镍微纳米针锥阵列材料的电沉积制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米阵列材料,由于其特殊的表面微纳米结构、高化学活性等,决定了它在催化、光学、磁学、电子学等方面表现出良好的功能特性,在微电子、新能源、医疗器械、化工、军事等领域具有广阔的应用前景,已成为当今研究的热点之一。但目前制备微纳米阵列结构材料的方法多为光刻法、模板法等,设备昂贵,工艺复杂,加工尺寸有限,极大地限制了它在各个领域的应用。因此,开发工艺简单、成本低廉的新型制备方法是当前研究的重要课题之一。
     本文基于电化学沉积原理,提出了一种无模板制备表面微纳米阵列材料的新方法——定向电结晶法;通过对镍微纳米针锥阵列材料的制备工艺研究,探索了定向电结晶方法的可行性;借助电化学方法和显微分析等手段,系统研究了镍微纳米针锥阵列材料的定向电结晶机理;表征了该材料的基本特性,并对其在电子封装材料中的应用进行了尝试性研究。
     在制备方面,通过镀层表面形貌的对比,对筛选出的两种金属主盐及四种结晶调整剂进行了定向电结晶可行性的研究,结果表明在氯化物镀液中添加含胺(铵)基的结晶调整剂可获得镍微纳米针锥晶,证实了定向电结晶的可行性,确定了镍定向电结晶的镀液体系。在此基础上详细研究了各种电沉积条件对微纳米针锥阵列形貌及尺寸的影响,表明溶液温度升高有利于微纳米针锥阵列的形成、提高电流密度会减小微纳米针锥的尺寸,改变沉积时间可以获得不同尺寸的针锥晶阵列,通过电沉积条件的适当选择,实现了镍微纳米针锥阵列尺寸在50 nm到1500 nm范围内的可控制备。
     为探索定向电结晶机理,研究了镀液中结晶调整剂与镍离子的络合形态和电沉积过程的电化学行为。镀液紫外可见光谱及电极反应数据表明结晶调整剂中的铵根与镍离子在溶液中不发生络合,并排除了扩散传质导致针锥形成的可能性。进一步研究发现定向电结晶初期按瞬时形核三维生长方式进行,镍微纳米针锥阵列的电沉积过程存在着中间产物,结晶调整剂主要通过在电极表面吸附,参与电极表面的电化学反应影响电结晶过程,并形成阻滞作用从而引起阻抗谱中低频区的容抗弧。最后提出了该反应的等效电路模型,模拟结果与实验结果具有较好的一致性。
     通过XRD、FE-SEM、HRTEM等分析技术对针锥晶的微观结构进行了表征。结果表明,沉积初期镀层呈现(111)织构。随着晶体的长大,镀层逐渐向(110)织构转变,并最终形成具有[110]取向的针锥晶阵列。发现了大部分微纳米针锥晶呈现出五棱锥形貌,推测其为以[110]为取向轴,(100)为侧面,(111)面为孪晶面的多重孪晶结构。针锥晶的生长可用单螺旋位错理论解释,台阶边界能的各向异性导致棱锥的产生。根据螺旋生长理论,推导出微纳米针锥的长径比与螺旋生长电流密度的平方根成正比,而结晶调整剂则可能通过阻碍生长台阶的平行扩展而促使针锥晶向上生长。
     本文还对镍微纳米针锥阵列材料的几种主要性能进行了表征。该材料的比表面积比普通镀镍层表面高2倍以上;在整个紫外可见光范围内,微纳米针锥阵列结构的反射率都低于10%,具有很好的吸光性能;镍基纳米针阵列材料的易磁化轴平行于基底表面,其矫顽力远大于块状镍金属的矫顽力。在溅射Cu玻璃基片上制备的镍微纳米针锥阵列显示了良好的场发射性能;利用分步沉积法制备的微纳米针锥分级结构的镍薄膜具有超疏水特性。
     最后对微纳米针锥阵列材料在电子封装领域的实际应用做了尝试。在引线框架表面引入微纳米针锥阵列结构,利用其较大的比表面积且可与封装树脂产生物理镶嵌咬合作用,从而增强引线框架与封装树脂间结合力达两倍以上,提高了电子产品的可靠性。同时,拉力测试和可焊性测试的结果表明,微纳米针锥阵列结构对引线框架与金线键合的强度影响不大,且该结构引线框架的可焊性良好。这些研究表明微纳米针锥阵列材料可提高镀钯引线框架的可靠性,具有广阔的应用前景。
The micro-nano array materials, owing to their unique structure, large specific surface area, high chemical activity etc., have shown special characteristic in optics magnetics and electronics. They are widely used in microelectronics, new energy, medical instrument, chemistry, military and many other fields. However, only a few methods were developed to fabricate micro-nano array materials, and most of them are AAO template-based methods or LIGA photolithography, which are complicated and costly in manufacturing process. And the dimension of the structures is limited to the available templates.
     In this dissertation, a novel method named directional electrodeposition is presented, which is low-cost and easy for application. The technique of directional electrodeposition method to fabricate nickel nanocones array is studied in details. The microstructure as well as the deposition mechanism of the nanocone is investigated by extensive structural characterization and electrochemical techniques. The basic properties of this material are also characterized, and its potential application in microelectronic packaging is raised as well. The main contents and conclusions are shown as follows:
     First, the morphologies of the deposits obtained from two metal main salts and four additives were compared, and the additive containing ammonium was found to be an effective crystallization agent in nickel chloride solution to fabricate nickel nanocone array by directional electrodeposition method. And through the study on the influence of the crystallization agent concentration, the prescription of the bath can be obtained. The deposits obtained in many different depositing conditions were compared. The solution temperature, current density as well as the deposition time was found to be the main factors influenced on the morphology of nanocones array. Thus the cones size can be varied from 50 to 1500 nm in height by controlling the deposition conditions.
     The influences of crystallization agent and solution temperature to the nickel deposition were discussed by studying the plating bath and basic electrochemical behaviors of the nickel nanocones array deposition. The calculated apparent active energy of the reaction confirmed that the reduction process was not controlled by dispersion. The initial stage of nickel nanocones electrocrystallization follows the mechanism of three dimension instantaneous nucleation growth. The electrochemical impedance spectroscopy indicates that nickel nanocones electrodeposition occurs in two steps; the low frequency capacitive loop may be due to the inhibition of nickel electrodeposition by adsorbed crystallization agent. The mechanism and equivalent circuit of nickel electrodeposition were proposed on the basis of the analysis of electrochemical impedance spectroscopy. Meanwhile, the kinetics law of nickel electrodeposition was investigated by means of steady-state polarization to confirm the proposed reaction mechanism.
     The microstructures of the nanocones were characterized by field-emitting scanning electron microscope (FE-SEM), X-ray diffraction (XRD) and Transmission Electron Microscope (TEM), etc. The results indicated that the nickel deposits’preferred orientation is changed from (111) to (011) texture. A single nanocone is pentagonal symmetric, which is supposed to be a multiple twinning crystallite with (110) orientation axis, (100) sides and twinning at each corner of the (111) planes. The growth mechanism of the nanocones by this method may be explained by the single screw dislocation growth theory. According to the theory, it can be concluded that the aspect ratio of the nanocones is proportional to the square root of the current density. And the propagation of the step edge might be blocked by adsorbed crystallization agent to promote up growth of the nanocones.
     The characteristics of nickel nanocones array material were also investigated in this dissertation. The results show that the Ni nanocones array materials have 3 times larger specific surface area than the common plain surface. UV-Vis reflection spectrum shows that the reflection rate of nanocones array structure is below 10% in the entire UV-visible range, indicating a good absorption performance; Ni nanocones array material is demonstrated to have the easy axis of magnetization paralleled to the substrate plane. The coercivity of this material is much higher than that of bulk nickel metal. The nickel nanocones array shows very good field emission properties. The nickel film with micro-nano cones array hierarchical structure fabricated by two-step electro-deposition, shows super-hydrophobic characteristic without any chemical modification.
     Finally, the nanocones array was attempted to apply to electronic packaging. The nanocones array structure was introduced into the Pd pre-plated leadframe (PPF). The adhesion between the epoxy resin molding compound (EMC) and the nanocone-arrayed PPF was three times higher than that of the conventional PPF, and PPFs with taller and steeper nanocones had greater bonding strength with the resin. The increased surface area and the physical keying effect play important roles in this adhesion strengthening between the Pd-PPF and the resin. This approach offers a promising alternative for the synthesis of novel Pd PPF and contributes to solving the problem of weak adhesion between Pd PPFs and EMC. The Au wire bonding strength and the solderability of the nanocones array Pd PPF were also tested. The results showed that both the Au wire bonding strength and the solderability of the nanocones Pd PPF were comparable with the conventional Pd PPF and could reach the industry requirement well. These results indicate that the nanocones arrayed Pd PPF can meet the high reliability requirements, especially for the automobile industry.
引文
[1] Dumestre F., Chaudret B., Amiens C., et al., Superlattices of Iron Nanocubes Synthesized from Fe[N(SiMe3)2]2, Science, 2004, 303(5659), 821-823.
    [2]白春礼,纳米科技及其发展前景,进展, 2001, 46(2).
    [3] Li Y. Y., Cunin F., Link J. R., et al., Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications, Science, 2003, 299(5615), 2045-2047.
    [4] Melosh N. A., Boukai A., Diana F., et al., Ultrahigh-Density Nanowire Lattices and Circuits, Science, 2003, 300(5616), 112-115.
    [5] Xu B. Q., Tao N. J. J., Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions, Science, 2003, 301(5637), 1221-1223.
    [6] Hinds B. J., Chopra N., Rantell T., et al., Aligned Multiwalled Carbon Nanotube Membranes, Science, 2004, 303(5654), 62-65.
    [7] Matsuishi S., Toda Y., Miyakawa M., et al., High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64](4+)(4e(-)), Science, 2003, 301(5633), 626-629.
    [8] Hartschuh A., Pedrosa H. N., Novotny L., et al., Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes, Science, 2003, 301(5638), 1354-1356.
    [9] Mao C. B., Solis D. J., Reiss B. D., et al., Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires, Science, 2004, 303(5655), 213-217.
    [10] Viculis L. M., Mack J. J., Kaner R. B., A Chemical Route to Carbon Nanoscrolls, Science, 2003, 299(5611), 1361-1361.
    [11]张璐,一维纳米线(阵列)的电化学组装,表征及其性能研究, [学位论文],天津大学, 2005.
    [12] Lee Y. H., Choi C. H., Jang Y. T., et al., Tungsten Nanowires and Their Field Electron Emission Properties, Applied Physics Letters, 2002, 81(4), 745-747.
    [13] Zhang X. Y., Zhang L. D., Meng G. W., et al., Synthesis of Ordered Single Crystal Silicon Nanowire Arrays, Advanced Materials, 2001, 13(16), 1238-1241.
    [14] Kim C., Gu W. H., Briceno M., et al., Copper Nanowires with a Five-Twinned Structure Grown by Chemical Vapor Deposition, Advanced Materials, 2008, 20(10), 1859-1863.
    [15] Kind H., Bonard J. M., Emmenegger C., et al., Patterned Films of Nanotubes Using Microcontact Printing of Catalysts, Advanced Materials, 1999, 11(15), 1285.
    [16] Kim J., No K., Lee C. J., Growth and Field Emission of Carbon Nanotubes on Electroplated Ni Catalyst Coated on Glass Substrates, Journal of Applied Physics, 2001, 90(5), 2591-2594.
    [17] Pan Z. W., Lai H. L., Au F. C. K., et al., Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties, Advanced Materials, 2000, 12(16), 1186-1190.
    [18] Zhang G. Y., Jiang X., Wang E. G., Tubular Graphite Cones, Science, 2003, 300(5618), 472-474.
    [19] Krishnan A., Dujardin E., Treacy M. M. J., et al., Graphitic Cones and the Nucleation of Curved Carbon Surfaces, Nature, 1997, 388(6641), 451-454.
    [20] Muradov N., Schwitter A., Formation of Conical Carbon Structures on Vapor-Grown Carbon Filaments, Nano Letters, 2002, 2(6), 673-676.
    [21] Chou S., Krauss P., Zhang W., et al., Sub-10 Nm Imprint Lithography and Applications, Journal of Vacuum Science and Technology-Section B-Microelectronics Nanometer Structur, 1997, 15(6), 2897-2904.
    [22] Thurn-Albrecht T., Schotter J., Kastle C. A., et al., Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates, Science, 2000, 290(5499), 2126-2129.
    [23] Xu L., Tung L., Spinu L., et al., Synthesis and Magnetic Behavior of Periodic Nickel Sphere Arrays, Advanced Materials, 2003, 15(18), 1562-1564.
    [24] Gao M., Dai L., Wallace G., Glucose Sensors Based on Glucose-Oxidase-ContainingPolypyrrole/Aligned Carbon Nanotube Coaxial Nanowire Electrodes, Synthetic Metals, 2003, 137(1-3), 1393-1394.
    [25]李新勇,李树本,纳米半导体研究进展,化学进展, 1996, 8(3), 231-239.
    [26] Qureshi A., Kang W., Davidson J., et al., Review on Carbon-Derived, Solid-State, Micro and Nano Sensors for Electrochemical Sensing Applications, Diamond & Related Materials, 2009.
    [27] Gratzel M., Perspectives for Dye-Sensitized Nanocrystalline Solar Cells, Progress in Photovoltaics, 2000, 8(1), 171-185.
    [28] Keis K., Vayssieres L., Rensmo H., et al., Photoelectrochemical Properties of Nano- to Microstructured Zno Electrodes, Journal of the Electrochemical Society, 2001, 148(2), 149-155.
    [29] Vayssieres L., Beermann N., Lindquist S. E., et al., Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(Iii) Oxides, Chemistry of Materials, 2001, 13(2), 233-235.
    [30] Mor G. K., Shankar K., Paulose M., et al., Use of Highly-Ordered Tio2 Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Letters, 2006, 6(2), 215-218.
    [31] Lakshmi B. B., Patrissi C. J., Martin C. R., Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures, Chemistry of Materials, 1997, 9(11), 2544-2550.
    [32] Mor G. K., Shankar K., Paulose M., et al., Enhanced Photocleavage of Water Using Titania Nanotube Arrays, Nano Letters, 2005, 5(1), 191-195.
    [33] Che G. L., Lakshmi B. B., Fisher E. R., et al., Carbon Nanotubule Membranes for Electrochemical Energy Storage and Production, Nature, 1998, 393(6683), 346-349.
    [34] Park J. H., Kim S., Bard A. J., Novel Carbon-Doped Tio2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting, Nano Letters, 2006, 6(1), 24-28.
    [35] Huang M. H., Mao S., Feick H., et al., Room-Temperature Ultraviolet Nanowire Nanolasers, Science, 2001, 292(5523), 1897-1899.
    [36] Ichikawa T., Ueda H., Koizumi H., Molecular Design for the Position-Selective Scission of Polymer Skeleton by Ionizing Radiation, Chemical Physics Letters, 2002, 363(1-2), 13-17.
    [37] Guo M., Diao P., Cai S. M., Hydrothermal Growth of Well-Aligned Zno Nanorod Arrays: Dependence of Morphology and Alignment Ordering Upon Preparing Conditions, Journal of Solid State Chemistry, 2005, 178(6), 1864-1873.
    [38]郭敏,刁鹏,蔡生民,水热法制备高度取向的氧化锌纳米棒阵列,高等学校化学学报, 2004, 25(2), 345-347.
    [39] Tu Y., Lin Y. H., Yantasee W., et al., Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation, and Application in Voltammetric Analysis, Electroanalysis, 2005, 17(1), 79-84.
    [40] Bond A. M., Henderson T. L. E., Mann D. R., et al., A Fast Electron Transfer Rate for the Oxidation of Ferrocene in Acetonitrile or Dichloromethane at Platinum Disk Ultramicroelectrodes, Analytical Chemistry, 2002, 60(18), 1878-1882.
    [41] Bento M. F., Medeiros M. J., Montenegro M. I., et al., Studies of Electrode Reactions in Low Ionic Strength Media Using Microelectrodes: Part 1. The Reduction of Nitrobenzenes in Aprotic Media, Journal of Electroanalytical Chemistry, 1993, 345(1-2), 273-286.
    [42] Drew S. M., Wightman R. M., Amatore C. A., Voltammetry of Ferrocene in Low Electrolyte Solutions, Journal of Electroanalytical Chemistry, 1991, 317(1-2), 117-124.
    [43] Jun Y. W., Lee S. M., Kang N. J., et al., Controlled Synthesis of Multi-Armed Cds Nanorod Architectures Using Monosurfactant System, Journal of the American Chemical Society, 2001, 123(21), 5150-5151.
    [44] Cao Y. W., Jin R., Mirkin C. A., DNA-Modified Core-Shell Ag/Au Nanoparticles, Journal of the American Chemical Society, 2001, 123(32), 7961-7962.
    [45] Kim F., Song J. H., Yang P. D., Photochemical Synthesis of Gold Nanorods, Journal of the American Chemical Society, 2002, 124(48), 14316-14317.
    [46] Pileni M. P., Ninham B. W., Gulik-Krzywicki T., et al., Direct Relationship between Shape and Size of Template and Synthesis of Copper Metal Particles, Advanced Materials, 1999, 11(16), 1358-1362.
    [47] Li M., Schnablegger H., Mann S., Coupled Synthesis and Self-Assembly of Nanoparticles to Give Structures with Controlled Organization, Nature, 1999, 402(6760), 393-395.
    [48] Ruach-Nir I., Zhang Y., Popovitz-Biro R., et al., Shape Control in Electrodeposited, Epitaxial Cdse Nanocrystals on (111) Gold, Journal of Physical Chemistry B, 2003, 107(10), 2174-2179.
    [49] Ehrfeld W., Gotz F., Munchmeyer D., et al., Liga Process: Sensor Construction Techniques Via X-Ray Lithography, In: 1988 Solid State Sensor and Actuator Workshop. Technical Digest (Cat. No.88TH0215-4), IEEE, Hilton Head Island, SC, 1988, pp. 1-4.
    [50] Cohn M., Boehringer K., Noworolski J., et al., Microassembly Technologies for Mems, In: Proceedings of SPIE, vol 3513, 1998, p. 2.
    [51] Henry S., McAllister D., Allen M., et al., Micromachined Needles for the Transdermal Delivery of Drugs, In: The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, pp. 494-498.
    [52] Zhou R., Williams J., Microneedles Array for Fluid Extraction and Drug Delivery, In: Proceedings of 2003 International Symposium on Micromechatronics and Human Science, 2003, pp. 239-244.
    [53] Cao H. Q., Xu Z., Sang H., et al., Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules, Advanced Materials, 2001, 13(2), 121-123.
    [54] Nagaura T., Takeuchi F., Yamauchi Y., et al., Fabrication of Ordered Ni Nanocones Using a Porous Anodic Alumina Template, Electrochemistry Communications, 2008, 10(5), 681-685.
    [55] Whitney T., Searson P., Jiang J., et al., Fabrication and Magnetic Properties of Arraysof Metallic Nanowires, Science, 1993, 261(5126), 1316.
    [56] Xu D. S., Xu Y. J., Chen D. P., et al., Preparation of Cds Single-Crystal Nanowires by Electrochemically Induced Deposition, Advanced Materials, 2000, 12(7), 520.
    [57] Zheng M. J., Zhang L. D., Zhang X. Y., et al., Fabrication and Optical Absorption of Ordered Indium Oxide Nanowire Arrays Embedded in Anodic Alumina Membranes, Chemical Physics Letters, 2001, 334(4-6), 298-302.
    [58] Li Y., Xu D. S., Zhang Q. M., et al., Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Aluminum Oxide Templates, Chemistry of Materials, 1999, 11(12), 3433.
    [59] Brumlik C., Martin C., Template Synthesis of Metal Microtubules, Journal of the American Chemical Society, 1991, 113(8), 3174-3175.
    [60] Cepak V. M., Hulteen J. C., Che G. L., et al., Chemical Strategies for Template Syntheses of Composite Micro- and Nanostructures, Chemistry of Materials, 1997, 9(5), 1065-&.
    [61] De Vito S., Martin C. R., Toward Colloidal Dispersions of Template-Synthesized Polypyrrole Nanotubules, Chemistry of Materials, 1998, 10(7), 1738.
    [62] Cheng G. S., Zhang L. D., Zhu Y., et al., Large-Scale Synthesis of Single Crystalline Gallium Nitride Nanowires, Applied Physics Letters, 1999, 75(16), 2455-2457.
    [63] Li Y., Meng G. W., Zhang L. D., et al., Ordered Semiconductor Zno Nanowire Arrays and Their Photoluminescence Properties, Applied Physics Letters, 2000, 76(15), 2011-2013.
    [64] Sharma S., Barman A., Sharma M., et al., Structural and Magnetic Properties of Electrodeposited Cobalt Nanowire Arrays, Solid State Communications, 2009, 149(39-40), 1650-1653.
    [65] Lakshmi B. B., Dorhout P. K., Martin C. R., Sol-Gel Template Synthesis of Semiconductor Nanostructures, Chemistry of Materials, 1997, 9(3), 857-862.
    [66] Li M., Wang C., Li H., Synthesis of Ordered Si Nanowire Arrays in Porous AnodicAluminum Oxide Templates, Chinese Science Bulletin, 2001, 46(21), 1793-1796.
    [67] Kim K., Kim M., Cho S. M., Pulsed Electrodeposition of Palladium Nanowire Arrays Using Aao Template, Materials Chemistry and Physics, 2006, 96(2-3), 278-282.
    [68] Tonucci R., Justus B., Campillo A., et al., Nanochannel Array Glass, Science, 1992, 258(5083), 783.
    [69] Wu C., Bein T., Conducting Polyaniline Filaments in a Mesoporous Channel Host, Science, 1994, 264(5166), 1757-1759.
    [70] Wu C., Bein T., Conducting Carbon Wires in Ordered, Nanometer-Sized Channels, Science, 1994, 266(5187), 1013.
    [71] Douglas K., Devaud G., Clark N., Transfer of Biologically Derived Nanometer-Scale Patterns to Smooth Substrates, Science, 1992, 257(5070), 642.
    [72] Clark T., Ghadiri M., Supramolecular Design by Covalent Capture. Design of a Peptide Cylinder Via Hydrogen-Bond-Promoted Intermolecular Olefin Metathesis, Journal of the American Chemical Society, 1995, 117(49), 12364-12365.
    [73] Ozin G., Nanochemistry: Synthesis in Diminishing Dimensions, Advanced Materials, 1992, 4(10), 612-649.
    [74] Schollhorn R., Intercalation Systems as Nanostructured Functional Materials, Chemistry of Materials, 1996, 8(8), 1747-1757.
    [75] Zhou D., Seraphin S., Production of Silicon Carbide Whiskers from Carbon Nanoclusters, Chemical Physics Letters, 1994, 222(3), 233-238.
    [76] Dai H., Wong E., Lu Y., et al., Synthesis and Characterization of Carbide Nanorods, Nature, 1995, 375(1), 769 - 772
    [77] Hernandez-Velez M., Nanowires and 1d Arrays Fabrication: An Overview, Thin Solid Films, 2006, 495(1-2), 51-63.
    [78] Viernow J., Petrovykh D. Y., Men F. K., et al., Linear Arrays of CaF2 Nanostructures on Si, Applied Physics Letters, 1999, 74(15), 2125-2127.
    [79]王立晟,章晓中, PVD法在Zno (001)薄膜上制备ZnO纳米线阵列,电子显微学报, 2005, 24(4), 252-252.
    [80] Wagner R., Ellis W., Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth, Applied Physics Letters, 1964, 4(1), 89.
    [81] Duan X. F., Lieber C. M., General Synthesis of Compound Semiconductor Nanowires, Advanced Materials, 2000, 12(4), 298-302.
    [82] Wu Y. Y., Yang P. D., Germanium Nanowire Growth Via Simple Vapor Transport, Chemistry of Materials, 2000, 12(3), 605.
    [83] Tang Y. H., Wang N., Zhang Y. F., et al., Synthesis and Characterization of Amorphous Carbon Nanowires, Applied Physics Letters, 1999, 75(19), 2921-2923.
    [84] Bai Z. G., Yu D. P., Zhang H. Z., et al., Nano-Scale Geo2 Wires Synthesized by Physical Evaporation, Chemical Physics Letters, 1999, 303(3-4), 311-314.
    [85] Chen C. C., Yeh C. C., Chen C. H., et al., Catalytic Growth and Characterization of Gallium Nitride Nanowires, Journal of the American Chemical Society, 2001, 123(12), 2791-2798.
    [86] Wang Y. W., Meng G. W., Zhang L. D., et al., Catalytic Growth of Large-Scale Single-Crystal Cds Nanowires by Physical Evaporation and Their Photoluminescence, Chemistry of Materials, 2002, 14(4), 1773-1777.
    [87] Morales A. M., Lieber C. M., A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, 1998, 279(5348), 208-211.
    [88] Yu D. P., Lee C. S., Bello I., et al., Synthesis of Nano-Scale Silicon Wires by Excimer Laser Ablation at High Temperature, Solid State Communications, 1998, 105(6), 403-407.
    [89] Yazawa M., Koguchi M., Muto A., et al., Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of Inas Nanowhiskers, Applied Physics Letters, 1992, 61(1), 2051.
    [90] Wu Y. Y., Messer B., Yang P. D., Superconducting Mgb2 Nanowires, Advanced Materials, 2001, 13(19), 1487.
    [91] Otten C. J., Lourie O. R., Yu M. F., et al., Crystalline Boron Nanowires, Journal of theAmerican Chemical Society, 2002, 124(17), 4564-4565.
    [92] Feldman Y., Wasserman E., Srolovitz D., et al., High-Rate, Gas-Phase Growth of Mos2 Nested Inorganic Fullerenes and Nanotubes, Science, 1995, 267(5195), 222.
    [93] Liu C., Hu Z., Wu Q., et al., Vapor-Solid Growth and Characterization of Aluminum Nitride Nanocones, Journal of the American Chemical Society, 2005, 127(4), 1318-1322.
    [94]雷淑华,林健,黄文旵, et al.,纳米线阵列及纳米图形制备技术的研究进展,材料导报, 2007, 21, 102-105.
    [95]于灵敏,范新会,刘建刚, et al.,外加电场对硅纳米线生长影响的研究,材料导报, 2004, 18(F04), 112-114.
    [96] Huang L. M., Wang H. T., Wang Z. B., et al., Nanowire Arrays Electrodeposited from Liquid Crystalline Phases, Advanced Materials, 2002, 14, 61-64.
    [97] Messer B., Song J. H., Yang P. D., Microchannel Networks for Nanowire Patterning, Journal of the American Chemical Society, 2000, 122(41), 10232-10233.
    [98] Tanase M., Silevitch D. M., Hultgren A., et al., Magnetic Trapping and Self-Assembly of Multicomponent Nanowires, Journal of Applied Physics, 2002, 91(10), 8549-8551.
    [99] Gerischer H., Kinetik Der Elektrolytischen Abscheidung Und Auflosung Von Metallen in Wassriger Losung, Electrochimica Acta, 1960, 2(1-3), 1-18.
    [100] Fischer H., Wirkungen Der Inhibitoren Bei Der Elektrokristallisation: Ubersicht Uber Den Gegenwartigen Stand Der Forschung, Electrochimica Acta, 1960, 2(1-3), 50-91.
    [101] Frank F., The Influence of Dislocations on Crystal Growth, Discussions of the Faraday Society, 1949, 5, 48-54.
    [102] Vetter K., Barnatt S., Electrochemical Kinetics: Theoretical Aspects, Journal of the Electrochemical Society, 1968, 115, 262.
    [103]覃奇贤,电镀原理与工艺,天津,天津科学技术出版社, 1993.
    [104]吴辉煌,电极学原理,厦门,厦门大学出版社, 1991.
    [105]周绍民,金属电沉积原理与研究方法,上海,上海科学技术出版杜, 1987.
    [106] Bockris J., Razumney G., Fundamental Aspects of Electrocrystallization, New York, Plenum Press, 1967.
    [107] Despic A., Diggle J., Bockris J., Mechanism of the Formation of Zinc Dendrites, Journal of the Electrochemical Society, 1968, 115, 507.
    [108] Price P., Vermilyea D., Webb M., On the Growth and Properties of Electrolytic Whiskers, Acta Metallurgica, 1958, 6, 524-531.
    [109] Seiter H., Fischer H., Albert L., Elektrochemisch-Morphologische Studien Zur Erforschung Des Mechanismus Der Elektrokristallisation, Fern Vom Anfangszustand, Electrochimica Acta, 1960, 2(1-3), 97-120.
    [110] Froment M., Thevenin J., Anodic Adsorption of Organic Compounds During the Electrodeposition of Ni, Electrochimica Acta, 1975, 20(11), 877-885.
    [111] Jones M., Kenez M., Initial Stages of Nickel Deposition, Plating, 1966, 53(8), 995-1001.
    [112] Bockris J., Reddy A., Gamboa-Aldeco M., Modern Electrochemistry, London, Plenum Pub Corp, 2000.
    [113] Finch G., Sun C., An Electron-Diffraction Study of the Structure of Electro-Deposited Metals, Transactions of the Faraday Society, 1936, 32, 852-863.
    [114] Reddy A., Preferred Orientations in Nickel Electro-Deposits: The Mechanism of Development of Textures in Nickel Electro-Deposits. , Journal of Electroanalytical Chemistry, 1963, 6, 141–152.
    [115] Rashkov S., Atanasov N., Texture and Morphology of Ni Coatings Deposited in the Presence of Surfactants, Electrodeposition Surface Treatment, 1975, 3(2), 105-120.
    [116] Watanabe T., Minami S., Surface Morphology and Crystallographic Orientation of Electroplated Zn Film, Journal of the Japan Institude of Metals, 2000, 64(1), 67-76.
    [117]渡边辙,纳米电镀,北京,化学工业出版社, 2007.
    [118] Damjanovic A., Paunovic M., Bockris J. O. M., The Mechanism of Step Propagation and Pyramid Formation on the (100) Plane of Copper from in Situ Nomarski-OpticalStudies, Journal of Electroanalytical Chemistry, 1965, 9(2), 93-111.
    [119] Nageswar S., Electrodeposition of Cu on a Cu Single Crystal Face in the Presence of Bromide Ions, Electrodeposition Surface Treatment, 1975, 3(5), 369-377.
    [120] Bockris J., Despic A., Physical Chemistry. An Advanced Treatise. Vol Ixb, In: Academic Press, New York, 1970.
    [121] Banerjee B., Goswami A., The Structure of Electro‐Deposited Nickel, Journal of the Electrochemical Society, 1959, 106, 20.
    [122] Korai Y., Okada G., Yamazoe N., et al., Morphology and Crystal Growth of Copper Deposits on a Copper (110) Electrode, Surface Technology, 1978, 7(4), 331-343.
    [123] Winand R., Electrodeposition of Metals and Alloys--New Results and Perspectives, Electrochimica Acta, 1994, 39(8-9), 1091-1105.
    [124] Bai A., Hu C. C., Iron-Cobalt and Iron-Cobalt-Nickel Nanowires Deposited by Means of Cyclic Voltammetry and Pulse-Reverse Electroplating, Electrochemistry Communications, 2003, 5(1), 78-82.
    [125] Xiao Y. K., Yu G., Yuan J., et al., Fabrication of Pd-Ni Alloy Nanowire Arrays on Hopg Surface by Electrodeposition, Electrochimica Acta, 2006, 51(20), 4218-4227.
    [126] Marozzi C. A., Chialvo A. C., Development of Electrode Morphologies of Interest in Electrocatalysis. Part I: Electrodeposited Porous Nickel Electrodes, Electrochimica Acta, 2000, 45(13), 2111-2120.
    [127] Bao Z. L., Kavanagh K. L., Aligned Co Nanodiscs by Electrodeposition on Gaas, Journal of Crystal Growth, 2006, 287(2), 514-517.
    [1]方景礼,电镀添加剂理论与应用,北京,国防工业出版社, 2006.
    [2] Dennis J., Such T., Nickel and Chromium Plating, Woodhead Pub Ltd, 1993.
    [3] Lin K., Hwang J., Effect of Thiourea and Lead Acetate on the Deposition of Electroless Nickel, Materials Chemistry & Physics, 2002, 76(2), 204-211.
    [4]刘永辉,电化学测试技术,北京,北京航空学院出版社, 1987.
    [5] Marozzi C. A., Chialvo A. C., Development of Electrode Morphologies of Interest in Electrocatalysis. Part I: Electrodeposited Porous Nickel Electrodes, Electrochimica Acta, 2000, 45(13), 2111-2120.
    [6] Bao Z. L., Kavanagh K. L., Aligned Co Nanodiscs by Electrodeposition on Gaas, Journal of Crystal Growth, 2006, 287(2), 514-517.
    [7]蔡加勒,周绍民,三乙醇胺在金属电沉积中的基本效应,高等学校化学学报, 1994, 15(001), 79-84.
    [8]渡边辙,纳米电镀,北京,化学工业出版社, 2007.
    [9]吴辉煌,电极学原理,厦门,厦门大学出版社, 1991.
    [10]钱苗根,姚寿山,张少宗,现代表面技术,北京,机械工业出版社, 1998.
    [11] Njau K., Janssen L., Electrochemical Reduction of Nickel Ions from Dilute Solutions, Journal of Applied Electrochemistry, 1995, 25(10), 982-986.
    [1] Gomez E., MüLLER C., Pollina R., et al., Studies of Electrodeposition of Nickel: Different Nickel (II) and Sulphonated Additive Concentrations, Journal of Electroanalytical Chemistry, 1992, 333(1-2), 47-64.
    [2] Epelboin I., Wiart R., Mechanism of the Electrocrystallization of Nickel and Cobalt in Acidic Solution, Journal of the Electrochemical Society, 1971, 118(10), 1577-1582.
    [3] Epelboin I., Joussellin M., Wiart R., Impedance Measurements for Nickel Deposition in Sulfate and Chloride Electrolytes, Journal of Electroanalytical Chemistry, 1981, 119(1), 61-71.
    [4]郑利峰,氨络合物体系电积镍的阴阳极机理研究, [学位论文],杭州,浙江工业大学, 2004.
    [5]刘永辉,电化学测试技术,北京航空学院出版社, 1987.
    [6] Oliveira E. M., Finazzi G. A., Carlos I. A., Influence of Glycerol, Mannitol and Sorbitol on Electrodeposition of Nickel from a Watts Bath and on the Nickel Film Morphology, Surface & Coatings Technology, 2006, 200(20-21), 5978-5985.
    [7] Ji J., Cooper W. C., Nickel Speciation in Aqueous Chloride Solutions, Electrochimica Acta, 1996, 41(9), 1549-1560.
    [8] Grujicic D., Pesic B., Electrochemical and Afm Study of Nickel Nucleation Mechanisms on Vitreous Carbon from Ammonium Sulfate Solutions, Electrochimica Acta, 2006, 51(13), 2678-2690.
    [9] Fletcher S., Some New Formulae Applicable to Electrochemical Nucleation/Growth/Collision, Electrochimica Acta, 1983, 28(7), 917-923.
    [10] Correia A., Machado S., Electrodeposition and Characterisation of Thin Layers of Ni Co Alloys Obtained from Dilut Chloride Bathes,Electrochimica Acta, 2000, 45(11), 1733-1740.
    [11]杨防祖,曹刚敏,胡筱, et al.,镍钨硼合金电沉积机理及镀层微晶尺寸,电化学, 2000, 6(2), 169-174.
    [12] Zheng G., Zheng L., Cao H., et al., Nickel Electrodeposition from Leaching Solution Containing Ammonia and Chloride, Transactions of the Nonferrous Metals Society of China, 2003, 13(1), 217-220.
    [13] Abyaneh M., Fleischmann M., The Electrocrystallisation of Nickel, Transactions of the Institute of Metal Finishing, 1980, 58(3), 91-96.
    [14] Scharifker B., Hills G., Theoretical and Experimental Studies of Multiple Nucleation, Electrochimica Acta, 1983, 28(7), 879-889.
    [15] Abyaneh M., Fleischmann M., The Electrocrystallisation of Nickel:: Part Ii. Comparison of Models with the Experimental Data, Journal of Electroanalytical Chemistry, 1981, 119(1), 197-208.
    [16]许书楷,某些添加剂对镍在玻璃碳上电结晶的影响,厦门大学学报, 1987, 26(6), 705.
    [17]黄令,许书楷,钕离子作用下的镍电沉积初期行为研究,材料保护, 1999, 32(002), 1-3.
    [18]顾牡,李益峰,汪大祥, et al.,凝胶中络合物浓度分布对CuI晶体生长的影响,硅酸盐学报, 2006, 34(9), 1070-1074.
    [19]邓姝皓,脉冲电沉积纳米晶铬-镍-铁合金工艺及其基础理论研究, [学位论文],长沙,中南大学, 2003.
    [20] Chassaing E., Joussellin M., Wiart R., The Kinetics of Nickel Electrodeposition: Inhibition by Adsorbed Hydrogen and Anions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 157(1), 75-88.
    [21] Epelboin I., Joussellin M., Wiart R., Impedance of Nickel Deposition from Sulfate and Chloride Electrolytes, Journal of Electroanalytical Chemistry 1979, 101, 281-284.
    [22]吴继勋,刘永勤,锌—镍合金共沉积的交流阻抗行为,材料保护, 1994, 27(1), 16-19.
    [23] Watson S., Walters R., The Effect of Chromium Particles on Nickel Electrodeposition, Journal of the Electrochemical Society, 1991, 138, 3633.
    [24] Watson S., Electrochemical Study of Sic Particle Occlusion During Nickel Electrodeposition, Journal of the Electrochemical Society, 1993, 140, 2235.
    [25] Bao Z. L., Kavanagh K. L., Aligned Co Nanodiscs by Electrodeposition on Gaas, Journal of Crystal Growth, 2006, 287(2), 514-517.
    [26]曹楚南,混合电位下的法拉第导纳,中国腐蚀与防护学报, 1993, 13(2), 91-100.
    [27]郑利峰,郑国渠,氯盐氨性络合物体系电积镍的动力学研究,科学技术与工程, 2003, (1), 22-24.
    [28]杨绮琴,方北龙,童叶翔,应用电化学,广州,中山大学出版社, 2001.
    [1] Seiter H., Fischer H., Albert L., Elektrochemisch-Morphologische Studien Zur Erforschung Des Mechanismus Der Elektrokristallisation, Fern Vom Anfangszustand, Electrochimica Acta, 1960, 2(1-3), 97-120.
    [2] Amblard J., Froment M., Spyrellis N., Origine Des Textures Dans Les Depots Electrolytiques De Nickel, Surface Technology, 1977, 5(3), 205-234.
    [3] Banerjee B., Goswami A., The Structure of Electro‐Deposited Nickel, Journal of the Electrochemical Society, 1959, 106, 20.
    [4] Winand R., Electrodeposition of Metals and Alloys--New Results and Perspectives, Electrochimica Acta, 1994, 39(8-9), 1091-1105.
    [5]秦善,晶体学基础,北京,北京大学出版社, 2004.
    [6] Cordente N., Respaud M., Senocq F., et al., Synthesis and Magnetic Properties of Nickel Nanorods, Nano Letters, 2001, 1(10), 565-568.
    [7] Bao J., Tie C., Xu Z., et al., Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Behavior, Advanced Materials, 2001, 13(21), 1631.
    [8]渡边辙,纳米电镀,北京,化学工业出版社, 2007.
    [9] Ng S., Ling H., Effect of Crystallographic Orientation on Contact Resistance of Electroplated Nickel Alloys, Journal of the Electrochemical Society, 1990, 137, 458.
    [10] Tajiri K., Kamihata N., Kajima K., The Surface Technologies Aerospace IndustryLeads-Electroforming, Chemical Milling Cleanliness, Journal-surface finishing society of Japan, 1998, 49, 127-132.
    [11] Ye X., De Bonte M., Celis J., et al., Role of Overpotential on Texture, Morphology and Ductility of Electrodeposited Copper Foils for Printed Circuit Board Applications, Journal of the Electrochemical Society, 1992, 139, 1592.
    [12] Reddy A., Preferred Orientations in Nickel Electro-Deposits: The Mechanism of Development of Textures in Nickel Electro-Deposits. , Journal of Electroanalytical Chemistry, 1963, 6, 141–152.
    [13] Pangarov N., Preferred Orientations in Electro-Deposited Metals, Journal of Electroanalytical Chemistry, 1965, 9, 70-85.
    [14] Gedwill M. A., Altstetter C. J., Wayman C. M., External Symmetry of Cobalt Particles Produced by Hydrogen Reduction of CoBr[Sub 2], Journal of Applied Physics, 1964, 35(7), 2266-2267.
    [15] Allpress J. G., Sanders J. V., The Structure and Orientation of Crystals in Deposits of Metals on Mica, Surface Science, 1967, 7(1), 1-25.
    [16] Gillet E., Gillet M., Mise En Evidence De Germes De Structure Anormale Dans Les Films D'or Condenses Sur Les Halogenures Alcalins, Thin Solid Films, 1969, 4(3), 171-185.
    [17] Fukano Y., Wayman C. M., Shapes of Nuclei of Evaporated Fcc Metals, Journal of Applied Physics, 1969, 40(4), 1656-1664.
    [18] Yagi K., Takayanagi K., Kobayashi K., et al., In-Situ Observations of Growth Processes of Multiply Twinned Particles, Journal of Crystal Growth, 28(1), 117-124.
    [19] Faust Jr J. W., John H. F., The Growth of Semiconductor Crystals from Solution Using the Twin-Plane Reentrant-Edge Mechanism, Journal of Physics and Chemistry of Solids, 1964, 25(12), 1407-1415.
    [20] Faust J. J. W., Ogburn F., Kahan D., et al., Twin Configurations in Fcc Dendrites, Journal of the Electrochemical Society, 1967, 114(12), 1311-1313.
    [21] Smit J., Ogburn F., Bechtoldt C. J., Multiple Twin Structures in Electrodeposited Silver Dendrites, Journal of the Electrochemical Society, 1968, 115(4), 371-374.
    [22] Gillet E., Renou A., Gillet M., Mise En vidence Du Passage De La Structure Icosaédrique La Structure C.F.C. Dans Les Petits Agrégats D'or Condensés Sur Nacl Thin Solid Films, 1975, 29(2), 217-222.
    [23] Hoare M. R., Pal P., Statistics and Stability of Small Assemblies of Atoms, Journal of Crystal Growth, 1972, 17, 77-96.
    [24] Melmed A. J., Hayward D. O., On the Occurrence of Fivefold Rotational Symmetry in Metal Whiskers, The Journal of Chemical Physics, 1959, 31(2), 545-546.
    [25] De Blois R. W., Ferromagnetic Domains in Thin Single-Crystal Nickel Platelets, Journal of Applied Physics, 1965, 36(5), 1647-1658.
    [26] Schwoebel R. L., Anomalous Growth of Gold from the Vapor Phase, Journal of Applied Physics, 1966, 37(6), 2515-2516.
    [27] Pangarov N., Velinov V., Preferred Orientation and Morphology of Twinned Crystals by Electrocrystallization of Silver, Electrochimica Acta, 1968, 13(7), 1641-1646.
    [28] Fischer H., Aspects of Inhibition in Electrodeposition of Compact Metals Ii. Effects of Morphological Interface Inhibition, Electrodeposition and Surface Treatment, 1973, 1(4), 319-337.
    [29] Kozlov V. M., Bicelli L. P., Formation of Structural Defects During Metal Electrocrystallization, Journal of Crystal Growth, 1996, 165(4), 421-428.
    [30] Kozlov V. M., Bicelli L. P., Timoshenko V. N., Influence of Foreign Particle Adsorption on the Formation of Structural Defects During Noncoherent Nucleation: An Atomistic Analysis, Journal of Crystal Growth, 1998, 183(3), 456-462.
    [31] Kozlov V. M., Peraldo Bicelli L., Influence of Noncoherent Nucleation on the Formation of the Polycrystalline Structure of Metals Electrodeposited in the Presence of Surface-Active Agents, Materials Chemistry and Physics, 2000, 62(2), 158-163.
    [32] Kozlov V. M., Bicelli L. P., Formation of Structural Defects During Non-CoherentNucleation: An Atomistic Analysis, Journal of Crystal Growth, 1997, 177(3-4), 289-295.
    [33] Pangarov N. A., Twinning Processes in the Electrocrystallization of Face-Centred Cubic Metals, physica status solidi (b), 1967, 20(1), 371-377.
    [34]周绍民,金属电沉积原理与研究方法,上海,上海科学技术出版杜, 1987.
    [35] Frank F., The Influence of Dislocations on Crystal Growth, Discussions of the Faraday Society, 1949, 5, 48-54.
    [1]杜仕国,施冬梅,邓辉,纳米材料的特异效应及其应用,自然杂志, 2000, 22(2), 101-106.
    [2]高春华,纳米材料的基本效应及其应用,江苏理工大学学报:自然科学版, 2001, 22(6), 45-49.
    [3] Xu L. B., Tung L. D., Spinu L., et al., Synthesis and Magnetic Behavior of Periodic Nickel Sphere Arrays, Advanced Materials, 2003, 15(18), 1562.
    [4] Han N., Guo G., Zhang L., et al., Magnetization Reversal for Ni Nanowires Studied by Micromagnetic Simulations, Journal of Materials Science and Technology, 2009, 25(2), 151.
    [5]郁可,基于纳米结构的场致电子发射研究, [学位论文],上海,华东师范大学, 2004.
    [6]江雷,从自然到仿生的超疏水纳米界面材料,现代科学仪器, 2003, (003), 6-10.
    [7]王昕,候耀永,纳米复合陶瓷材料研究进展,复合材料学报, 1999, 16(001), 105-110.
    [8]张梅,陈焕春,纳米材料的研究现状及展望,导弹与航天运载技术, 2000, (003), 11-16.
    [9]杜廷发,现代仪器分析,长沙,国防科技大学出版社, 1994.
    [10] Whitney T., Searson P., Jiang J., et al., Fabrication and Magnetic Properties of Arrays of Metallic Nanowires, Science, 1993, 261(5126), 1316.
    [11] Demand M., Encinas-Oropesa A., George J., et al., Structural Transition of Electrodeposited Co Nanowires as a Function of the Electrolytic Bath Acidity, In: Magnetics Conference, 2002. INTERMAG Europe 2002. Digest of Technical Papers. 2002 IEEE International, Belgium, 2002, p. GB3.
    [12] Yi H., Ding C., Feng Y., Growth of Single-Crystalline Ni and Co Nanowires Via Electrochemical Deposition and Their Magnetic Properties, Journal of Physical Chemistry. B, 2005, 109(8).
    [13] Metzger R., Konovalov V., Sun M., et al., Magnetic Nanowires in Hexagonally Ordered Pores of Alumina, Ieee Transactions on Magnetics, 2000, 36(1), 30-35.
    [14] Li F., Wang T., Ren L., et al., Structure and Magnetic Properties of Co Nanowires in Self-Assembled Arrays, Journal of Physics: Condensed Matter, 2004, 16, 8053-8060.
    [15] Arai K., Kang H., Ishiyama K., Magnetic Properties of Co-Fe Electrodeposited Alumite Films, Ieee Transactions on Magnetics, 1991, 27(6 Part 2), 4906-4908.
    [16] Daimon H., Kitakami O., Inagoya O., et al., Magnetic Properties of Fe-Cu and Fe-P Electrodeposited Alumite Films, Japanese Journal of Applied Physics, 1991, 30(2), 282-289.
    [17]廖复疆,提高钼尖锥场致发射阵列阴极发射性能的研究,液晶与显示, 2004, (5), 343-348.
    [18] Kang D., Zhirnov V. V., Sanwald R. C., et al., Field Emission from Ultrathin Coatings of Aln on Mo Emitters, Journal of Vacuum Science & Technology B, 2001, 19(1), 50-54.
    [19] Han J. H., Choi S. H., Lee T. Y., et al., Field Emission Properties of Modified Carbon Nanotubes Grown on Fe-Coated Glass Using Pecvd with Carbon Monoxide, Physica B-Condensed Matter, 2002, 323(1-4), 182-183.
    [20] Yue S. L., Gu C. Z., Shi C. Y., et al., Field Emission Characteristics of Oriented-Aln Thin Film on Tungsten Tip, Applied Surface Science, 2005, 251(1-4), 215-219.
    [21] Fowler R. H., Nordheim L., Electron Emission in Intense Electric Fields, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1928, 119(781), 173-181.
    [22] Cheng Y., Zhou O., Electron Field Emission from Carbon Nanotubes, Comptes rendus-Physique, 2003, 4(9), 1021-1033.
    [23] Zhirnov V., Choi W., Cuomo J., et al., Diamond Coated Si and Mo Field Emitters:Diamond Thickness Effect, Applied Surface Science, 1996, 94( ), 123-128.
    [24] Nishino T., Meguro M., Nakamae K., et al., The Lowest Surface Free Energy Based on -Cf3 Alignment, Langmuir, 1999, 15(13), 4321-4323.
    [25] Gao X., Jiang L., Biophysics: Water-Repellent Legs of Water Striders, Nature, 2004, 432(7013), 36.
    [26] Guo Z. G., Liu W. M., Su B. L., A Stable Lotus-Leaf-Like Water-Repellent Copper, Applied Physics Letters, 2008, 92(6), 063104.
    [27] Wenzel R., Resistance of Solid Surfaces to Wetting by Water, Industrial & Engineering Chemistry, 1936, 28(8), 988-994.
    [28] Cassie A., Baxter S., Wettability of Porous Surfaces, Transactions of the Faraday Society, 1944, 40, 546-551.
    [29] Burton Z., Bhushan B., Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces, Ultramicroscopy, 2006, 106(8-9), 709-719.
    [30] Feng L., Li S., Li Y., et al., Super-Hydrophobic Surfaces: From Natural to Artificial, Advanced Materials, 2002, 14(24), 1857-1860.
    [1] Kim J., Choi W., Park K., et al., Ppf (Pre-Plated Frame) Technology Using Sn-Bi and Pure Sn Electro Deposition on Alloy 42 Lead Frame for Semiconductor Package Corresponding to Lead-Free Movement, In: IEEE/CPMT/SEMI 29th International Electronics Manufacturing Technology Symposium, 2004, pp. 40-44.
    [2] Xie W., Hu H., Sitaraman S., Selection of Base Substrate Material for Design against Interfacial Delamination for a Multilayered System-on-Package (Sop) Structure, In: Electronic Components and Technology Conference, IEEE, 2001, pp. 613-619.
    [3] Zhao X., Caers J., Feasibility Study on Board Assembly of Tssop Components with Nipdau Ppf Finish, In: Electronic Packaging Technology Conference 2005 Proceedings of 7th, vol 2, Singapore, 2005, p. 7.
    [4] Kang S., Rai R., Purushothaman S., Interfacial Reactions During Soldering with Lead-Tin Eutectic and Lead (Pb)-Free, Tin-Rich Solders, Journal of Electronic Materials, 1996, 25(7), 1113-1120.
    [5]谢广超,封装树脂与Pkg分层的关系探讨,电子工业专用设备, 2005, 34(009), 22-25.
    [6]黄强,郭大琪,丁荣峥, et al.,双键合点破坏性引线键合拉力试验的测量误差分析,电子与封装, 2003, 3(5).
    [7]马鑫,何小琦,集成电路内引线键合工艺材料失效机制及可靠性,电子工艺技术, 2001, 22(005), 185-191.