关于高维奇异摄动系统空间对照结构的若干结果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在研究发生在具有多尺度的高维吉洪诺夫系统以及奇异奇摄动系统的空间对照结构.近年来,奇异摄动问题中的空间对照结构成为非常活跃又重要的研究领域.当我们处理奇异摄动问题时常常遇到空间对照结构,例如,对汽车碰撞模型里碰撞瞬间汽车的形变规律的分析,神经网络模型里神经元的传递规律以及在超导体表面所产生的边界层现象的解释等等.事实上,人们已经发现的奇异摄动问题中的多层现象,层套层现象以及非指数式衰减的边界层函数等都与空间对照结构有着密切的联系.空间对照结构是指奇异摄动方程的退化系统存在多个孤立根,而方程的解在这些不同的孤立根之间发生跳跃而产生的复杂结构.空间对照结构主要分为阶梯状空间对照结构和脉冲状空间对照结构两大类,它们在各自辅助系统的相空间中分别对应于异宿轨道和同宿轨道.其共同特点是在所讨论区间内存在一点t*,t*称为转移点(当然也可以存在多个转移点),因为在每个转移点的讨论完全一样,所以我们只讨论存在一个转移点的情况.事先t*的位置是未知的,需要在渐近解的构造过程中确定.在t*的某个小邻域内,问题的解会发生剧烈的结构变化,从一个解快速的跳到另一个解(阶梯状对照结构),或者解在t*的小邻域发生快速跳跃后又回到原来的解(脉冲状对照结构).本文把边界函数法和几何奇摄动理论相结合,针对高维吉洪诺夫系统以及奇异奇摄动系统的阶梯状空间对照结构进行研究.借助首次积分构造所需要的异宿轨道,用边界函数法构造形式渐近解;缝接边界函数的同时确定转移点t*的位置,在证明真解的存在性和形式渐近解的一致有效性时用到了缝接法,微分不等式以及k+σ交换引理等不同的方法.
     全文共分为三部分,第一部分研究高维奇异摄动系统的空间对照结构,第二部分研究奇异奇摄动系统的空间对照结构,第三部分给出了对照结构在微分差分方程上的应用.
     现谨将主要内容和研究结果概述如下:
     第一章回顾了奇异摄动的历史背景,概述了空间对照结构的历史,发展过程及现状,引入了与本文研究内容相关的一些基本定义和引理,介绍了本文的工作和创新之处.
     第二章研究了带慢变量的拟线性方程的阶梯状空间对照结构,用边界函数法构造了该问题的形式渐近解.用缝接法对轨道进行了光滑缝接,在整个区间上证明了阶梯解的存在性和形式渐近解的一致有效性.
     第三章研究了具有初边值条件(快变量给定边值条件,慢变量给定初值条件)的(M+m)维吉洪诺夫系统的阶梯状空间对照结构.借助首次积分构造高维空间的异宿轨道,利用指数二分法的一些性质和Fredholm交换引理在求解高阶边界函数的同时确定了转移点t*的位置.用边界函数法构造了形式渐近解并用缝接法证明了阶梯解的存在性和形式渐近解的一致有效性.
     第四章研究了具有边值条件(快慢变量均给定边值条件)的(M+m)维吉洪诺夫系统的阶梯状空间对照结构.把传统的边界函数法和几何奇摄动理论相结合,借助首次积分构造高维空间的异宿轨道,利用指数二分法的一些性质和Fredholm交换引理在求解高阶边界函数的同时确定了转移点t*的位置.用边界函数法构造了形式渐近解,用k+σ交换引理证明了阶梯解的存在性和形式渐近解的一致有效性.
     第五章研究了高维奇异奇摄动系统的阶梯状空间对照结构.把传统的边界函数法和几何奇摄动理论相结合,借助首次积分构造高维空间的异宿轨道,确定转移点t*的位置.用边界函数法构造了形式渐近解,用k+σ交换引理证明了阶梯解的存在性和形式渐近解的一致有效性.
     第六章研究了弱非线性微分差分方程的内部层解,利用边界函数法和分步法构造了所讨论问题的渐近解,并且指出在t=0的边界层将对t=σ的内部层产生重要的影响.用微分不等式的方法证明了解的存在性和所构造的形式渐近解的一致有效性.
The thesis aims to investigate the contrast structure for higher dimen-sional singularly perturbed systems with multiple scales, including Tikhonov system and singular singularly perturbed system. In recent years, the study on the contrast structure becomes a hot topic in the singularly perturbed problems. When we deal with the singularly perturbed problems, we often encounter the contrast structure, such as the analysis about the deformation law at the moment of the automobiles colliding each other in vehicle collision modles, the transfer law of the neurons in neural network models and the boundary layer phenomena in superconductor surface. In fact, many phe-nomena in singularly perturbed problems are closely related to the contrast structure, including multi-layers, embedded-layers and non-exponential de-cay of boundary functions, etc. When the reduced system has several isolate roots and the solution of the original problem approaches different reduced root in different time, the contrast structure occurs. The structure of such solutions is very complex. As we know, the contrast structure in singularly perturbed problems is mainly classified as a step-type contrast structure or a spike-type contrast structure which corresponds to heteroclinic orbit or ho-moclinic orbit in their phase space. Its fundamental characteristic is that there is a t*(or multiple t*) within the domain of interest, which is called as an internal transition point. The discussion at each l*is exactly the same, so we only study the case that there exists one internal transition point. The position of t*is unknown in advance and it needs to be determined thereafter. In the neighborhood of t*, the solution y(t,u) will have an abrupt structure change. In the different sides of t*, if y(t,u) approaches different re-duced solutions, we call it step-type contrast structure. If y(t,u) approaches to the same reduced solution, we call it spike-type contrast structure. Our objective in this paper is to study the contrast structures for Tikhonov sys-tem and singular singularly perturbed system. By means of the first integral we find a higher dimensional heteroclinic orbit in need in a fast phase space. The formal asymptotic solution is constructed by boundary function method, and the internal transition time t*is determined when we solve the boundary functions. Using the method of sewing connection, differential inequality and k+σ exchange lemma we obtain the uniformly valid asymptotical expansion of such an available step-like contrast structure.
     This dissertation is divided into three parts. The first part considers the contrast structure for higher dimensional singularly perturbed systems. The second part considers the contrast structure for singular singularly perturbed system and the last part gives an application for the contrast structure in differential-difference equation.
     The main research results are outlined as follows:
     Chapter One introduces the history and actuality for the singular per-turbation and the contrast structure, gives some basic concepts and lemmas which are relevant to our study, and elaborates the main research results and innovative points in this paper.
     Chapter Two studies the contrast structure for the quasi-linear equation with slow variable. The asymptotic solution of this problem is constructed by boundary function method. By sewing orbit smooth, the existence of the step-like contrast structure is shown and the asymptotic solution is proved to be uniformly effective in the whole interval.
     Chapter Three is devoted to investigate the contrast structure for (M+m) dimensional Tikhonov system with initial-boundary value conditions. By means of the first integral we find a higher dimensional hetero clinic orbit in need in a fast phase space. The formal asymptotic solution is constructed by boundary function method. The internal transition time t*is determined when we solve the higher order boundary functions, where we use the proper-ties of exponential dichotomies and the Fredholm alternatives. The uniformly valid asymptotic expansion and the existence of such an available step-like contrast structure are obtained by sewing connection method.
     The research of Chapter Four is the contrast structure for (M+m) dimen-sional Tikhonov system with boundary value conditions. In this chapter, we combine the boundary function method with the theory of geometric singular perturbation. By means of the first integral we find a higher dimensional het-eroclinic orbit in need in a fast phase space. The internal transition time t*is determined when we solve the higher order boundary functions, where we use the properties of exponential dichotomies and the Fredholm alternatives. We construct the formal asymptotic solution by boundary function method, and using the method of k+σ changing lemma we prove the existence of the step-like contrast structure. At the same time, the asymptotic solution is proved to be uniformly effective in the whole interval.
     In Chapter Five, we focus on the contrast structure for higher dimen-sional singular singularly perturbed system. In this chapter, we combine the boundary function method with the theory of geometric singular perturba- tion. By means of the first integral we find a higher dimensional heteroclinic orbit in need in a fast phase space and t*is determined at the same time. Using the method of boundary function, we construct the formal asymptotic solution. The existence of the step-like contrast structure is proved by k+σ exchange lemma. At the same time, the asymptotic solution is proved to be uniformly effective in the whole interval.
     In Chapter Six, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is shown. Using the method of boundary function and fractional steps, we construct the formal asymptotic expansion and point out that the boundary layer at t=0has a great influence upon the interior layer at t=σ. At the same time, based on differential inequality techniques, the existence of the solution and the uniform validity of the asymptotic expansion are proved.
引文
[1]R.E.O'Malley, Introduction to Singular Perturbations, Academic Press, New York,1974.
    [2]A.H.Nayfeh;宋家骕译,摄动方法导引,上海:上海翻译出版公司,1990.
    [3]A.H.Nayfeh;王辅俊等译,摄动方法,上海:上海科学技术出版社,1984.
    [4]章国华,F.A.侯斯;林宗池等译,非线性奇异摄动现象:理论和应用,福州:福建科学技术出版社,1989.
    [5]P.C.Fife, Singular perturbation and wave front techniques in reaction diffu-sion problems, SIAM-AMS Proceedings,10(1976),23-50.
    [6]谢应齐,奇异摄动方法及其在大气科学中的应用,昆明:云南大学出版社,1989.
    [7]L.Prandtl, Fluid motions with very small friction, Proceedings of the 3rd International Mathematical Congress, Heidelberg:H. Schlichting,1904,484-491.
    [8]K.O.Friedriehs and W. Wasow, Singular perturbations of nonlinear oscilla-tions, Duke. Math. J.,13(1946),367-381.
    [9]W.Wasow, Asymptotic Expansions for Ordinary Differential Equations, In-terscience, New York,1965.
    [10]A.B.Vasil'eva and V.F.Butuzov, Asymptotic Expansions of Singularly Per-turbed Differential Equations, Nauka, Moscow,1973,(in Russian).
    [11]W.Eckhaus, Asymptotic Analysis of Singular Perturbation, North Holland, Amsterdam,1979.
    [12]G.F.Carrier, Singular perturbation theory and geophysics, SIAM Rev., 12(1970),175-193.
    [13]P.C.Fife, Transition layer in singular perturbation problems, J. Differential Equations,15(1974),77-105.
    [14]K.W.Chang, Approximate solutions of nonlinear boundary value problems involving a small parameter, SIAM J. Appl. Math.,30(1976),42-54.
    [15]R.C.Ackerberg and R.E.O'Malley, Boundary layer problems exhibiting res-onance, studies in Appl. Math.49(1970),277-295.
    [16]V.F.Butuzov, N.N.Nefedov and K.R.Schneider, Singularly pertubed bound-ary value problems for system of Tichonov's type in case of exchange of stabilities, J. Differential Euqations,159(1999),427-446.
    [17]V.F.Butuzov, N.N.Nefedov and K.R.Schneider, Singularly perturbed bound-ary value problems in case of exchange of stabilities, J. Math. Anal. Appl., 229(1999),543-562.
    [18]A.B.Vasil'eva and L.V.Kalachev, Singularly perturbed periodic parabolic equations with alternating boundary layer type solutions, Abstr. Appl. Anal., 2006,1-21.
    [19]X.B.Lin, Asymptotic expansion for layer solutions of a singularly perturbed reaction-diffusion system, Trans. Amer. Math. Soc.,348(1996),712-753.
    [20]V.F.Butuzov and I.V.Nedel'ko, Asymptotic stability of solutions of singu-larly perturbed boundary value problems with boundary and internal layers, Differ. Euq.,36(2000),224-235.
    [21]V.F.Butuzov and I.Smurov, Initial boundary value problem for a singularly perturbed parabolic equation in case of exchange of stability, J. Math. Anal. Appl.,234(1999),183-192.
    [22]Y.Nishiura and H.Fujii, Stability of singularly perturbed solutions to systems of reaction diffusion equations, SIAM J. Math. Anal.,18(1987),1726-1770.
    [23]G.Fusco and J.Hale, Slow motion manifolds, dormant instability, and singu-lar perturbations, J. Dynam. Differential Equations,1(1989),75-94.
    [24]C.K.R.T.Jones and N.Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations,108(1994), 64-88.
    [25]M.A.Teixeira, Generic singularities of discontinuous vector fields, Academia Brasileira de Ciencias,53(1981),257-260.
    [26]S.Karimov, The asymptotics of the solutions of some classes of differential equations with a small parameter at the highest derivatives in case of ex-change of stability of the equilibrium point in the plane of fast motions, Differ. Equ.,21(1985),1136-1139.
    [27]P.A.Farrell, A.F. Hegarty, J.J.H. Miller, E. O'Riordan and G.I. Shishkin, Singularly perturbed convection-diffusion problems with boundary and weak interior layers, J. Comput. Appl. Math.,166(2004),133-151.
    [28]A.B.Vasil'eva and V.F.Butuzov, The Asymptotic Method of Singularly Per-turbed Theory, Nauka:Moscow,1990(in Russian).
    [29]A.F.Howes. The asymptotic solution of a class of third-order boundary value problems arising in the theory of thin film flows, SIAM J. Appl. Math., 43(1983),993-1004.
    [30]Z.C.Lin, Boundary and angular layer behavious in singular perturbed quasi-linear systems, Appl. Math. Mech.,7(1986),433-441.
    [31]P.A.Farrell, E. O'Riordan and G.I. Shishkin, A class of singularly per-turbed quasilinear diffenential equations with interior layers, Math. Comp., 78(2009),103-127.
    [32]R.E.O'Malley, On multiple solutions of singularly perturbed systems in the conditionally stable case, singualar perturbations and asymptotics, Mary-land Heights:Academic Press,1980,87-108.
    [33]A.A.Larin, A boundary value problem for a second-order singular elliptic equation in a sector on the plane, Differ. Equ.,36(2000),1850-1858.
    [34]F.Dumortier and B.Smits, Transition time analysis in singularly perturbed boundary-value problems, Trans. Amer. math, soc.,347(1995),4129-4145.
    [35]M.A.Teixeira, Codimension two singularities of sliding vector fields, Bull. Belg. Math. Soc.,6(1999),369-381
    [36]A.M.Il'in and S.F. Dolbeeva, Asymptotics of the solution to a differential equation with a small parameter in the case of two limit solutions, Pro-ceeeding of the Steklow Institute of Mathematics,253(2006), S105-S116.
    [37]A.M.Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problem, Rhode Island:American mathematical society providence, 1991.
    [38]E.O'Riordan and G.I.Shishkin, Singularly perturbed parabolic problems with non-smooth data, J. Comput. Appl. Math.,166(2004),233-245.
    [39]A.F.Filippov, Differential Equations with Discontinuous Right-Hand Sides, Dordrecht:Kluwer Academic Publishers,1988.
    [40]苏煜城,吴启光,奇异摄动问题数值方法引论,重庆:重庆出版社,1992.
    [41]S.R.Lin, G.B.Tian and Z.C.Lin, Singular perturbation of boundary value problem for quasilinear third order ordinary differential equations involving two small parameters, Appl. Math. Mech.(English Edition),22(2001),229-236.
    [42]林宗池,林苏榕,含两参数的三阶非线性常微分方程Robin边值问题的奇摄动(Ⅱ),福建师范大学学报(自然科学版),17(2001),1-5.
    [43]J.Q.Mo, The nonlocal boundary value problems of nonlinear elliptic systems in unbounded domains, Appl. Math. Comput.,86(1997),115-121.
    [44]S.P.Lu, A kind of singglarly perturbed boundary value problems for nonlin-ear Volterra functional differential equations, Appl Math Chinese Univ, Ser B,15(2000),137-142.
    [45]J.Q.Mo, W.T.Lin and H.Wang, Singularly perturbed solution of coupled mo-dle in atmosphere ocean for global climate, Chin Geographical Sci,18(2008), 193-195.
    [46]J.Q.Mo, A singularly perturbed nonlinear boundary value problem, J. Math. Anal. Appl.,178(1993),289-283.
    [47]林宗池,周明儒,应用数学中的摄动方法,南京:江苏教育出版社,1995.
    [48]钱伟长,奇异摄动理论及其在力学中的应用,北京:科学出版社,1981.
    [49]Z.M.Wang and W.Z.Lin, The Dirichlet problem for a quasilinear singularly perturbed second order system, J. Math. Anal. Appl.,201(1996),897-910.
    [50]汪志明,王隔霞,林武忠,薄层流中的一类三阶奇摄动边值问题的渐近分析,应用数学学报,29(2006),699-706.
    [51]张九超,林武忠,一类积分的渐近分析,华东师范大学学报(自然科学版),1992年数学专辑,1992,60-70.
    [52]倪明康,林武忠,奇摄动问题中的渐近理论,北京:高等教育出版社,2009.
    [53]倪明康,林武忠,具有阶梯状空间对照结构的奇摄动,高校应用数学学报A辑,24(2009),290-300.
    [54]W.Z.Lin and Z.M.Wang, A singular singularly perturbed boundary value problem, Ann. Diff. Eqs.,12(1996),70-82.
    [55]H.P.Zhu and R.Christiane, Finite cyclicity of graphics with a nilpotent singu-larity of saddle or elliptic type, J. Differential Equations,178(2002),325-436.
    [56]R.Christiane and H.P.Zhu, PP-graphics with a nilpotent elliptic singularity in quadratic systems and Hilbert's 16th problem Original Research Article, J. Differential Equations,196(2004),169-208.
    [57]倪明康,林武忠,边界层函数法在微分不等式中的应用,华东师范大学学报(自然科学版),3(2007),1-10.
    [58]F.Xie, Z.Y. Jin and M.K.Ni, On the spike-type contrast structure of a second-order semi-linear differential equation with integral boundary condition, Electron. J. Qual. Theo.,62(2010),1-14.
    [59]D.M.Zhu and M.Xu, Exponential trichotomy, orthogonality condition and their application, Chin. Ann. Math.,1(1997),55-64.
    [60]V.F.Butuzov and A.B.Vasil'eva, Asymptotic behavior of a solution of con-trasting structure type, Math. Notes.,42(1987),956-961.
    [61]A.S.Aedeev and A.B.Vasil'eva, On a contrast structure of step type for a system of two second-order singularly perturbed equations, (Russian) Zh. Vychisl. Mat. i Mat. Fiz.,36(1996),75-89.
    [62]A.B.Vasil'eva, Contrast structures of step-like type for a second-order singu-larly perturbed quasilinear differential equation, (Russian) Zh. Vychisl. Mat. i Mat. Fiz.,35(1995),520-531.
    [63]A.B.Vasil'eva and M.A.Dovydova, On a contrast structure of step type for a class of second order nonlinear singularly perturbed equations, (Russian) Zh. Vychisl. Mat. i Mat. Fiz.,38(1998),938-947.
    [64]王爱峰,倪明康,一类二阶非线性奇摄动微分方程的脉冲状空间对照结构,数学物理学学报(A),29(2009),208-216.
    [65]M.A.Davydova, On contrast structure in a system of singularly perturbed equations, Comput. Math. Math. Phys.,41(2001),1026-1037.
    [66]A.B.Vasil'eva, Inner layer in the boundary problem for a system of two singularly perturbed equations order with the same procedure singularity, Comput. Math. Math. Phys.,41(2001),1067-1077.
    [67]A.B.Vasil'eva, Contrast structure in systems of singularly perturbed equa-tions, (Russian) Zh. Vychisl. Mat. i Mat. Fiz.,34(1994),1168-1178.
    [68]A.B.Vasil'eva, Contrast structure in the three systems of singularly per-turbed, Comput. Math. Math. Phys.,39(1999),2007-2018.
    [69]A.B.Vasil'eva, A.A.Plotnikov, On the effect of boundary conditions on a boundary layer solution of variable type, Mat. Model.,19(2007),103-115.
    [70]A.B.Vasil'eva, V.F.Butuzov and N.N.Nefedov, Contrast structures in singu-larly perturbed problems, Fundam. Appl. Math.,4(1998),799-851.
    [71]A.B.Vasil'eva, On some boundary-layer solutions of variable type for singu-larly perturbed parabolic equations, (Russian) Zh. Vychisl. Mat. i Mat. Fiz., 48(2008),651-659.
    [72]E.E.Bukzhalev and A.B.Vasil'eva, Solutions of singularly perturbed parabolic equations with internal and boundary layers that depend on stretched variables of different orders, (Russian) Zh. Vychisl, Mat. i Mat. Fiz.,47(2007),424-437.
    [73]A.B.Vasil'eva and L.V.Kalachev, Alternating boundary layer type solutions of some singularly perturbed periodic parabolic equations with Dirichlet and Robin boundary conditions, (Russian) Zh. Vychisl. Mat. i Mat. Fiz., 47(2007),222-233.
    [74]A.B.Vasil'eva, On systems of two singularly perturbed second order quasi-linear equations, (Russian) Fundam. Prikl. Mat.,12(2006),21-28.
    [75]M.K.Ni and V.I.Gurman, Realization of sliding modes as generalized solu-tions of optimal control problems, (Russian) translation in Avtomat.i Tele-mekh.,3(2008),51-59.
    [76]M.K.Ni and V.I.Gurman, Representation of impulse regimes of generalized solutions of controlled differential systems, (Russian) translation in Differ. Uravn.,44(2008),609-617.
    [77]P.D.Maesschalck and F.Dumortier, Singulary perturbation vanishing pas-sage through a turning point, J. Differential Equations,2010, doi:10.1016/j. jde.2009.11.009.
    [78]M.K.Ni, Asymptotics of a step-type contrast structure for a class of varia-tional problem, (Russian)translation in Autom. Remote Control.,69(2008), 708-715.
    [79]M.K.Ni and M.Y.Ukhin, Realization of turnpike solutions of optimal control problems, (Russian) translated in Autom.Remote Control.,67(2006),880-886.
    [80]R.E.O'Malley, Singularly perturbed linear two point boundary value prob-lem, SIAM Rev.,50(2008),459-482.
    [81]M.K.Ni and M.G.Dmitriev, Contrast structures in the simplest vector varitional problem and their asymptotics, (Russian) Avtomat.i Telemekh. 5(1998),41-52.
    [82]M.K.Ni, A.B.Vasil'eva and M.G.Dmitriev, On a steplike contrast structure for a problem of calculus of variations, Mat. Mat. Fiz.,44(2004),1271-1280.
    [83]M.K.Ni, A.B.Vasil'eva and M.G.Dmitriev, Equivalence of two sets of transi-tion points corresponding to solutions with interior transition layers, (Rus-sian) Mat. Zzmetki,79(2006),120-126.
    [84]R.Wong and H.P.Yang, On an internal boundary layer problem, J. Comput. Appl. Math.,144(2002),301-323.
    [85]X.B.Lin, Shadowing lemma and singularly perturbed boundary value prob-lems, SIAM J. Appl. Math.49(1989),26-54.
    [86]X.B.Lin, Construction and asymptotic stability of structurally stable inter-nal layer solutions, Trans. Amer. Math. Soc.,353(2001),2983-3043.
    [87]W.S.Liu, Geometric singular perturbation for multiple turning points:in-variant manifolds and exchang lemmas, J. Dynam. Differential Equations, 18(2006),667-691.
    [88]M.K.Ni and Z.M.Wang, On step-like contrast structure of singular perturbed systems, Bound. Value. Probl.,2009(2009), Article ID 634324,17 pages doi:10.1155/2009/634324.
    [89]M.K.Ni and Z.M.Wang, On higher dimensional contrast structure of singu-larly perturbed dirichlet problem, Sci. China.,55(2012),1-13.
    [90]A.B.Vasil'eva and V.F.Butuzov, Singularly Perturbed Equation in the Criti-cal case, Translated as MRC-Technical Summary Report 2039, Mathematics Research Center. Madison, WI,1980.
    [91]Z.Gu, N.N.Nefedov and R.E.O'Malley, On singular singularly perturbed ini-tial value problems, SIAM J. Appl. Math.,49(1989),1-25.
    [92]L.V.Kalachev and R.E.O'Malley, The regularization of linear differential al-gebraic equations, SIAM J. Math. Anal.,27(1996),258-273.
    [93]L.I.Kononenko and V.A.Sobolev, Asymptotic expansion of slow integral manifolds, Sib. Math. J.,35(1994),1119-1132.
    [94]R.E.O'Malley and L.V.Kalachev, Regularization of nonlinear differential al-gebraic equations, SIAM J. Math. Anal,25(1994),615-629.
    [95]K.R.Scheneider and T.Wilhelm, Model reducton by extended quasi-steady state assumption, J. Math. Biology,40(2000),443-450.
    [96]V.A.Sobolev and V.V.Strygin, Permissilility of changing over to presession equations of gyroscopic systems, Mechanics of Solids,5(1978),7-13.
    [97]V.A.Sobolev, Integral manifolds of singularly perturbed systems in one crit-ical case, (Russian, MR:586522) Differ, equ., Kuibyshev. Gos. Univ.,1976, 63-71.
    [98]V.V.Strygin and V.A.Sobolev, Separation of Motion by the Integral Mani-folds Method(in Russian, MR 89k:34071), Nauka, Moscow,1988.
    [99]C.Schmesiser and R.Weiss, Asymptotic analysis of singular singularly per-turbed boundary value problems, SIAM J. Math. Anal.,17(1986),560-579.
    [100]A.B.Vasil'eva, V.F.Butuzov and L.V.Kalachev, The Boundary Function Method for Singular Pertubation Problems, SIAM, Philadephia,1995.
    [101]W.S.Liu, Grometric singular perturbation approach to steady-stable poisson-nernst-planck systems, SIAM J. Appl, Math.,65(2005),754-766.
    [102]W.Z.Lin and Z.M.Wang, A singular singularly perturbed boundary value problem, Ann. Diff. Equa.,12(1996),70-82.
    [103]Y.M.Shi, On singular singularly perturbed vector boundary value problems, Indian J. Pure Appl. Math.,28(1997),679-695.
    [104]H.P.Zhu, The Dirichlet problem for a singular singularly perturbed quasi-linear second order differential system, J. Math. Anal. Appl.,210(1997), 308-336.
    [105]M.K.Kadalbajoo and V.K.Aggarwal, Fitted mesh B-spline method for solv-ing a class of singular singularly perturbed boundary value problems, Int. J. Comput. Math.,82(2005),67-76.
    [106]S.K.Tin, N.Kopell and C.K.R.T.Jones, Invariant manifolds and singularly perturbed boundary value problems, SIAM J. Numer. Anal.,31(1994),1558-1576.
    [107]W.A.Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics 629, Springer-Verlag, Berlin, New York,1978.
    [108]K.J.Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations,55(1984),225-256.
    [109]Kelley, The Stable, Center-stable, Center, Center-unstable and Unstable Manifolds, (Appendix in Transversal Mappings and Flows, by R.Abraham, J.Robbin, Benjiamin, New York,1967).
    [110]J.I.Ramos, Exponetial methods for singularly perturbed ordinary differential difference equations, Appl. Math. Comput.,182(2006),1528-1541.
    [111]K.C.Patidar and K.K.Sharma, Uniformly convergent non-standard finite difference methods for singularly perturbed differential-difference equations with delay or advance, Internat, J. Numer. Methods Engry.,66(2006),272-296.
    [112]C.G.Lange and R.M.Miura, Singular perturbation analysis of boundary value problems for differential-difference equations, SIAM J. Appl. Math., 42(1982),502-531.
    [113]C.G.Lange and R.M.Miura, Singular perturbation analysis of boundary value problems for differential-difference equations Ⅱ, Rapid oscillations and resonances, SIAM J. Appl. Math.,45(1985),687-707.
    [114]C.G.Lange and R.M.Miura, Singular perturbation analysis of boundary value problems for differential-difference equations III, Turning point prob-lems, SIAM J. Appl. Math.,45(1985),708-734.
    [115]C.G.Lange and R.M.Miura, Singular perturbation analysis of boundary value problems for differential-difference equations Ⅳ, Small shift with rapid oscillations, SIAM J. Appl. Math.,54(1994),273-283.
    [116]C.G.Lange and R.M.Miura, Singular perturbation analysis of boundary-value problems for differential-difference equations V, Small shift with layer behavior, SIAM J. Appl. Math.,54(1994),249-272.
    [117]M.K.Kadalbajoo, K.K.Sharma and D.Kumar, Numerical analysis of singu-larly perturbed delay differential equations with layer behavior, Appl. Math. Comput.,157(2004),11-28.
    [118]M.K.Kadalbajoo and D.Kumar, Fitted mesh B-spline collocation method for singularly perturbed differential-difference equations with small delay. Appl. Math. Comput.,204(2008),90-98.
    [119]苗树梅,周钦德,奇摄动微分差分方程的边值问题,吉林大学学报(自然科学版),1987,1-7.
    [120]H.J.Tian, Asymptotic expansion for the solution of singularly perturbed de-lay differential equations, J. Math. Anal. Appl.,281(2003),678-696.
    [121]M.K.Kadalbajoo and K.K.Sharma, Parameter uniform numercial method for a boundary-value problem for singular perturted nonlinear delay differential equation of neutral type, Int. J. Comput. Math.,81(2004),845-862.
    [122]C.G.Lange and R.M.Miura, Singular perturbation analysis of boundary value problems for differential-difference equations, IV. A nonlinear example with layer behavior. Studies Appl. Math.,84(1991),231-273.
    [123]倪明康,林武忠,具有内部层的奇摄动微分差分方程的渐近解,数学物理学报30A(2010),1413-1423.