原位自生耐热钛基复合材料的高温性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于其相对钛合金更为优异的综合性能,钛基复合材料引起人们广泛关注。目前,钛基复合材料最重要、最有潜力的应用领域之一是在航空航天结构材料以及航空航天发动机材料。为提高高温钛合金的性能及使用温度,钛基复合材料应该具有高比强度、高比模量,更为重要的是,应在高温条件下有高的强度、优异的抗蠕变性能、可靠的热稳定性、抗氧化性以及高的疲劳强度。针对这一目标,本论文开展了一系列基础性研究。研究了耐热钛基复合材料的微观结构,室温、高温力学性能,高温蠕变性能,其中,重点研究了复合材料的高温强化机理,取得了以下主要研究结果:
     运用真空自耗电弧炉熔炼以及热加工、热处理技术,简洁、低成本地原位合成了以近α合金为基体,TiB、TiC和La_2O_3多元强化的耐热钛基复合材料。经热加工和热处理,复合材料和基体合金以层片组织为主。复合材料中的增强体为TiB短纤维、TiC颗粒以及La_2O_3颗粒,TiB短纤维沿加工方向形成了定向排布,增强体分布均匀,其中La_2O_3主要以纳米级的细小颗粒弥散地分布在基体中。
     耐热钛基复合材料的室温和高温拉伸性能相对基体合金有大幅度的提高。增强体体积分数10%的三元增强耐热钛基复合材料(TiB+TiC+La_2O_3)/Ti相对基体合金的强化效果最高。复合材料的塑性是晶粒细化与增强体含量综合作用的结果,增强体含量为2.4%的复合材料实现了强度和塑性的同时提高。室温失效机制主要是TiB短纤维的承载断裂,强化效果取决于增强体含量。耐热钛基复合材料在高温条件下以韧性断裂为主。在选定的增强体含量范围,600℃时增强体含量5%的三元增强钛基复合材料具有最高的抗拉强度。而在650-700℃时,增强体含量2.4%复合材料具有最高的抗拉强度。耐热钛基复合材料的高温断裂机理与室温时明显不同,TiB短纤维长径比较低的复合材料以短纤维端部与基体脱粘为主,增强体含量2.4%的复合材料优异的高温性能主要来源于其高的TiB短纤维长径比。
     耐热钛基复合材料的高温拉伸性能对应变速率非常敏感,应变速率降低时,高温抗拉强度降低,断裂延伸率提高。在10-3/s应变速率的条件下,基体的等强温度在600℃附近,而10-5/s应变速率的条件下基体的等强温度远低于600℃。随温度上升、应变速率降低,TiB短纤维的临界长径比提高,使得界面脱粘更容易发生,从而严重降低复合材料的高温抗拉强度。温度越高,应变速率越低,复合材料的高温强度对TiB短纤维长径比分布的依赖性越强,并超过了对增强体体积分数的依赖。
     耐热钛基复合材料的稳态蠕变速率比基体合金以及IMI834合金低了1~2个数量级,增强体的加入显著提高了复合材料的蠕变抗力。门槛蠕变应力理论很好地解释了复合材料较高的表观应力指数,经门槛应力补偿后,复合材料的真应力指数与基体合金相同。复合材料减速蠕变阶段耗时远大于基体合金,且减速蠕变阶段与稳态蠕变阶段之间存在较长的过渡区。复合材料和基体合金的持久强度和断裂延伸率均有明显的下降,这主要是由于晶界和界面结合强度进一步降低,以及空气中长时间高温持久试验造成的表面氧化。
     随试验应力的不同,基体合金和复合材料均出现低应力区和高应力区,基体合金在低应力区和高应力区的应力指数分别为2和4.5。复合材料蠕变抗力的强化主要来自于门槛应力和应力传递效应。复合材料中高的表观应力指数主要是来源于门槛应力,而应力传递效应对高应力区的表观应力因子有一定的影响,但其作用远低于门槛应力。La_2O_3颗粒对门槛应力的提高作用主要体现在高应力区,且门槛应力值主要取决于增强体在复合材料中的弥散程度,而与增强体体积分数关系不大。应力传递效应主要依赖于TiB短纤维的长径比,随增强体总体积分数单调递减,且低应力区的传递因子显著高于高应力区。复合材料蠕变抗力的强化效果对增强体的形态特征依赖更强。
     600℃和650℃热暴露均使得耐热钛基复合材料的室温塑性有所降低,而700℃热暴露使室温塑性有所回升。引起室温塑性降低的主要因素为α层片晶界处析出的Ti3Al有序相,这种有序相在基体中的固溶温度在650℃~ 700℃之间。增强体在热暴露过程中稳定性良好,与基体没有界面反应发生。镧元素在熔炼过程中可吸收熔体中的氧元素,形成纳米La_2O_3陶瓷颗粒,弥散强化基体合金,进一步提高复合材料的热稳定性。
Recently, titanium matrix composites have drawn great attention due to the superior properties over titanium alloys. At present, the most important and promising application of titanium matrix composites lies in the field of aero-space, where they serve as structural materials and materials for aero-space engines. As the potential materials in place of high temperature titanium alloys, titanium matrix composites should be of high specific strength and specific modulus. Moreover, the performances at high temperatures call for high strength, excellent creep resistance, solid thermal stability and oxidation resistance, and high fatigue strength. Aiming at the above goal, fundamental research was done in the thesis. Via observing microstructures of the matrix alloy and TMCs, testing tensile properties at room and high temperatures, high temperature creep behaviors, and thermal stability of the matrix alloy and TMCs were tested, the enhancement mechanisms of TMCs at high temperatures were investigated in particular.
     Near-alpha based heat resistant titanium matrix composites (TMCs) reinforced with TiB, TiC and La_2O_3 were synthesized by common casting and hot-forging technology. After hot working and heat treatment, the basic microstructures of the matrix alloy and TMCs were fully lamellar. The reinforcements in the composites were TiB whiskers, TiC particles and La_2O_3 particles. TiB whiskers showed good alignment along the hot working direction. The reinforcements were uniformly distributed in the TMCs, and sizes of La_2O_3 particles were in the nano-scale.
     Tensile strengths of TMCs at room and high temperatures were significantly enhanced by the reinforcements. The tri-reinforced composite (TiB+TiC+La_2O_3)/Ti with 10% volume fraction of reinforcements showed the highest tensle strength. Ductilities of TMCs were deterimined by the competing effect between the refinement of matrix microstructure and the volume fraction of reinforcements. Both strength and ductility of the composite with 2.4% voume fraction of reinforcements were enhanced. Failure mechanisms at room temperature were load bearing and fracture of TiB short fibers, and the enhancement of strength was mainly determined the volume fraction of reinforcements. Fracture mechanisms of TMCs at high temperature were mainly ductile. The composite with 5% volume fraction of reinforcements showed the highest strength at 600℃. At 650℃and 700℃, the composite with 2.4% volume fraction of reinforcements showed the highest tensile strength. The fractreu mechanism of TMCs with low aspect ratios of TiB whisker was mainly the interfacial debongding between the matrix and ends of TiB whiskers. The excellent high temperature tensile properties of the composite with 2.4% volume fraction of reinforcements were attributed to the high aspect ratios of TiB whiskers.
     High temperature tensile properties of TMCs were quite sensitive to the strain rates. Tensile strength decreased and the fracture strains increased when the strain rate was lower. The equicohesive temperature of the matrix was around 873K at the strain rate 10?3s?1, and well below 873K at 10?5s?1. The critical aspect ratio of TiB whiskers increased when the temperature was higher or the strain rate was lower, leading to more drastic interfacial debonding and worse tensile properties of TMCs. At higher temperatures or lower strain rates, aspect ratios distribution of TiB short fibers had the dominant influence on the strength enhancement rather than the total volume fraction in TMCs.
     Steady state creep rates of the TMCs were 1 ~ 2 orders of magnitude lower than those of the matrix alloy and IMI 834. Creep resisitance were effectively enhanced by the reinforcements. High apparent stress exponents of TMCs were successfully explained by threshold stress theory. And after compensated with threshold stresses, the stress exponents of the TMCs and matrix alloys were the same. The decelerating creep time of the composites was much lower than the matrix alloy, and there was a long transitional period between the primary decelerating creep and the second steady state creep for the composites. The matrix alloy and composites were embrittled by further weakening of interfaces and surface oxidation under creep rupture conditions.
     Depending on stress levels, creep behavior of both the matrix alloy and TMCs showed two stress regions. Stress exponents of the matrix alloy were 2.0 and 4.5 in the low and high stress regions respectively. Enhancement of creep resistance in TMCs was mainly attributed to threshold stresses and stress transfer effects. The relatively high apparent stress exponents of TMCs were mainly attributed to the threshold stresses. Stress transfer effects could influence the apparent stress exponents in the high stress region, but the attribution was much lower than threshold stresses. La_2O_3 paticles were only effective to increase the threshold stresses in the high stress region. Threshold stresses were mainly dependent on the dispersion of reinforcements, while the volume fractions of reinforcements were not influential. Stress transfer effects showed a monotone decreasing relationship with the volume fractions of reinforcements, and the stress transfer effects in the low stress region were higher than those in the high stress region. The enhancement of creep resistance was mainly dependent on the morphologies of reinforcements.
     Thermal exposure at 600℃and 650℃led to loss of room temperature ductility of TMCs. However, thermal exposure at 700℃could bring back some ductility. The loss of room temperature ductility was mainly attributed to the ordered intermetallic Ti3Al, whose solution temperature was estimated to be between 650℃and 700℃. The reinforcements were stable during the thermal exposure, and showed no interfacial reaction with the matrix. Lathanum can absorb oxygen in the matrix to form La_2O_3 particles, which provided further dispersion strengthening and enhance the thermal stability of the composites.
引文
[1]莫畏,邓国珠,罗方承.钛冶金(第2版).北京:冶金工业出版社. 1998.
    [2]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社. 2005.
    [3]王金友,葛志明,周彦邦.航空用钛合金.上海:上海科学技术出版社,1985。
    [4]赵树萍,吕双坤.钛合金在航空航天领域中的应用.钛工业进展. 2002,(6):18-21.
    [5]韩明臣,黄淑梅.钛在美国军工中的应用.金属世界. 2001,(5):4-5.
    [6]余克章.钛在现代军事上的应用.金属世界. 1994,(3):24-25.
    [7]萧今声,许国栋.提高高温钛合金性能的途径.中国有色金属学报. 1997,7(4):97-105.
    [8] SridharG, Sarma DS. Structure and properties of aβsolution treated, quenched, and agedSi-bearing near-αtitanium alloy. Metallurgical and Materials Transactions A. 1989, 20 (1): 55-62.
    [9] Mahoney MW, Paton NE. Fatigue and fracture characteristics of silicon-bearing titanium alloys. Metallurgical Transactions A. 1978, 9 (10): 1497-1501.
    [10]赵永庆.高温钛合金研究.钛工业进展. 2001,(1):33-39.
    [11] Eylon D. Titanium Technology. Ohio: Titanium Development Association, 1985.
    [12]罗国珍.钛基复合材料的研究与发展.稀有金属材料与工程. 1997,26(2):1-7.
    [13]邓炬.我国钛科学的发展动向和新进展.稀有金属材料与工程. 1997,26(1):7-10.
    [14] Abkowitz S, Abkowitz SM, Fisher H, Schwartz PJ. CermeTi? discontinuously reinforced Ti-matrix composites: manufacturing, properties and applications. JOM 2004, 56 (5): 37-41.
    [15] Saito T. The automotive application of discontinuously reinforced TiB-Ti composites. JOM 2004, 56 (5):33-36.
    [16] Larsen JM, Russ SM, Jones JW. An evaluation of fiber reinforced titanium matrix composites for advanced high temperature aerospace applications. Metallurgical Materials Transactions A. 1995, 26 (12): 3211–23.
    [17] Ramamurty U, Dary FC, Zok FW. A method for measuring residual strains in fiber-reinforced titanium matrix composites. Acta Materialia. 1996, 44, (8) 3397-3406.
    [18] Leyens C, Hausmann J, Kumpfert J. Continuous fiber reinforced titanium matrix composites: fabrication, properties and applications. Advanced Engineering Materials. 2003, 5 (6): 399-410.
    [19] Gorsse S, Petitcorps YL. A new approach in the understanding of the SiC/Ti reaction zone composition and morphology. Composites A. 1998, 29 (9-10): 1221-1227.
    [20] Ranganath S. A review on particulate-reinforced titanium matrix composites. Journal of Materials Science. 1997, 32 (1): 1-6.
    [21] Tjong SC, Mai YW. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Composites Science and Technology. 2008, 68 (3-4): 583-601.
    [22] Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering R. 2000, 29 (3-4): 49-113.
    [23] Alman DE, Hawk JA. The abrasive wear of sintered titanium matrix–ceramic particle reinforced composites. Wear. 1999, 225-229 (1): 629-639.
    [24] Abkowitz S, Weihrauch PF, Abkowitz FH, Heussi HL. The commercial application of low-cost titanium composites. JOM. 1995, 47 (8): 40-41.
    [25] Gorsse S, Chaminade JP, Petitcorps YL. In situ preparation of titanium base composites reinforced by TiB single crystals using a powder metallurgy technique. Composites A. 1998, 29(9-10):1229-1234.
    [26] Chandran KSR, Panda KB, Sahay SS. TiBw-reinforced Ti composites: processing, properties, application prospects and research needs. JOM. 2004, 56 (5):42-48.
    [27] Wang L, Niinomi M, Takahashi S, Hagiwara M, Emura S, Kawabei Y, Kim SJ. Relation between fracture toughness and microstructure of Ti-6Al-2Sn-4Zr-2Mo alloy reinforced with TiB particles. Materials Science and Engineering A. 1999, 263 (2):319-325.
    [28] Kobayashi M, Funami M, Suzuki S, Ouchi C. Manufacturing process and mechanical properties of fine TiB dispersed Ti–6Al–4V alloy composites obtained by reaction sintering. Materials Science and Engineering A. 1998, 243 (1-2): 279-284.
    [29] Bhat BVR, Subramanyam J, Bhanu Prasad VV. Preparation of Ti–TiB–TiC & Ti–TiB composites by in situ reaction hot pressing. Materials Science and Engineering A. 2002, 325 (1-2): 126-130.
    [30] Panda KB, Chandra KSR. Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta titanium matrix: the nature of TiB formation and composite properties. Metallurgical and Materials Transactions A. 2003, 34 (6): 1371-1385.
    [31] Suryanarayana S. Mechanical alloying and milling. Progress in Materials Science. 2001, 46 (1-2): 1-184.
    [32] Godfrey TM, Wisbey A, Goodwin PS, Bagnall K, Ward-Close CM. Microstructure and tensile properties of mechanically alloyed Ti-6Al-4V alloy with B additions. Materials Science and Engineering A. 2000, 282 (1-2): 240-250.
    [33] Yamamoto T, Otsuki A, Ishihara K, Shingu PH. Synthesis of near net shape high density TiB/Ti composite. Materials Science and Engineering A. 1997, 239-240 (1): 647-651.
    [34] Nakane S, Yamada O, Miyamoto Y, Yoshinaka M, Hirota K, Yamaguchi O. Simultaneous synthesis and densification of TiB/α-Ti(N) composite material by self-propagating combustion under nitrogen pressure. Solid State Communications. 1999, 110 (8): 447-450.
    [35] Fu ZY, Wang H, Wang WM, Yuan RZ. Composites fabricated by self-propagating high-temperature synthesis. Journal of Materials Processing Technology. 2003, 137 (1-3):30-34.
    [36] Zhang E, Zeng S, Zhu Z. Microstructure of XDTM Ti-6Al/TiC composites. Journal of Materials Science. 2000, 35 (23): 5989-5994.
    [37] Fan Z, Miodownik AP. Microstructural evolution in rapidly solidified Ti-7.5Mn-0.5B alloy. Acta Materialia. 1996, 44 (1): 93-110.
    [38] Rangarajan S, Aswath PB, Soboyejo WO, Mirostructure development and fracture of in-situreinforced Ti-8.5Al-1B-1Si. Scripta Materialia. 1996, 35 (2): 239-245.
    [39] Ranganath S, Vijayakumar M, Subrahmanyan J. Combustionassisted synthesis of Ti-TiB-TiC composite via the casting route. Materials Science and Engineering A. 1992;149 (2): 253-357.
    [40] Banerjee R, Genc A, Collins PC, Fraser HL. Comparison of microstructural evolution in laser-deposited and arc-melted in situ Ti-TiB composites. Metallurgical and Materials Transactions A. 2004, 35 (7): 2143-2152.
    [41] Srivatsan TS, Soboyejo WO, Lederich RJ. Tensile deformation and fracture behavior of a titanium-alloy metal-matrix composite. Composites A. 1997, 28 (4): 365-376.
    [42] Li BS, Shang JL, Guo JJ, Fu HZ. In situ observation of fracture behavior of in situ TiBw/Ti composites. Materials Science and Engineering A. 2004, 383 (2): 316-322.
    [43] Loretto MH, Konitzer DG. The effect of matrix reinforcement reaction on fracture in Ti–6Al–4V-base composites. Metallurgical Transactions A. 1990, 21 (6): 1579-1587.
    [44] Choi SK, Chandrasekaran M, Brabers MJ. Interaction between titanium and SiC. Journal of Materials Science. 1990, 25 (4): 1957-1964.
    [45] Lu YC, Sass SL, Bai Q, Kohlstedt DL, Gerberich WW. The influence of interfacial reactions on the fracture toughness of Ti-Al2O3 interfaces. Acta Metallurgica et Materialia. 1995, 43 (1): 31-41.
    [46] Ma XY, Li CR, Zhang WJ. The thermodynamic assessment of the Ti–Si–N system and the interfacial reaction analysis. Journal of Alloys and Compounds. 2005, 394 (1-2): 138-147.
    [47] Lemus-Ruiz J, Aguilar-Reyes EA. Mechanical properties of silicon nitride joints using a Ti-foil interlayer. Materials Letters. 2004, 58 (19): 2340-2344.
    [48] Gotman I, Gutmanas EY. Interaction of Si3N4 with titanium powder. Journal of Materials Science Letters. 1990, 9 (7): 813-815.
    [49] Lu WJ, Zhang D, Zhang XN, Wu RJ. HREM study of TiB/Ti interfaces in a TiB-TiC in situ composite. Scripta Materialia. 2001, 44 (7): 1069-1075.
    [50] Konitzer DG, Loretto MH. Microstructural assessment of Ti–6Al–4V–TiC metal matrix composite. Acta Metallurgica 1989, 37 (2):397-406.
    [51] Yang ZF, Lu WJ, Qin JN, Zhang D. Microstructure and tensile properties of in situ synthesized (TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temperature. Materials Science and Engineering A. 2006, 425 (1-2): 185-191.
    [52] Sastry SML, Peng TC, Beckerman LP. Structure and properties of rapidly solidified dispersion-strengthened titanium alloys: II. Tensile and creep properties. Metallurgical Transactions A. 1984, 15 (7): 1465-1474.
    [53] de Castro V, Leguey T, Munoz A, Monge MA, Pareja R. Microstructure and tensile properties of Y2O3-dispersed titanium produced by arc melting. Materials Science and Engineering A. 2006, 422 (1-2): 189-197.
    [54] Sastry SML, Meschter PJ, O’Neal JE. Structure and properties of rapidly solidified dispersion-strengthened titanium alloys: I. Characterization of dispersoid distribution, structure, and chemistry. Metallurgical Transactions A. 1984, 15 (7): 1451-1463.
    [55] Karal MV, Hofmeister WH, Witting JE. Precipitate crystallography and morphology in undercooled, rapidly solidified titanium rare earth alloys. Scripta Materialia. 1997, 36(2): 157-163.
    [56]李亚国,张少卿,李春志,张体信. RE铸造Ti合金显微组织的研究.金属学报. 1984,20(2):131-137.
    [57]李四清,刘瑞民,马济民,曹春晓.钕化物颗粒增强钛基复合材料的组织和性能.航空材料学报. 1997,17(3):51-56.
    [68] Swain MV, in: Cahn RW, Haasen P, Kramer EK (Editors.). Materials Science and Technology, Vol. 11. Weinhelm VCH: Verlagsgesellschaft mbH. 1994.
    [59]张小明,张廷杰,毛小南,李晴宇. SHS法制备钛基复合材料用的TiC颗粒.钛工业进展. 2003,(2):18-21.
    [60]毛小南,周廉,周义刚,Vassel A,张鹏省,于兰兰. TP-650颗粒增强钛基复合材料的性能与组织特征.稀有金属材料与工程. 2004,33(6):620-623.
    [61] Kim YJ, Chung H, Kang SJ. Processing and mechanical properties of Ti–6Al–4V/TiC in situ composite fabricated by gas-solid reaction. Materials Science and Engineering A. 2002, 333 (1-2): 343-350.
    [62] Lu W, Zhang D, Zhang X, Wu R, Sakata T, Mori H. Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique. Journal of Alloys and Compounds. 2001, 327 (1-2): 248-252.
    [63] Zhang XN, Lu WJ, Zhang D, Wu RJ, Bian YJ, Fang PW. In situ technique for synthesizing (TiB+TiC)/Ti composites. Scripta Materialia. 1999, 41 (1): 39-46.
    [64]吕维洁,张小农,张荻,吴人洁,卞玉君,方平伟.原位合成TiC/Ti基复合材料增强体的生长机制.金属学报. 1999,34(5):536-540.
    [65] Ni DR, Geng L, Zhang J, Zheng ZZ. Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti-B4C system. Scripta Materialia. 2006, 55 (5): 429-432.
    [66] Li DX, Ping DH, Lu YX, Characterization of the microstructure in TiB-wishker reinforced Tialloy matrix composites. Materials Letters. 1993, 16 (6): 322-326.
    [67] Ma ZY, Tjong SC, Geng L. In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process. Scripta Materialia. 2000, 42 (4): 367-373.
    [68] Ranganath S, Roy T, Mishra RS. Microstructure and deformation of TiB+Ti2C reinforced titanium matrix composites. Materials Science and Technology. 1996, 12(3): 219-226.
    [69] de Graef M, Loefvander JPA, mc Cullough C, Levi CG. The evolution of metastable Bf borides in a Ti-Al-B alloy. Acta Metallurgica et Materialia. 1992, 40 (12): 3395-3406.
    [70]张虎,高文理,张二林,金云学,曾松岩.Ti-Al-B合金空心管状初生TiB的生长机制.复合材料学报. 2001,18(4):50-53.
    [71] Geng K, Lu W, Zhang D. In situ synthesized (TiB+Y2O3)/Ti composites. Journal of Materials Science Letters. 2003, 22 (12): 877-879.
    [72] Geng K, Lu W, Yang Z, Zhang D. In situ preparation of titanium matrix composites reinforced by TiB and Nd2O3. Materials Letters. 2003, 57 (24-25): 4054-4057.
    [73] Yang ZF, Lu WJ, Xu D, Qin JN, Zhang D. In situ synthesis of hybrid and multiple-dimensioned titanium matrix composites. Journal of Alloys and Compounds. 2006, 419 (1-2): 76-80.
    [74] Feng H, Zhou Y, Jia D, Meng Q, Rao J. Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites. Crystal Growth and Design. 2006, 6 (7): 1626-1630.
    [75] Feng H, Zhou Y, Jia D, Meng Q. Stacking faults formation mechanism of in situ synthesized TiB whiskers. Scripta Materialia. 2006, 55 (8): 667-670.
    [76] Yang ZF, Lu WJ, Qin JN, Gu JJ, Zhang D, Liu JL. Microstructural characterization of Nd2O3 in in situ synthesized multiple-reinforced (TiB + TiC +Nd2O3)/Ti composites. Journal of Alloys and Compounds. 2006, 425 (1-2): 379-383.
    [77] Lu W, Zhang D, Zhang X, Wu R, Sakata T, Mori H. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. Journal of Alloys and Compounds. 2001, 327 (1-2): 240-247.
    [78] Lu WJ, Xiao L, Xu D, Qin JN, Zhang D. Microstructural characterization of Y2O3 in in situ synthesized titanium matrix composites. Journal of Alloys and Compounds. 2007, 433 (1-2): 140-146.
    [79] Zhang D, Geng K, Qin YX, Lu WJ, Ji B. The orientation relationship between TiB and RE2O3 in in situ synthesized titanium matrix composites. Journal of Alloys and Compounds. 2005, 392 (1-2): 282-284.
    [80] Tsang HT, Chao CG, Ma CY. Effects of volume fraction of reinorcement on tensile and creep properties of in-situ TiB/Ti MMC. Scripta Materialia. 1997, 37 (9): 1359-1365.
    [81] Tsang HT, Chao CG, Ma CY. In situ fracture observation of a TiC/Ti MMC produced by combustion synthesis. Scripta Materialia. 1996, 35 (8): 1007-1012.
    [82] Geng K, Lu WJ, Zhang D. Microstructure and tensile properties of in situ synthesized (TiB+Y2O3)/Ti composites at elevated temperature. Materials Science and Engineering A. 2003, 360 (1-2): 176-182.
    [83] Kassner ME, Perez-Prado MT. Five-power-law creep in single phase metals and alloys. Progress in Materials Science. 2001, 45 (1): 1-102.
    [84] Weertman J. Natural fifth creep law for pure metals. Creep and Fracture in Engineering Materials and Structures. Swansea: Pinerdge Press. 1984, 1-13.
    [85] Weertman J. Steady state creep of crystals. Journal of Applied Physics. 1957, 28 (10): 1185-1189.
    [86] Takeuchi S, Argon AS. Steady state creep of alloys due to viscous motion of dislocations. Acta Metallurgica. 1976, 24 (10): 833-899.
    [87] Endo T, Shimada T, Langdon TG. The deviation from creep by viscous glide in solid solution alloys at high stresses - I. Characteristics of the dragging stress. Acta Metallurgica. 1984, 32 (11): 1991-1999.
    [88] Pahutova M, Cadek J. On two types of creep behavior of F.C.C. solid solution alloys. Physica Status Solidi (a). 1979, 56 (3): 305-313.
    [89] Barrett CR, Lytton JK, Sherby OD. Effect of grain size and annealing treatment on steady state creep of copper. Transactions of AIME. 1967, 239 (1): 170-186.
    [90] Gifkins RC. Grain boundary sliding and its accommodation during creep and superplasticity. Metallurgical Transactions A. 1976, 7 (8): 1225-1232.
    [91] Howell PR, Dunlop GL, The role of grain boundary dislocation in high temperature deformation. Creep and Fracture in Engineering Materials and Structures. Swansea: Pinerdge Press. 1981, 127-140.
    [92] Es-Souni M. Creep deformation behavior of three high-temperature nearα-Ti alloys. Metallurgical and Materials Transactions A. 2001, 32 (2): 285-293.
    [93] Es-Souni M. Primary, secondary and anelastic creep of a high temperature nearα-Ti alloy Ti6242Si. Materials Characterization. 2000, 45 (2): 153-164.
    [94] Andres C, Gysler A, Lutjering G. Correlation between microstructure and creep behavior of the high-temperature Ti alloy IMI 834. Zeitschrift fur Metallkunde. 1997, 88 (3): 197-203.
    [95] Lutjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science and Engineering A. 1998, 243 (1-2): 32-45.
    [96] Cadek J, Zhu SJ, Milicka K. Threshold creep behaviour of aluminium dispersion strengthened by fine alumina particles. Materials Science and Engineering A. 1998, 252 (1) 1-5.
    [97] Cadek J, Oikawa H, Sustek V. Threshold creep behaviour of discontinuous aluminium and aluminium alloy matrix composites: an overview. Materials Science and Engineering A. 1995 190 (1-2): 9-23.
    [98] Li Y, Langdon TG. A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites. Acta Materialia. 1999, 47 (12): 3395-3403.
    [99] Park KT, Mohamed FA. Creep strengthening in a discontinuous SiC-Al composite. Metallurgical and Materials Transactions A. 1995, 26 (12): 3119-3129.
    [100] Lu WJ, Zhang D, Zhang XN, Wu RJ, Sakata T, Mori T. Creep rupture life of in situ synthesized (TiB+TiC)/Ti matrix composites. Scripta Materialia. 2001, 44 (10): 2449-2455.
    [101] Zhu SJ, Lu YX, Wang ZG, Bi J. In: Miravate A (Editor). Proceedings of the nineth international conference composite materials (ICCM/9), vol. 1. London: Woodhead Publishing Ltd., 1993.
    [102] Ranganath S, Mishra RS. Steady state creep behavior of particulate-reinforced titanium matrix composites. Acta Materialia. 1996, 44 (3): 927-935.
    [103] Tsang HT, Chao CG, Ma CY. Effects of volume fraction of reinforcement on tensile and creep properties of in situ TiB/Ti MMC. Scripta Materialia. 1997, 37 (9): 1359-1365.
    [104] Ma ZY, Tjong SC, Li SX. Creep behavior of TiBw/Ti in situ composite fabricated by reactive hot pressing. Metallurgical and Materials Transaction A. 2001, 32 (4):1019-1022.
    [105] Rhee SI, Nam SW, Hagiwara M. Effect of TiBp particle reinforcement on the creep resistance of nearαtitanium alloy made by blended elemental powder metallurgy. Journal of Alloys and Compounds. 2003, 359 (1-2) 186-192.
    [106] Ma ZY, Tjong SC, Meng XM. Creep deformation of TiBw/Ti in situ composite fabricated by reactive hot pressing. Journal of Materials Research. 2002, 17 (9): 2307-2313.
    [1]杨志峰.多元增强钛基复合材料的微结构及性能研究[博士论文].上海:上海交通大学. 2007.
    [2]吕维洁,张小农,张荻,卞玉君,方平伟,施忠良,吴人洁.原位合成TiB和TiC增强钛基复合材料热力学.中国有色金属学报. 1999,9(2):220-224.
    [3]耿珂.原位自生(TiB+RE2O3)/Ti复合材料的微观组织和力学特征[博士论文].上海:上海交通大学. 2003.
    [4] Lutjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science and Engineering A. 1998, 243 (1-2): 32-45.
    [5] Lutjering G, Williams JC. Titanium. Heidelberg: Springer. 2003.
    [6] Srinadh KVS, Singh V. Oxidation behaviour of the nearα-titanium alloy IMI 834. Bulletin of Materials Science. 2004, 27 (4): 347-354.
    [7] Zhang XN, Lu WJ, Zhang D, Wu RJ, Bian YJ, Fang PW. In situ technique for synthesizing (TiB+TiC)/Ti composites. Scripta Materialia. 1999, 41 (1): 39-46.
    [8] Lu W, Zhang D, Zhang X, Wu R, Sakata T, Mori H. Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique. Journal of Alloys and Compounds. 2001, 327 (1-2): 248-252.
    [9] Tjong SC, Mai YW. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Composites Science and Technology. 2008, 68 (3-4): 583-601.
    [10] Lu W, Zhang D, Zhang X, Wu R, Sakata T, Mori H. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. Journal of Alloys and Compounds. 2001, 327 (1-2): 240-247.
    [1]萧今声,许国栋.提高高温钛合金性能的途径.中国有色金属学报. 1997,7(4):97-105.
    [2]赵永庆.高温钛合金研究.钛工业进展. 2001,(1):33-39.
    [3] Yang ZF, Lu WJ, Xu D, Qin JN, Zhang D. In situ synthesis of hybrid and multiple-dimensioned titanium matrix composites. Journal of Alloys and Compounds. 2006, 419 (1-2): 76-80.
    [4] Yang ZF, Lu WJ, Qin JN, Zhang D. Microstructure and tensile properties of in situ synthesized (TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temperature. Materials Science and Engineering A. 2006, 425 (1-2): 185-191.
    [5] Geng K, Lu WJ, Zhang D. Microstructure and tensile properties of in situ synthesized (TiB+Y2O3)/Ti composites at elevated temperature. Materials Science and Engineering A. 2003, 360 (1-2): 176-182.
    [6] Bilous OO, Artyukh LV, Bondar AA, Velikanova TY, Burka MP, Brodnikovskyi MP, Fomichov OS, Tsyganenko NI, Firstov SO. Effect of boron on the structure and mechanical properties of Ti–6Al and Ti–6Al–4V. Materials Science and Engineering A. 2005, 402 (1-2): 76-83.
    [7] Gorsse S, Miracle DB. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Materialia. 2003, 51 (9): 2427–2442.
    [8] Geng K, Lu WJ, Zhang D, Sakata T, Mori H. Tensile properties of in situ synthesized titanium matrix composites reinforced by TiB and Nd2O3 at elevated temperature. Materials & Design. 2003, 24 (6): 409-414.
    [9] de Castro V, Leguey T, Munoz A, Monge MA, Pareja R. Microstructure and tensile properties of Y2O3-dispersed titanium produced by arc melting. Materials Science and Engineering A. 2006, 422 (1-2): 189-197.
    [10] Wang MM, Lu WJ, Qin JN, Ji B, Zhang D. Effect of volume fraction of reinforcement on room temperature tensile property of in situ (TiB + TiC)/Ti matrix composites. Materials & Design. 2006, 27 (6): 494-498.
    [11] Ramakrishnan N, Acta Materialia. 44(1996) 69-77.
    [12] V.C. Nardone, K.M. Prewo, Scripta Metallurgica et Materialia 20 (1986) 43-48.
    [13] V.C. Nardone, Scripta Metallurgica et Materialia. 21 (1987) 1313-1318.
    [14] R. J. Arsenault, L. Wang, C. R. Feng, Acta Metallurgica et Materialia. 39(1991) 47-57.
    [15] Dorn JE. Mechanical Behavior of Materials at Elevated Temperature. New York: McGraw-Hill. 1961.
    [16] H.L. Cox, British Journal of Applied Physics. 3 (1952) 72-79.
    [17] Mullin J, Berry JM, Gatti A. Some fundamental fracture mechanisms applicable to advanced filament reinforced composites. Journal of Composite Materials. 1986, 2 (1): 82-103.
    [18] Villars P, Prince A, Okamoto H. Handbook of ternary alloy phase diagrams. Ohio: ASM international. 1995.
    [19] Ramakrishnan N. An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Materialia. 1996, 44 (1): 69-77.
    [1] Tsang HT, Chao CG, Ma CY. Effects of volume fraction of reinorcement on tensile and creep properties of in-situ TiB/Ti MMC. Scripta Materialia. 1997, 37 (9): 1359-1365.
    [2] Ranganath S, Mishra RS. Steady state creep behavior of particulate-reinforced titanium matrix composites. Acta Materialia. 1996, 44 (3): 927-935.
    [3] Ma ZY, Tjong SC, Meng XM. Creep deformation of TiBw/Ti in situ composite fabricated by reactive hot pressing. Journal of Materials Research. 2002, 17 (9): 2307-2313.
    [4] Zhu SJ, Mukherji D, Chen W, Lu YX, Wang ZG, Wahi RP. Steady state creep behaviour of TiCparticulate reinforced Ti-6Al-4V composite. Materials Science and Engineering A. 1998, 256 (1-2): 301-307.
    [5] Barboza MJR, Perez EAC, Medeiros MM, Reis DAP, Nono MCA, Neto FP, Silva CRM. Creep behavior of Ti–6Al–4V and a comparison with titanium matrix composites. Materials Science and Engineering A. 2006, 428 (1-2): 319-326.
    [6] Ma ZY, Tjong SC, Li SX. Creep behavior of TiBw/Ti in situ composite fabricated by reactive hot pressing. Metallurgical and Materials Transactions A. 2001, 32 (4):1019-1022.
    [7] Rhee SI, Nam SW, Hagiwara M. Effect of TiBp particle reinforcement on the creep resistance of nearαtitanium alloy made by blended elemental powder metallurgy. Journal of Alloys and Compounds. 2003, 359 (1-2) 186-192.
    [8] Es-Souni M. Creep deformation behavior of three high-temperature nearα-Ti alloys. Metallurgical and Materials Transactions A. 2001, 32 (2): 285-293.
    [9] Andres C, Gysler A, Lutjering G. Correlation between microstructure and creep behavior of the high-temperature Ti alloy IMI 834. Zeitschrift fur Metallkunde. 1997, 88 (3): 197-203.
    [10] Lagneborg L, Bergman B. The stress/creep rate behaviour of precipitation-hardened alloys. Metal Science. 1997; 10 (1) 20-28.
    [11] Mohamed FA, Park KT, Lavernia EJ. Creep behavior of discontinuous SiC---Al composites. Materials Science and Engineering A. 1992, 150 (1): 21-35.
    [12] Kassner ME, Perez-Prado MT. Five-power-law creep in single phase metals and alloys. Progress in Materials Science. 2001, 45 (1): 1-102.
    [13] Park KT, Mohamed FA. Creep strengthening in a discontinuous SiC-Al composite. Metallurgical and Materials Transactions A. 1995, 26 (12): 3119-3129.
    [14] Liauo CS, Huang JC. Strengthening Effects in AC8A-Al2O3 Short-Fiber Composites as a Function of Temperature and Strain Rate. Metallurgical and Materials Transactions A. 1997, 28 (9): 1859-1869.
    [15] Li Y, Langdon TG. A Comparison of the Creep Properties of an Al-6092 Composite and the Unreinforced Matrix Alloy. Metallurgical and Materials Transactions A. 1998, 29 (10): 2523-2531.
    [16] Han BQ, Langdon TG. Factors contributing to creep strengthening in discontinuously-reinforced materials. Materials Science and Engineering A. 2002, 322 (1-2): 73-78.
    [17] Kolluru DV, Pollock TM. Numerical modeling of the creep behavior of unidirectional eutectic composites. Acta Materialia. 1998, 46 (8): 2859-2876.
    [1] Barboza MJR, Perez EAC, Medeiros MM, Reis DAP, Nono MCA, Piorino Neto F, Silva CRM. Creep behavior of Ti–6Al–4V and a comparison with titanium matrix composites. Materials Science and Engineering A. 2006, 428 (1-2): 319-326.
    [2] Zhu SJ, Mukherji D, Chen W, Lu YX, Wang ZG, Wahi RP. Steady state creep behaviour of TiC particulate reinforced Ti–6Al–4V composite. Materials Science and Engineering A. 1998, 256 (1-2): 301-307.
    [3] Ranganath S, Mishra RS. Steady state creep behaviour of particulate-reinforced titanium matrix composites. Acta Materialia. 1996, 44 (3): 927-935.
    [4] Tsang HT, Chao CG, Ma CY. Effects of volume fraction of reinforcement on tensile and creep properties of in-situ TiB/Ti MMC. Scripta Materialia. 1997, 37 (9): 1359-1365.
    [5] Ma ZY, Mishra RS, Tjong SC. High-temperature creep behavior of TiC particulate reinforced Ti–6Al–4V alloy composite. Acta Materialia. 2002, 50 (17): 4293-4302.
    [6] Zhu SJ, Lu YX, Wang ZG, Bi J. In: Miravate A (Editor). Proceedings of the nineth international conference composite materials (ICCM/9), vol. 1. London: Woodhead Publishing Ltd., 1993.
    [7] Gollapudi S, Charit I, Murty KL. Creep mechanisms in Ti–3Al–2.5V alloy tubing deformed under closed-end internal gas pressurization. Acta Materialia. 2008, 56 (10): 2406-2419.
    [8] Lutjering G, Williams JC. Titanium. Heidelberg: Springer. 2003.
    [9] Gifkins RC. Grain boundary sliding and its accommodation during creep and superplasticity. Metallurgical Transactions A. 1976, 7 (8): 1225-1232.
    [10] Cadek J, Oikawa H, Sustek V. Threshold creep behaviour of discontinuous aluminium and aluminium alloy matrix composites: An overview. Materials Science and Engineering A. 1995, 190 (1-2): 9-23.
    [11] Li Y, Langdon TG. A comparison of the creep properties of an Al-6092 composite and the unreinforced matrix alloy. Metallurgical and Materials Transactions A. 1998, 29 (10): 2523-2531.
    [12] Shewfelt RSW, Brown LM. High temperature strength of dispersion-hardened single crystals II. Theory. Philosophical Magazine. 1977, 35 (4): 945-962.
    [13] Cox HL. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics. 1952, 3 (3) 72-79.
    [14] Kolluru DV, Pollock TM. Numerical modeling of the creep behavior of unidirectional eutectic composites. Acta Materialia. 1998, 46 (8): 2859-2876.
    [15] Mohamed FA, Park KT, Lavernia EJ. Creep behavior of discontinuous SiC-Al composites. Mater ials Science and Engineering A. 1992, 150 (1) 21-35.
    [16] Morimoto T, Yamaoka T, Lilholt H, Taya M. Second stage creep of SiC whisker/6061 aluminum composite at 573K. Journal of Engineering Materials and Technology. 1988, 110 (2): 70-76.
    [17] Mishin Y, Herzig C. Diffusion in the Ti-Al system. Acta Materialia. 2000, 48 (3): 589-623.
    [18] Nakajima H, Koiwa M. Diffusion in titanium. ISIJ International. 1991, 31 (8): 757-766.
    [19] Divinski SV, Hisker F, Wilger T, Friesel M, Herzig C. Tracer diffusion of boron inα-Ti andγ-TiAl. Intermetallics. 2008, 16 (2): 148-155.
    [20] Tatarenko VA, Tsynman CL. An interstitial-impurity-induced increase of vacancies and self-diffusion in close-packed metals. Solid State Ionics. 1997, 101-103: 1093-1098.
    [21] Mishra H, Satyanarayana DVV, Nandy TK, Sagar PK. Effect of trace impurities on the creep behavior of a nearαtitanium alloy. Scripta Materialia. 2008, 59 (6): 591-594.
    [22] Mishra H, Ghosal P, Nandy TK, Sagar PK. Influence of Fe and Ni on creep of nearα-Ti alloy IMI834. Materials Science and Engineering A. 2005, 399 (1-2): 222-231.
    [23] Hayes RW, Viswanathan GB, Mills MJ. Creep behavior of Ti–6Al–2Sn–4Zr–2Mo: I. The effect of nickel on creep deformation and microstructure. Acta Materialia. 2002, 50 (20): 4953-4963.
    [1] Lutjering G, Weissmann . Mechanical properties of age-hardened titanium-aluminum alloys. Acta Metallurgica. 1970, 18 (7): 785-795.
    [2] Yang Z, Lu W, Qin J, Zhang D. Microstructure and tensile properties of in situ synthesized (TiC + TiB + Nd2O3)/Ti-alloy composites at elevated temperature. Materials Science and Engineering A. 2006, 425 (1-2): 185-191.
    [3] Wang M, Lu W, Qin J, Ma F, Lu J, Zhang D. Effect of volume fraction of reinforcement on room temperature tensile property of in situ (TiB + TiC)/Ti matrix composites. Materials & Design. 2006, 27 (6): 494-498.
    [4] Geng K Lu W, Zhang D, Sakata T, Mori H. Tensile properties of in situ synthesized titanium matrix composites reinforced by TiB and Nd2O3 at elevated temperature. Materials & Design. 2003, 24 (6): 409-414.
    [5] Yang ZF, Lu WJ, Xu D, Qin JN, Zhang D. In situ synthesis of hybrid and multiple-dimensioned titanium matrix composites. Journal of Alloys and Compounds. 2006, 419 (1-2): 76-80
    [6] Gorsse S, Miracle DB. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Materialia. 2003, 51 (9): 2427-2442
    [7] Donlon WT, Allison JE, Lasecki JV. The Influence of Thermal Exposure on Properties and Microstructure of Elevated Temperature Titanium Alloy. In: Froes FH, Caplan I (eds.) Titanium 92’Science and Technology, The Minerals, Metals & Materials Society, USA, 1993: 259-302.
    [8] Rosenbergh W.The Science,Technology & Application of Titanium. Oxford: Pergamon Press,1970.