平面奇摄动系统分支问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在研究平面跨临界型转点处的分支现象和带有截断项的扩展FKPP方程行波解的异宿轨道分支.近年来,利用几何奇摄动结合动力系统理论研究奇摄动系统的分支现象已得到了较大的发展.如奇摄动系统中的鸭现象,奇摄动系统中的同、异宿轨分支等.但由于奇摄动系统的特殊性,其分支理论与方法还有待进一步的发展和完善.本文运用几何奇摄动理论和动力系统中的方法研究平面奇摄动系统中的几类分支现象,并推广了前人的一些结果.
     全文共分三章.谨将具体内容和研究结果概述如下:
     第一章简单介绍了奇异摄动的几何理论,叙述了鸭现象和带有截断项的反应扩散方程行波解的发展过程、背景及现状,介绍了本文的工作并提出了一些待解决的问题.
     第二章研究了平面跨临界型转点处的分支现象,重点关注于鸭的产生过程及松弛振荡环的消失.鸭现象的研究始于80年代对van der Pol方程的研究,它的产生一般有两种机制,一是退化系统的平衡点通过临界流形的折点,二是临界流形的自相交.鸭现象的一个重要特征是由Hopf分支出的小极限环在控制参数的指数小变化范围内其振幅发生巨大改变进而变成松弛振荡环.本章研究了平面跨临界转点处鸭解的存在性、最大鸭的参数展开式、松弛振荡环的消失以及从Hopf分支到鸭爆炸之间小极限环的结构问题.该部分内容不同于经典鸭模型,是两种鸭的产生机制的综合,有着更复杂的动力学行为.
     第三章研究了带有截断项的扩展FKPP方程.带有截断项反应扩散方程的研究始于Brunet和Derrida (1997)对离散N-粒子系统的临界波速与在连续假设下得到的临界波速之间存在偏离问题的研究,截断项的引入使得方程能更好的反应原系统的粒子性.在本章中我们首先利用几何奇摄动理论结合渐近方法得到了带有截断项的扩展FKPP方程临界波速的存在性及其渐近展开式,然后利用指数二分法和Evans函数方法得到了行波解在指数加权空间中的局部渐近稳定性.
This thesis aims to investigate planar transcritical type turning point bifur-cation and heteroclinic bifurcation of travelling wave in extended Fisher/KPP equation with cut-off. For the past few years, it has gained great development in studying bifurcations of singularly perturbed systems by means of geometric singular perturbation theory combining the theory of dynamical systems. Such as canards, homoclinic and heteroclinic bifurcation in singularly perturbed systems. Because of the singularity for the singular perturbation problems, the bifurcation theory remains to be further developed and improved. In this thesis, several pla-nar singularly perturbed problems with bifurcations were investigated by means of geometric singular perturbation theory and the theory of dynamical systems, some results of predecessors were extended.
     The dissertation is divided into three chapters. The main results are outlined as follows:
     Chapter One introduces the history and actuality for the geometric singular perturbation theory, canard phenomenon and reaction-diffusion equations with cut-off. The work of this thesis is outlined and some remaining problems are given.
     Chapter Two is devoted to investigate transcritical type turning point bifur-cation on the plane, focus on the birth of canards and the vanish of relaxation oscillations. Canard phenomenon was first found and studied in van der Pol equa-tion in the1980s. Generically, canards can emerge from two possible mechanisms, one is the equilibrium of the reduced problem passing through the fold point of the critical manifold, the other is due to the self-intersection of the critical manifold. An important feature of canard phenomenon is that the transition from small Hopf-type cycles to large relaxation oscillations occurs in an exponentially small parameter interval. The existence of canard and the disappearance of relaxation oscillation in planar transcritical type turning point were proved, asymptotic ap-proximations of the control parameters were obtained, and the configuration of small limit cycles from Hopf bifurcation to canard explosion was given by means of blow-up transformations combined with standard tools of dynamical systems theory. This content is different from the classic canard model, it is a combination of the two mechanisms with complicated dynamic quality.
     Chapter Three deals with travelling wave in extended Fisher/KPP equation with cut-off. Cut-offs were first introduced by Brunet and Derrida in1997to model fluctuations in propagating fronts that arise in the large-scale (or mean-field) limit of discrete N-particle systems. They found that particle attribute of the discrete systems can be modeled by introducing a small cut-off∈on the reaction term in the deterministic reaction diffusion equations. In this chapter, we prove the existence and uniqueness of travelling wave in extended Fisher/KPP equation with cut-off, derive the asymptotic expansion of the corresponding propagation speed. Further by exponential dichotomies and Evans function method, we prove that the wave with critical speed is locally exponentially stable in some weighted spaces.
引文
[1]Prandtl L. Fluid motions with very small friction[C]//Proceedings of the 3rd Inter-national Mathematical Congress. Heidelberg:H. Schlichting,1904:484-491.
    [2]Wasow W. Asymptotic Expansions for Ordinary Differential Equations[M]. New York:Wiley,1965.
    [3]Vasil'eva A B, Butuzov V F. Asymptotic Expansions of Solutions of Singularly Perturbed Equations[M]. Moscow:Nauka,1973.
    [4]Dyke M V. Perturbation Methods in Fluid Mechanics, Annotated edition[M]. Uni-versity of Michigan:Parabolic Press,1975.
    [5]Coppel W. Dichotomies in Stability Theory[M]. Lecture Notes in Mathematics,629. Berlin:Springer-Verlag,1978.
    [6]Mishchenko E F, Rozov N K. Differential Equations with Small Parameter and Relaxation Oscillations[M]. New York:Plenum Press,1980.
    [7]Kevorkian J, Cole J D. Perturbation methods in applied mathematics[M]. New York: Springer,1981.
    [8]Chang K W, Howes F A. Nonlinear Singular Perturbation Phenomena:theory and applications[M]. New York:Springer-Verlag,1984.
    [9]Grasman J. Asymptotic Methods for Relaxation Oscillations and Applications[M]. New York:Springer-Verlag,1987.
    [10]Lagerstrom P A. Matched Asymptotic Expansions:Ideas and Techniques[M]. Ap-plied Mathematical Sciences,76. Xew York:Springer-Verlag,1988.
    [11]Il'in A M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems[M]. Providence, RL:Amer. Math. Soc.,1991.
    [12]O'Malley R E. Singular perturbation methods for ordinary differential equations[M]. Berlin:Springer-Verlag,1991.
    [13]Mishchenko E F. Kolesov Y S, Rozov A, et al. Asymptotic Methods in Singularly Perturbed Systems[M]. New York and London:Connsultants Bureau,1994.
    [14]Vasil'eva A B, Butuzov V F, Kalachev L V. The Boundary Function Method for Singular Perturbation Problems[M]. Philadelphia:SIAM,1995.
    [15]Holmes M H. Introduction to Perturbation Methods[M]. New York:Springer-Verlag, 1995.
    [16]Kevorkian.1, Cole J D. Multiple Scale and Singular Perturbation Methods[M]. New York:Springer-Verlag,1996.
    [17]de Jager E M, Jiang F R. The Theory of Singular Perturbations[M]. Amsterdam: North-Holland,1996.
    [18]瓦西里耶娃,布图索夫.奇异摄动方程解的渐近展开[M].倪明康,林武忠,译.北京:高等教育出版社,2008.
    [19]倪明康,林武忠.奇摄动问题中的渐近理论[M].北京:高等教育出版社,2009.
    [20]钱伟长.Asymptotic behavior of a thin clamped circular plate under uniform normal pressure at very large deflection[J]. Sci. Rep. natn. Tsing Hua Univ.,1948, A5:71-94.
    [21]郭永怀.On the Flow of an inompressible viscous fluid past a flat plate at moderate Reynolds number[J]. J. Math, and Phys.,1953,32:83-101.
    [22]林家翘.On a perturbation theory based on the method of charact eristics [J]. J. Math. and Phys.,1954,33:117-134.
    [23]林家翘.The Theory of Hydrodynamics Stability[M]. Cambridge:Cambridge Uni-versity Press,1955.
    [24]钱学森.The Poincare-Lighthill-Kuo Method[M]. Advances in Applied Mechanics, 4.[S.1.]:Academic Press,1955:281-349.
    [25]钱伟长.奇异摄动理论及其在力学中的应用[M].北京:科学出版社,1981.
    [26]Arnold V I, Afrajmovich V S, Il'yashenko Y S, et al. Dynamical Systems V:Bifurca-tion Theory and Catastrophe Theory[M]. Encyclopaedia of Mathematical Sciences. Berlin:Springer-Verlag,1994.
    [27]Chow S N, Li C, Wang D. Normal Forms and Bifurcation of Planar Vector Fields[M]. Cambridge:Cambridge University Press,1994.
    [28]Dumortier F, Llibre J, Artes J C. Qualitative Theory of Planar Differential Sys-tems[M]. Berlin:Springer-Verlag,2006.
    [29]Fenichel N. Persistence and smoothness of invariant manifolds for flows [J]. Indiana University Mathematics Journal,1971,21(3):193-226.
    [30]Fenichel N. Geometric singular perturbation theory for ordinary differential equa-tions[J]. Journal of Differential Equations,1979,31:53-98.
    [31]Tin S K, Kopell N, Jones C K R T. Invariant manifolds and singularly perturbed boundary value problems[J]. SIAM Journal on Numerical Analysis,1994,31 (6):1558-1576.
    [32]Jones C K R T. Geometric singular perturbation theory[M]//Lecture Notes in Math.,1609. Berlin:Springer-Verlag,1995:44-118.
    [33]Kaper T J. An Introduction to geometric methods and dynamical systems theory for singular pertubation problems[J]. Proceedings of Syamposia in Applied Mathematics, 1999,56:85-131.
    [34]Coayla-teran E A, Mohammed S E A. Hartman-Grobman theorems along hyper-bolic stationary trajectories[J]. Discrete and Continuous Dynamical Systems,2007, 17(2):281-292.
    [35]Jones C K R T, Tin S. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds [J]. Discrete and Continuous Dynamical Systems, Series S,2009, 2(4):967-1023.
    [36]Callot J L, Diener F, Diener M. Le Probl'eme de la"chasse au canard "[J]. C. R. Acad. Sci. Paris,1978,286:1059-1061.
    [37]Benoit E, Callot J L, Diener F, et al. Chasse au canard[J]. Collect. Math.,1981, 32:37-119.
    [38]Dumortier F, Roussarie R. Canard cycles and center manifolds[M]. Memoirs of Amer. Math. Soc.,577, vol.121. Providence, RL:American Mathematical Society, 1996:1-100.
    [39]Dumortier F, Roussarie R. Multiple Canard Cycles in Generalized Lienard Equa-tions[J]. Journal of Differential Equations,2001,29(174):1-29.
    [40]Tikhonov A N. On the dependence of the solutions of differential equations on a small parameter[J]. Mat. Sb.,1948,31:575-586.
    [41]Ackerberg R C, O'Malley R E. Boundary layer problems exhibiting resonance [J]. Studies of Applied Mathematics,1970,49(3):277-295.
    [42]De Maesschalck P. Ackerberg-O'Malley resonance in boundary value problems with a turning point of any order [J]. Communications on Pure and Applied Analysis,2007, 6(2):311-333.
    [43]Krupa M, Szmolyan P. Extending geometric singular perturbation theory to non-hyperbolic points-fold and canard points in two dimensions [J]. SIAM Journal on Mathematic Analysis,2001,33(2):286-314.
    [44]Izhikevich E. M. Dynamical Systems in Neuroscience:The Geometry of Excitability and Bursting[M]. Cambridge, MA:The MIT Press,2007.
    [45]Holzer M, Doelman A, Kaper T J. Existence and Stability of Traveling Pulses in a Roaction-Diffusion-Mechanics System[J]. Journal of Nonlinear Science,2013, 23(1):129-177.
    [46]Brons M, Bar-Eli K. Canard explosion and excitation in a model of the Belousov-Zhabotinskii reaction[J]. J. Phys. Chem.,1991,95:8706-8713.
    [47]Gucwa I, Szmolyan P. Geometric singular perturbation analysis of an autocatalator model[J]. Discrete and Continuous Dynamical Systems, Series S,2009,2(4):783-806.
    [48]Li C, Zhu H. Canard cycles for predator-prey systems with Holling types of functional response[J]. Journal of Differential Equations,2013,254(2):879-910.
    [49]Benoit E. Dynamic bifurcations[M]. Lecture Notes in Math.,1493. Berlin:Springer-Verlag,1991.
    [50]Eckhaus W. Relaxation oscillations including a standard chase on French ducks[M]. Lecture Notes in Math.,985. Berlin:Springer-Verlag,1983:449-494.
    [51]Krupa M, Szmolyan P. Relaxation oscillation and canard explosion[J]. Journal of Differential Equations,2001,174(2):312-368.
    [52]Krupa M, Szmolyan P. Extending slow manifolds near transcritical and pitchfork singularities[J]. Nonlinearity,2001,14:1473-1491.
    [53]Szmolyan P, Wechselberger M. Canards in R3[J]. Journal of Differential Equations, 2001,177:419-453.
    [54]Rubin J E, Terman D. Geometric singular perturbation analysis of neuronal dy-namics[M]. Handbook of Dynamical Systems. Amsterdam:North-Holland,2000: 93-146.
    [55]Popovic N, Szmolyan P. A geometric analysis of the Lagerstrom model problem[J]. Journal of Differential Equations,2004,199(2):290-325.
    [56]Popovic N, Kaper T J. Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-diffusion equations [J]. Journal of Dynamics and Differential Equations,2006,18(1):103-139.
    [57]Dumortier F, Roussarie R, Rousseau C. Hilbert's 16th problem for quadratic vector fields[J]. Journal of Differential Equatios,1994.110:86-133.
    [58]Rousseau C. Hilbert's 16-th problem for quadratic vector fields and cyclicity of graphics[J]. Nonlinear Analysis:Theory, Methods and Applications,1997,30(1):437-445.
    [59]Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields[J]. International Journal of Bifurcation and Chaos,2003,13(01):47-106.
    [60]Dumortier F, Rousseau C. Study of the cyclicity of some degenerate graphics inside quadratic systems [J]. Communications on Pure and Applied Analysis,2009,8(4):1133-1157.
    [61]De Maesschalck P, Dumortier F. Classical Lienard equations of degree n≥6 can have [n-1/2]+1 limit cycles [J]. Journal of Differential Equations.2011,250(4):2162-2176.
    [62]Lins A, de Melo W, Pugh C. On Lienard's equation[M]. Lecture Notes in Math., 597. Berlin:Springer,1977:335-357.
    [63]Dumortier F, Popovic N, Kaper T J. The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off [J]. Nonlinearity,2007, 20(4):855-877.
    [64]Dumortier F, Popovic X, Kaper T J. A geometric approach to bistable front prop-agation in scalar reaction diffusion equations with cut-off [J]. Physica D:Nonlinear Phenomena,2010,239(20-22):1984-1999.
    [65]Popovic N. A geometric analysis of front propagation in a family of degenerate reaction-diffusion equations with cut-off[J]. Zeitschrift fur angewandte Mathematik und Physik,2011,62(3):405-437.
    [66]Popovic N. A geometric analysis of front propagation in an integrable Nagumo equa-tion with a linear cut-off[J]. Physica D:Nonlinear Phenomena,2012,241(22):1976-1984.
    [67]Dumortier F. Slow-fast systems and relaxation oscillations[R]. XI'AN:Xi'an Jiaotong University,2012:1-110.
    [68]Gilding B, Kersner R. A Fisher/KPP-type equation with density-dependent diffusion and convection:traveling wave solutions[J]. J. Phys. A,2005,38:3367.
    [69]Britton N F. Reaction-Diffusion Equations and Their Applications to Biology[M]. New York:Academic Press,1986.
    [70]Murray J D. Mathematical Biology:I. An Introduction[M].3rd. New York: Springer-Verlag,2002:1-551.
    [71]Volpert V, Petrovskii S. Reaction-diffusion waves in biology. [J]. Physics of life reviews, 2009,6(4):267-310.
    [72]Smooller J. Shock Waves and Reaction-diffusion Equations[M].2nd. Die Grundlehren Der Mathematischen Wissenschaften. New York:Springer-Verlag,1994.
    [73]Vansaarloos W. Front propagation into unstable states[J]. Physics Reports,2003, 386(2-6):29-222.
    [74]Gilding B H, Kersner R. Travelling waves in nonlinear diffusion-convection-reaction[M]. Progress in Nonlinear Differnetial Equations and their Applications,60, no. June. Basel:Birkhauser,2004.
    [75]Brunet E, Derrida B. Shift in the velocity of a front due to a cutoff[J]. Physical Review E,1997,56(3).2597-2604.
    [76]Popovic N. A geometric classification of traveling front propagation in the Nagumo equation with cut-off [J]. unpublished.
    [77]Bonckaert P. Partially hyperbolic fixed points with constraints [J]. Transactions of the American Mathematical Society,1996,348(3):997-1011.
    [78]Dumortier F, Roussarie R. Geometric singular perturbation theory beyond normal hyperbolicity[M]//Multiple-Time-Scale Dynamical Systems, The IMA Volumes in Mathematics and its Applications Volume 122. New York:Springer-Verlag,2001:29-
    [79]Dumortier F. Techniques in the theory of local bifurcations:blow-up, normal forms, nilpotent bifurcations, singular perturbations[M]//. Szlomiuk D. Bifurcations and Periodic Orbits of Vector Fields, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,408. Dordrecht:Kluwer Acad. Publ.,1993:17-73.
    [80]De Maesschalck P. Gevrey properties of real planar singularly perturbed systems[J]. Journal of Differential Equations,2007,238(2):338-365.
    [81]De Maesschalck P, Dumortier F. Canard cycles in the presence of slow dynamics with singularities[J]. Proceedings of the Royal Society of Edinburgh,2008,138(02):265-299.
    [82]Dumortier F, Smits B. Transition time analysis in singularly perturbed bound-ary value problems [J]. Transactions of the American Mathematical Society,1995, 347(10):4129-4145.
    [83]Dumortier F, De Maesschalck P. Detectable canard cycles with singular slow dy-namics of any order at the turning Point [J]. Discrete and Continuous Dynamical Systems,2011,29(1):109-140.
    [84]Dumortier F, Roussarie R. Bifurcation of relaxation oscillations in dimension two[J]. Discrete and Continuous Dynamical Systems, Series A,2007,19(4):631-674.
    [85]De Maesschalck P, Dumortier F. Canard solutions at non-generic turning points[J]. Transactions of the American Mathematical Society,2006,358(5):2291-2334.
    [86]De Maesschalck P, Dumortier F. Time analysis and entry-exit relation near planar turning points[J]. Journal of Differential Equations,2005,215(2):225-267.
    [87]Dumortier F. Slow divergence integral and balanced canard solutions[J]. Qualitative Theory of Dynamical Systems,2011,10(1):65-85.
    [88]Chiba H. Periodic orbits and chaos in fast-slow systems with Bogdanov-Takens type fold points[J]. Journal of Differential Equations,2011,250(1):112-160.
    [89]Wechselberger M. Extending Melnikov theory to invariant manifolds on non-compact domains[J]. Dyn. Syst.,2002,17:215-233.
    [90]Arnold V I, Gusen-Zade S M, Varchenko A N. Singularities of Differnetiable Maps. Vol.Ⅱ. Monodromy and asymptotic behavior of integrals[M]. Monographs in Mathe-matica. Boston:Birkhauser,1988.
    [91]Dumortier F. Roussarie R. Birth of canard cycles[J]. Discrete and Continuous Dy-namical Systems, Series S,2009,2(4):723-781.
    [92]Mardesic P. Chebychev Systems and the Versal Unfolding of the Cusp of Order n[M]. Paris:Hermann,1998:1-153.
    [93]Benguria R. Depassier M, Haikala V. Effect of a cutoff on pushed and bistable fronts of the reaction diffusion equation[J]. Phys. Rev. E,2007,76(5):051101.
    [94]Benguria R D, Depassier M C. Speed of pulled fronts with a cutoff[J]. Phys. Rev. E, 2007,75(5):051106.
    [95]Mansour M. Traveling wave solutions for the extended Fisher/KPP equation[J]. Reports on Mathematical Physics,2010,66(3):375-383.
    [96]Sandstede B. Stability of travelling waves[M]//Handbook of dynamical systems, Vol. 2. Amsterdam:North-Holland,2002:983-1055.
    [97]Palmer K J. Exponential dichotomies and transversal homoclnic points[J]. Journal of Differential Equations,1984,55:225-256.
    [98]Palmer K J. Exponential dichotomies and fredholm operators [J]. Proceedings of the American Mathematical Society,1988,104(1):149-156.
    [99]邢秀侠.广义Fisher方程组及粘性平衡律方程行波解的稳定性[D].北京:首都师范大学,2005.
    [100]Evans J W. Nerve axon equations. IV[J]. Indiana University Mathematics Journal, 1974,24(12):1169-1190.
    [101]Sattinger D H. On the stability of waves of nonlinear parabolic systems [J]. Advances in Math.,1976,22:312-355.
    [102]Henry D. Geometric Theory of Semilinear Parabolic Equations[M]. Lecture Notes in Mathematics,840. New York:Springer-Verlag,1981.