoretical stress-strain model for confined concrete [J]. ASCE, Journal of Structural Engineering, 1988, 114(8):1804-1826.
    70. M. R. Spoelstra, G. Monti. FRP-confined concrete model [J]. ASCE, Journal of composites for Construction, 1999, 3(3):143-419.
    71. S. J. Pantazopoulou, Member ASCE. Role of expansion on mechanical behavior of concrete [J]. ASCE, Journal of Structural Engineering, 1995, 89(12):1795-1805.
    72. S. J. Pantazopoulou, R. H. Mills. Micro-structural aspects of the mechanical response of plain concrete [J]. ACI, Materials Journal, 1996, 93(5): 1-11.
    73. A. Z. Fam, S. H. Rizkalla. Confinement model for axially loaded concrete confined by circular fiber reinforced polymer tubes [J]. ACI Structural Journal, 2001, 98(4):451-461.
    74. V. M. Karbhari, Y. Gao. Composite jacketed concrete under uniaxial compression-verifcation of simple design equations [J]. Journal of Materials in Civil Engineering, ASCE, 1997, 9(4):185-193.
    75. M. Samaan, A. Mirmiran, M. Shahawy. Model of concrete confined by fiber composites [J]. ASCE, Journal of Structural Engineering, 1998, 126(9):1025-1031.
    76.于清.轴心受压FRP约束混凝土的应力-应变关系研究[J].工业建筑,2001,31(4):5-8.
    77.于清. FRP约束混凝土柱强度承载力计算[J].工业建筑, 2000, 30(10):31-34.
    78. H. A. Toutanji. Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets [J]. ACI Materials Journal, 1999, 96(3):397-404.
    79. M. Saafi, H. A. Toutanji, Z. Li. Behavior of concrete columns confined with fiber reinforced polymer tubes [J]. ACI Materials Journal, 1999, 96(4):500-509.
    80. Y. Xiao, H. Wu. Compressive behavior of concrete confined by carbon fiber composite jackets. Journal of Materials in Civil Engineering, 2000, 12 (2): 139~146.
    81. L. Lam, J. G. Teng. strength models for fiber-reinforced plastic confined concrete [J]. Journal of Structural Engineering, ASCE, 2002, 128(5):612-623.
    82. L. Lam, J. G. Teng. Stress-strain models for FRP confined concrete [C]. Research centre for Advanced Technology in Structural Engineering, The Hong Kong Polytechnic University, Hong Kong, China, 2002.
    83.吴刚,吕志涛. FRP约束混凝土圆柱无软化段时的应力-应变关系研究[J].建筑结构学报,2003,24 (5):1-9.
    84. N. Saenz, P. P. Chris. Strain-based confinement model for FRP-confined concrete [J]. Journal of Structural Engineering, ASCE, 2007, 133(6):825-833.
    85.张伟平,崔玮,顾祥林等.碳纤维布约束对腐蚀钢筋与混凝土间粘结性能的影响[J].建筑结构学报, 2009, 30(5):162-168.
    86. K. Soudki, T. Sherwood. Bond behavior of corroded steel reinforcement inconcrete wrapped with carbon fiber reinforced polymer sheets [J]. Journal of Materials in Civil Engineering, 2003, 15 (4): 358-370.
    87. G. Sangeeta, A. Mukherjee, S.N. Malhotra. Corrosion of steel reinforcements embedded in FRP wrapped concrete [J]. Construction and Building Materials, 2009, (23):153–161.
    88.周伟,吴成义,娄宇.碳纤维加固混凝土柱设计计算方法探讨[J].特种结构, 2004, 21(2):69-71.
    89.吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动, 2005, 25(6):53-60.
    90.马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报, 2002, 30(12):1429-1433.
    91.邓宗才.碳纤维布增强钢筋混凝土梁抗弯力学性能研究[J].中国公路学报, 2001, 14 (2):45-51.
    92.张建伟,杜修力,邓宗才等.预应力芳纶纤维布加固混凝土梁的受弯性能研究[J].建筑结构学报, 2006, 27(5):101-109.
    93. GB 50010-2002混凝土结构设计规范[S].北京:中国计划出版社, 2002.
    94.邓宗才,阚德新,杜修力.聚乙烯纤维布约束混凝土短柱轴压性能的试验研究.工业建筑, 2007, 37(10): 69~72
    95.邓宗才,阚德新,翟胭脂.混杂FRP布约束混凝土圆柱体轴压力学性能的试验研究[J].北京工业大学学报, 2009, 35(2):197-205.
    96. J. G. Teng, Y. L. Huang, L. Lam, et all. Theoretical model for fiber-reinforced polymer-confined concrete [J]. ASCE, Journal of Composites for Construction, 2007, 11(2):201-210.
    97. K. Miyauchi, S. Inoue, T. Kuroda, et all. Strengthening effects of concrete columns with carbon fiber sheet [J]. Transactions of the Japan Concrete Institute, 1999, 21:143-150.
    98. S. A. Guralnick, L. Gunawan. strengthening of reinforced concrete bridge columns with FRP wrap [J]. ASCE, Practice Periodical on Structural Design and Construction, 2006, 11(4):218-228.
    99. A. Mirmiran, M. Shahawy. Behavior of concrete columns confined by fiber composite [J]. ASCE, Journal of Structural Engineering, 1997, 123(5): 583-590.
    100.邓宗才,李凯.预应力与非预应力AFRP加固腐蚀钢筋混凝土梁疲劳性能研究[J].土木工程学报, 2009, 42(9):54-60.
    101. GB50152-92.混凝土结构试验方法标准.中国建筑工业出版社,1992.
    102.赵羽习,金伟良.腐蚀钢筋与混凝土粘结性能的试验研究[J].浙江大学学报:工学版, 2002, 36 (4) :352-356.
    103. A. A. Almusallam, A. S. Al-Gahtani, A. R. Aziz, et all. Effect of reinforcement corrosion on bond strength [J]. Construction and Building Materials, 1996, 10 (2):123-129.
    104.陈留国,方从启,寇新建,等.受腐蚀钢筋混凝土的粘结性能[J].工业建筑, 2004, 34 (5): 15-17.
    105. O. Ozcana, B. Binici, G. Ozcebe. Improving seismic performance of deficient reinforced concrete columns using carbon fiber-reinforced polymers [J]. Engineering Structures, 2008, 30:1632-1646.
    106.邓宗才,李建辉.混杂FRP复合材料单轴拉伸性能研究[J].玻璃钢/复合材料, 2008, (3):30-34.
    107.邓宗才,李建辉.混杂纤维布加固钢筋混凝土梁抗弯性能试验及理论研究[J].工程力学, 2009, 26(2):115-123.
    108.过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003.
    109. J. Penizen. Dynamic response of elastic-plastic frames [J]. Journal of Structural Division, ASCE, 1962, 88(7):1322 - 1340.
    110.朱伯龙,吴明舜,张琨联.在周期荷载作用下钢筋混凝土构件滞回曲线考虑裂面接触效应的研究[J] .同济大学学报,1980 , (1) :18-24.
    111. P. C. Jennings. Periodic response of a general yielding structure [J]. Journal of Engineering Mechanical Division, ASCE, 1964, 90(2):131-165.
    112. T. Takeda, M. A. Sozen, N. N. Nielson. Reinforced concrete response to simulated earthquakes [J]. ASCE, Journal of Structural Division, 1970, 96(12): 2557-2572.
    113. M. Saiidi. Hysteresis models for reinforced concrete [J] . Journal of Structural Division, ASCE, 1982, 108 (5):1077-1087.
    114. J. B. Mander, M. N. Priestley, R. Park. Theoretical stress2strain behavior of concrete [J]. Journal of Structural Engineering, ASCE, 1988, 114 (8): 1804-1826.
    115.阎石,肖潇,阚立新等.高强钢筋高强混凝土柱恢复力模型[J].沈阳科技大学学报, 2005, 21(2):81-85.
    116.邓宗才,李朋远.腐蚀钢筋混凝土柱抗震性能的研究进展[J].工程建设, 2007, 39(5):5-10.
    117.赵国藩.高等钢筋混凝土结构学[M].北京:中国电力出版社, 1999.
    118.洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社, 1998.
    119. H. S. Lee, T. Noguchi, F. Tomosawa. Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcementcorrosion [J]. Cement and Concrete Research, 2002, 32:1313-1318.
    120.潘振华,牛荻涛,王庆霖.腐蚀率与极限粘结强度关系的试验研究[J].工业建筑, 2000, 30(5):10-12.
    121.章萍.反复荷载下钢筋与高性能混凝土粘结本构关系的试验研究[D].上海:同济大学, 2003. 69-73.
    122.王小惠,刘西拉.基于粘结强度变化的腐蚀钢筋混凝土梁受弯承载力的研究[J].四川建筑科学研究, 2006, 32(5):1-7.
    123. A. Ghobarah. Performance-based design in earthquake engineering: State of development [J]. Engineering Structures, 2001, 23 (3):878 -884.
    124. S. Ganzerli, C. P. Pantelides, L. D. Reaveley. Performance-based design using structural optimization [J] . Earthquake Engineering and Structural Dynamics, 2000, 29:1677-1690.
    125. M. J. N. Priestley. Performance based seismic design [J].Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33(3):325-346.
    126. K. G. Smith. Innovation in earthquake resistant concrete structure design philosophies: A century of progress since Hennebique’s patent [J]. Engineering Structures, 2001, 23:72 - 81.
    127. Q. Xue. Need of performance-based earthquake engineering in Taiwan: A lesson from the Chichi earthquake [J]. Earthquake Engineering and Structural Dynamics, 2000, 39:1609-1627.
    128. B. Binici. Design of FRPs in circular bridge column retrofits for ductility enhancement [J]. Engineering Structures, 2008, (30): 766-776
    129.周伟,吴成义,娄宇.碳纤维加固混凝土柱设计计算方法探讨[J].特种结构, 2004, 21(2):69-71.
    130. G. Wu, Z. T. Lu, Z. S. Wu. Strength and ductility of concrete cylinders with FRP composites [J]. Construction and Building Materials, 2005, 20(3):134-148.
    131.王小惠.腐蚀钢筋混凝土梁的承载能力[D].上海:上海交通大学,2004:29-140.
    132. J. A. Gonzalez, C. Andrade, C. Alonso, et all. Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement [J]. Cement and Concrete Research, 1995, 25(2): 257- 264.
    133. D. V. Val, M. G. Stewart, R. E. Melchers. Effect of reinforcement corrosion on reliability of highway bridges [J], Engineering structures, 1998, 20(11): 1010-1019.
    134. S. Halil, J. S. Eric. Reinforcement slip in reinforced concrete columns [J]. ACIstructural Journal, 2008, 105(3):280-289.
    135. M. J. Kowalsky. Deformation limit states for circular reinforced concrete bridge columns [J]. ASCE, Journal of Structural Engineering, 2000, 126(8):869-878.