ATP13A2(PARK9)基因启动子区转录调控元件的鉴定与缺氧调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     帕金森病(Parkinson's disease,PD)是当今仅次于阿尔茨海默病(Alzheimer's disease,AD)的第二大神经系统退行性疾病。PD的发病机制复杂,尚未完全明确,目前认为可能与老年化、环境因素(比如MPTP.除草剂、杀虫剂、金属等)和遗传因素相关。随着分子遗传学的发展,遗传因素在PD发病机制中的作用越来越受到关注,至少有13个致病基因被克隆,其中α-synucelein、LRRK2、 PRKIN、DJ-1、PINK1以及ATP13A2作为PD的致病基因已经得到了较为一致的肯定。这些基因的功能涉及到了氧化应激、线粒体功能缺陷、泛素蛋白酶体系功能障碍等方面。
     2001年Hampshire等对一例呈常染色体隐性遗传的合并有痴呆、核上性凝视麻痹的约旦PD家系进行了联锁定位分析,将其致病区间定位于1p36的一个9cM的区域,命名为PARK9。2006年Ramirez等在该家系患者中发现ATP13A2基因的致病突变,且存在家系共分离,从而克隆了PARK9的致病基因。其后,研究者们对不同国家和不同种族来源的PD患者进行了该基因的筛查,不断有新的病例报道。ATP13A2基因(OMIM*610513)定位于人类染色体1p36,包括三个剪切本,其编码的蛋白属于P型ATPase蛋白超家族,该家族主要参与无机离子的跨膜转运。
     近年来,对于遗传退行性疾病致病基因的转录调控得到越来越多的重视,转录因子可以通过对致病基因的转录调节从而参与疾病的发病机制,比如转录因子GATA能够与SNCA基因启动子区结合,从而使得该基因表达显著上调。目前,转录因子已成为遗传退行性疾病治疗研究的一个新兴的靶点。尽管ATP13A2作为PD的致病基因已经得到了一致的肯定,关于ATP13A2蛋白的转录调控却不明确。为了研究其转录调控的相关分子机制,本研究拟对ATP13A2基因转录起始位点定位并初步分析该基因启动子区活性特点,进而研究其启动子区转录因子结合情况,深入研究感兴趣的转录因子对ATP13A2基因转录的调节。
     目的:
     研究ATP13A2基因转录调控的相关分子机制。
     方法:
     1.运用RNA连接酶介导的cDNA末端快速扩增法(RNA ligase mediated rapid amplification of cDNA ends, RLM-RACE)确定人类ATP13A2基因的转录起始位点(transcription start site, TSS);
     2.构建连接有不同长度ATP13A2基因启动子区序列的重组荧光素酶报告基因质粒,采用Dual-luciferase reporter assay system对质粒的启动子活性进行检测;
     3.运用在线软件结合手工分析,预测ATP13A2基因启动子区潜在的转录因子结合位点;
     4.采用凝胶电泳迁移率分析(electrophoretic mobility shift assay, EMS A)以及染色质免疫共沉淀分析(chromatin immunopreci-pitation assay, ChIP)对预测的感兴趣的转录因子缺氧诱导因子1α (hypoxia inducible factor1α, HIF-1α)结合位点—缺氧反应元件(hypoxia response element, HRE)进行验证;
     5.运用HIF-1α蛋白表达质粒pHA-Hif-1α与含ATP13A2启动子的重组荧光素酶报告基因质粒pPK9-A共转染或给予pPK9-A转染的细胞缺氧处理(2%02),观察HIF-1α和缺氧对于ATP13A2基因启动子区活性的影响;
     6.给予HEK293细胞以及小鼠多巴胺能神经元细胞模型MN9D细胞缺氧处理(2%02),并结合半定量RT-PCR技术,检测两种细胞株内源性ATP13A2mRNA水平,以进一步观察缺氧对ATP13A2转录水平的调控作用。
     结果:
     1.对RLM-RACE方法获得的PCR产物测序显示与RNA adapter序列相连的第一位碱基为位于ATP13A2翻译起始位点ATG上游206bp的腺嘌呤A;
     2.构建了一系列连接有ATP13A2基因启动子区片段的重组pcDNA3质粒,命名为pPK9-A至pPK9-J,其中最长的片段长度为2.0kb(-1954至+84bp,将TSS定位为+1);对这些质粒的启动子活性分析表明质粒pPK9-A(-1954至+84bp)、pPK9-C(-1538至+84bp)、pPK9-E(-846至+84bp)、pPK9-F(-201至+84bp)、pPK9-G(-78至+84bp)、pPK9-H(-78至+50bp)具有显著的启动子活性;
     3.通过转录因子结合位点预测软件分析同时结合手工比对,结果显示在人类ATP13A2基因启动子区-1954至+84bp这-区间内包含有9个5’-A/GCGTG-3'序列,并依次命名为HRE1至HRE9;
     4. EMSA结果显示HRE-1、HRE-3、HRE-4、HRE-8以及HRE-9的寡居核苷酸能够显著的减弱HIF-1α探针与HIF-1α蛋白形成的DNA-蛋白复合物迁移带的浓度;ChIP结果显示HRE-1、HRE-3+4、HRE-8+9的特异性引物能够从HIF-1α特异性抗体免疫共沉淀后分离纯化的DNA样品中成功扩增出目的片段;
     5.相对于空白质粒共转染的阴性对照,pPK9-A与质粒pHA-Hif-1α共转染显著增加了pPK9-A的启动子活性(2.483±0.241,p<0.05);相对于正常氧含量培养的阴性对照,pPK9-A转染的HEK293细胞经过缺氧培养(2%02)显著增加了pPK9-A的启动子活性(2.466±0.293,p<0.05);
     6.给予HEK293细胞缺氧处理(2%02)Oh、12h、24h及48h后检测细胞内源性ATP13A2的RNA水平,结果在显示缺氧24h及48h情况下,其mRNA水平显著增高(分别为2.356±0.320、2.526±0.203,P值均<0.05);给予MN9D细胞缺氧处理(2%02)Oh、12h、24h后检测细胞内源性Atp13a2mRNA水平,结果显示缺氧12h及24h情况下,其RNA水平显著增高(分别为1.668±0.148、1.606±0.130,P值均<0.05)。
     结论:
     1.人类ATP13A2基因的主要转录起始位点为位于该基因翻译起始位点ATG上游206bp的腺嘌呤A;
     2.ATP13A2基因-78至+50bp的启动子区域含有ATP13A2基因转录所必须的核心启动子序列;
     3. EMSA和ChIP分析证实ATP13A2基因启动子区存在功能性的HRE位点,能够与转录因子HIF-1α相结合;
     4.转录因子HIF-1α能够与ATP13A2基因启动子区的HRE位点相结合,对ATP13A2基因的启动子活性进行调控;
     5.缺氧可以通过转录因子HIF-1α对ATP13A2基因的转录起到上调作用。
Background:
     Parkinson's disease (PD) is the second most common neurodeg-enerative disorders with a variable combination of motor and non-motor symptoms. Its characteristic motor symptoms include tremor at rest, rigidity, bradykinesia. Non-motor dysfunctions, such as depression, anxiety, dementia and sexual dysfunction may appear as the disease progresses. The etiology of PD is unclear, however, both genetic and environmental causes contribute to it. Since the first missense mutation in the a-synuclein gene reported in a large PD family of Italian descent in1997, up to date,13genes are reported to be associated with PD. a-synuclein, LRRK2, Parkin, DJ-1, PINK1and ATP13A2have been confirmed to be the pathogenic genes for PD.
     In2006Alfredo and colleagues identified ATP13A2mutations from a non-consanguineous Chilean family with PD and named it PARK9. Following this report, the mutation screening of ATP13A2was performed on PD patients from different ethnic groups, and several novel mutations in ATP13A2were identified. The human ATP13A2gene (OMIM*610513), locates in chromosome1p36encoding for a protein of1180amino acids with10transmembrane domains which belongs to the P-type ATPase superfamily. However, the protein function of ATP13A2and the pathogenic mechanism of PARK9is still not clear.
     Recently, abnormal gene expression has been implicated in neurodegenerative disorders. However, the transcriptional regulation of the ATP13A2gene is unknown.
     Objective:
     To define the molecular mechanism underlying its transcription and its transcriptional regulation.
     Methods:
     1. RNA Ligase Mediated Rapid Amplification of cDNA Ends (RLM-RACE) assay was performed to determine the transcription start site of the human ATP13A2gene.
     2. To examine the transcriptional regulation of the human ATP13A2, fragments of the5'flanking region of the ATP13A2gene were pulled out by PCR from the human genome DNA and cloned into pG13-basic vector. Luciferase assay was performed to detect the promoter activity of these vectors.
     3. To further identify the transcription factor binding sites, Computer-based transcription factor binding site analysis was employed and the putative binding sties were confirmed by EMSA and ChIP.
     4. To determine the effect of hypoxia and HIF-1α on the human ATP13A2promoter activity, HEK293cells were co-transfected by pPK9-A with pHIF-1α or exposed to hypoxic condition after trans-fection with pPK9-A.
     5. To further investigate the transcrptional regulation of ATP13A2by hypoxia on the mRNA level, HEK293cells and MN9D cells were exposed to hypoxic condition. The endogenous mRNA level of ATP13A2from both cell lines were measured and compared to its own control after hypoxia treatment.
     Results:
     1. PCR product from RLM-RACE was sequenced and the sequence result revealed the adenine locating at206bp upstream of the translation start site was the base after RNA adapter;
     2. A series of luciferase reporter plasmids with different upstream deletions of the ATP13A2gene promoter region were constructed and named according to the original location of insert fragment (TSS was designated as+1); pPK9-A (-1954to+84bp), pPK9-C (-1538to+84bp), pPK9-E (-846to+84bp), pPK9-F (-201to+84bp), pPK9-G(-78to+84bp), pPK9-H(-78to+50bp) present significant promoter activiey;
     3. Computer-based transcription factor binding site analysis revealed that there are nine putative hypoxia response elements (HRE) in the2.0kb promoter region (-1954to+84) of the human ATP13A2gene;
     4. EMSA showed that oligos of HRE-1, HRE-3, HRE-4, HRE-8and HRE-9can sharped induced the intensity of the DNA-protein band formed by HIF-1a probe and HIF-1a protein; ChIP assay showed PCR products can be amplified from chromatin samples immune-precipitated by HIF-1a antibody using specific primers of HRE-1, HRE-3+4and HRE-8+9respectively;
     5. pPK9-A was transfected into HEK293cells with pHIF-1a or empty vector as control, pPK9-A promoter activity was significantly increased compared to control (2.483+0.241, P<0.05); pPK9-A transfected HEK293cells were subjected to hypoxia (2%oxygen) or normoxia (21%oxygen) for24hours and the promoter activity of pPK9-A was significant increased by2.466+0.293(P<0.05) after24hours exposure to low oxygen;
     6. HEK293cells were incubated in hypoxia chamber with2%oxygen for0,12,24,48hours. Endogenous ATP13A2mRNA levels were measured by qRT-PCR and the results showed the exposure to hypoxic condition for24and48hours resulted in a significant increase of ATP13A2mRNA level,2.356+0.320fold and2.526+0.203fold, respectively; MN9D cells were also inbubated in hypoxia chamber with2%oxygen for0,12, and24hours, and the mRNA level of Atpl3a2after12and24hours hypoxic treatment were increased to1.668±0.148and1.606±0.130, respectively (P<0.05).
     Conclusions:
     1. We identified the adenine locating at206bp upstream of the translation start site is the major transcription start site of the ATP-13A2gene;
     2. We constructed a series of plasmids with different deletions of the5' flanking region of the ATP13A2gene; the5'flanking region from-78to+50bp contains the minimal promoter sequence necessary for the transcriptional activation of the human ATP13A2gene expression;
     3. EMS A and ChIP assay confirmed the HRE sites1,3,4,8and9are functional HIF-1a binding sites;
     4. Overexpression of transcription factor HIF-1a can increase the promoter activity of ATP13A2, and hypoxia can up-regulate the promoter activity of the ATP13A2via HIF-1α;
     5. Finally, we further confirmed hypoxia can up-regulate the expression of ATP13A2gene at transcription level.
引文
[1]Ramirez A, Heimbach A, Grundemann J, et al, Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet,2006.38(10):1184-91.
    [2]Hampshire DJ, Roberts E, Crow Y, et al, Kufor-Rakeb syndrome, pallido-pyramidal degenera-tion with supranuclear upgaze paresis and dementia, maps to 1p36. J Med Genet,2001.38(10):680-2.
    [3]Scherzer, CR, Grass JA, Liao Z, et al, GATA transcription factors directly regulate the Parkin-son's disease-linked gene alpha-synuclein. Proc Natl Acad Sci U S A,2008.105(31):10907-12.
    [4]Correia SC and Moreira PI, Hypoxia-inducible factor 1:a new hope to counteract neurodegeneration? J Neurochem,2010.112(1):1-12.
    [5]de Lau LM and Breteler MM, Epidemiology of Parkinson's disease. Lancet Neurol,2006.5(6):525-35.
    [6]Tanner CM and Goldman SM, Epidemiology of Parkinson's disease. Neurol Clin,1996.14(2):317-35.
    [7]Zhang ZX, Roman GC, Hong Z, et al, Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet,2005.365(9459):595-7.
    [8]Halliday G, Hely M, Reid W, et al, The progression of pathology in longitudinally followed patients with Parkinson's disease. Acta Neuropathol, 2008.115(4):409-15.
    [9]Dauer W and Przedborski S, Parkinson's disease:mechanisms and models. Neuron,2003.39(6):889-909.
    [10]Samii A, Nutt JG, and Ransom BR, Parkinson's disease. Lancet,2004. 363(9423):1783-93.
    [11]Bekris LM, Mata IF, and Zabetian CP, The genetics of Parkinson disease. J Geriatr Psychiatry Neurol,2010.23(4):228-42.
    [12]Gasser T, Hardy J, and Mizuno Y, Milestones in PD genetics. Mov Disord, 2011.26(6):1042-8.
    [13]Shulman JM, De Jager PL, and Feany MB, Parkinson's disease:genetics and pathogenesis. Annu Rev Pathol,2011.6:193-222.
    [14]Schapira AH, Etiology of Parkinson's disease. Neurology,2006.66(10 Suppl 4):S10-23.
    [15]Schapira AH and Jenner P, Etiology and pathogenesis of Parkinson's disease. Mov Disord,2011.26(6):1049-55.
    [16]Wirdefeldt K, Adami HO, Cole P, et al, Epidemiology and etiology of Parkinson's disease:a review of the evidence. Eur J Epidemiol,2011.26 Suppl 1:S1-58.
    [17]Jomova K, Vondrakova D, Lawson M, et al, Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem,2010.345(1-2):91-104.
    [18]Polymeropoulos MH, Lavedan C, Leroy E, et al, Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 1997.276(5321):2045-7.
    [19]Kitada, Asakawa S, Hattori N, et al, Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature,1998.392(6676):605-8.
    [20]Gasser T, Miiller-Myhsok B, Wszolek ZK, et al, A susceptibility locus for Parkinson's disease maps to chro-mosome 2p13. Nat Genet,1998.18(3): 262-5.
    [21]Leroy E, Boyer R, Auburger G, et al, The ubiquitin pathway in Parkinson's disease. Nature,1998.395(6701):451-2.
    [22]Valente EM, Abou-Sleiman PM, Caputo V, et al, Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science,2004.304(5674): 1158-60.
    [23]Bonifati V, Rizzu P, van Baren MJ, et al, Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science,2003. 299(5604):256-9.
    [24]Paisan-Ruiz C, Jain S, Evans EW, et al, Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron,2004.44(4): 595-600.
    [25]Hicks AA, Petursson H, Jonsson T, et al, A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann Neurol,2002.52(5):549-55.
    [26]Lautier C, Goldwurm S, Durr A, et al, Mutations in the GIGYF2 (TNRC15) gene at the PARK 11 locus in familial Parkinson disease. Am J Hum Genet, 2008.82(4):822-33.
    [27]Pankratz N, Nichols WC, Uniacke SK, et al, Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum Mol Genet,2003.12(20):2599-608.
    [28]Strauss KM, Martins LM, Plun-Favreau H, et al, Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet,2005. 14(15):2099-111.
    [29]Morgan NV, Westaway SK, Morton JE, et al, PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet,2006.38(7):752-4.
    [30]Di Fonzo, Dekker MC, Montagna P, et al, FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology,2009. 72(3):240-5.
    [31]Satake W, Nakabayashi Y, Mizuta I, et al, Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet,2009.41(12):1303-7.
    [32]Zimprich A, Benet-Pages A, Struhal W, et al, A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet,2011.89(1):168-75.
    [33]Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C, et al, Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet,2011. 89(3):398-406.
    [34]Behrens MI, Bruggemann N, Chana P, et al, Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations. Mov Disord,2010. 25(12):1929-37.
    [35]Bruggemann N, Hagenah J, Reetz K, et al, Recessively inherited parkinsonism: effect of ATP13A2 mutations on the clinical and neuroimaging phenotype. Arch Neurol,2010.67(11):1357-63.
    [36]Schneider SA,Paisan-Ruiz C, Quinn NP, et al, ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord,2010. 25(8):979-84.
    [37]Eiberg H, Hansen L, Korbo L, et al, Novel mutation in ATP13A2 widens the spectrum of Kufor-Rakeb syndrome (PARK9). Clin Genet,2011.
    [38]Santoro L, Breedveld GJ, Manganelli F, et al, Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics,2011.12(1):33-9.
    [39]Crosiers D, Ceulemans B, Meeus B, et al, Juvenile dystonia-parkinsonism and dementia caused by a novel ATP13A2 frameshift mutation. Parkinsonism Relat Disord,2011.17(2):135-8.
    [40]Ning Y.P, Kanai K, Tomiyama H, et al, PARK9-linked parkinsonism in eastern Asia:mutation detection in ATP13A2 and clinical phenotype. Neurology, 2008.70(16 Pt2):1491-3.
    [41]Park JS, Mehta P, Cooper AA, et al, Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum Mutat,2011.32(8):956-64.
    [42]Di Fonzo A, Chien HF, Socal M, et al, ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology,2007. 68(19):1557-62.
    [43]Najim al-Din AS, Wriekat A, Mubaidin A, et al, Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia:Kufor-Rakeb syndrome. Acta Neurol Scand,1994.89(5):347-52.
    [44]Williams DR, Hadeed A, al-Din AS, et al, Kufor Rakeb disease:autosomal recessive, levodopa- responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord,2005.20(10):1264-71.
    [45]Gregory A and Hayflick SJ, Genetics of neurodegeneration with brain iron accumulation. Curr Neurol Neurosci Rep,2011.11(3):254-61.
    [46]McNeill A, Response to:ATP13A2 mutations (PARK9) cause neuro-degeneration with brain iron accumulation. Mov Disord,2010.25(13):2253.
    [47]Schultheis PJ, Hagen TT, OToole KK, et al, Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem Biophys Res Commun,2004.323(3):731-8.
    [48]Kuhlbrandt W, Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol,2004.5(4):282-95.
    [49]Gitler AD, Chesi A, Geddie ML, et al, Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet,2009.41(3):308-15.
    [50]Tan J, Zhang T, Jiang L, et al, Regulation of intracellular manganese homeostasis by Kufor-Rakeb syndrome-associated ATP13A2 protein. J Biol Chem,2011.286(34):29654-62.
    [51]Latchman DS, Transcription factors:an overview. Int J Biochem Cell Biol, 1997.29(12):1305-12.
    [52]Lee TI and Young RA, Transcription of eukaryotic protein-coding genes. Annu Rev Genet,2000.34:77-137.
    [53]Mitchell PJ and Tjian R, Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science,1989.245(4916):371-8.
    [54]Cai F, Chen B, Zhou W, et al, SP1 regulates a human SNAP-25 gene expression. J Neurochem,2008.105(2):512-23.
    [55]Christensen MA, Zhou W, Qing H, et al, Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Spl. Mol Cell Biol, 2004.24(2):865-74.
    [56]Boutillier AL, Monnier D, Lorang D, et al, Corticotropin-releasing hormone stimulates proopio-melanocortin transcription by cFos-dependent and-independent pathways:characterization of an API site in exon 1. Mol Endocrinol,1995.9(6):745-55.
    [57]Bergers G, Monnier D, Lorang D, et al, Transcriptional activation of the fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron. Mol Cell Biol,1995.15(7):3748-58.
    [58]Semenza GL, Nejfelt MK, Chi SM, et al, Hypoxia-inducible nuclear factors bind to an enhancer element located 3'to the human erythropoietin gene. Proc Natl Acad Sci U S A,1991.88(13):5680-4.
    [59]Semenza GL and Wang GL, A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol,1992.12(12):5447-54.
    [60]Wang GL and Semenza GL, General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A,1993. 90(9):4304-8.
    [61]Wang GL and Semenza GL, Purification and characterization of hypoxia-inducible factor 1. J Biol Chem,1995.270(3):1230-7.
    [62]Wang GL, Jiang BH, Rue EA, et al, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A,1995.92(12):5510-4.
    [63]Srinivas V, Zhang LP, Zhu XH, et al, Characterization of an oxygen/redox-dependent degrada-tion domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. Biochem Biophys Res Commun,1999. 260(2):557-61.
    [64]Masson N, Willam C, Maxwell PH, et. al, Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J,2001.20(18):5197-206.
    [65]Kallio PJ, Pongratz I, Gradin K, et al, Activation of hypoxia-inducible factor 1 alpha:posttransc-riptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc Natl Acad Sci U S A,1997. 94(11):5667-72.
    [66]Salceda S and Caro J, Hypoxia-inducible factor 1 alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem,1997.272(36):22642-7.
    [67]Semenza GL, Hypoxia-inducible factor 1:master regulator of 02 homeos-tasis. Curr Opin Genet Dev,1998.8(5):588-94.
    [68]Huang LE, Arany Z, Livingston DM, et al, Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem,1996.271(50):32253-9.
    [69]Lando D, Peet DJ, Whelan DA, et al, Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science,2002.295(5556):858-61.
    [70]Manalo DJ, Rowan A, Lavoie T, et al, Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood,2005.105(2):659-69.
    [71]Rolfs A, Kvietikova I, Gassmann M, et al, Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J Biol Chem,1997. 272(32):20055-62.
    [72]Bianchi L, Tacchini L, and Cairo G, HIF-1-mediated activation of transferrin receptor gene transcription by iron chelation. Nucleic Acids Res,1999.27(21): 4223-7.
    [73]Lok CN and Ponka P, Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem,1999.274(34):24147-52.
    [74]Mukhopadhyay CK, Mazumder B, and Fox PL, Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem,2000.275(28):21048-54.
    [75]Forsythe JA, Kvietikova I, Gassmann M, et al, Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol,1996.16(9):4604-13.
    [76]Levy AP, Levy NS, Wegner S, et al, Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem,1995. 270(22):13333-40.
    [77]LeCouter J, Kowalski J, Foster J, et al, Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature,2001.412(6850): 877-84.
    [78]Grosfeld A, Andre J, Hauguel-De Mouzon S, et al, Hypoxia-inducible factor 1 transactivates the human leptin gene promoter. J Biol Chem,2002.277(45): 42953-7.
    [79]Gerber HP, Condorelli F, Park J, et al, Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem,1997.272(38): 23659-67.
    [80]Ebert BL, Firth JD, and Ratcliffe PJ, Hypoxia and mitochondrial inhibi-tors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem,1995.270(49):29083-9.
    [81]Chen C, Pore N, Behrooz A, et al, Regulation of glutl mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem,2001.276(12):9519-25.
    [82]Takahashi Y, Takahashi S, Shiga Y, et al, Hypoxic induction of prolyl 4-hydroxylase alpha (I) in cultured cells. J Biol Chem,2000.275(19): 14139-46.
    [83]Semenza GL, Roth PH, Fang HM, et al, Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem, 1994.269(38):23757-63.
    [84]Graven KK, Yu Q, Pan D, et al, Identification of an oxygen responsive enhancer element in the glyceraldehyde-3-phosphate dehydrogenase gene. Biochim Biophys Acta,1999.1447(2-3):208-18.
    [85]Wykoff CC, Beasley N, Watson PH, et al, Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res,2000.60(24):7075-83.
    [86]Wykoff CC, Beasley N, Watson PH, et al, Expression of the hypoxia-inducible and tumor-associated carbonic anhydrases in ductal carcinoma in situ of the breast. Am J Pathol,2001.158(3):1011-9.
    [87]Feldser D, Agani F, Iyer NV, et al, Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2. Cancer Res, 1999.59(16):3915-8.
    [88]Krishnamachary B, Berg-Dixon S, Kelly B, et al, Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res,2003. 63(5):1138-43.
    [89]Bruick RK, Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A,2000.97(16):9082-7.
    [90]Chen N, Chen X, Huang R,et al, BCL-xL is a target gene regulated by hypoxia-inducible factor-la. J Biol Chem,2009.284(15):10004-12.
    [91]Beyer S, Kristensen MM, Jensen KS, et al, The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem,2008.283(52):36542-52.
    [92]Li Y, Lim S, Hoffman D, et al,HUMMR, a hypoxia- and HIF-1 alpha-inducible protein, alters mitochondrial distribution and transport. J Cell Biol,2009. 185(6):1065-81.
    [93]Chen WY and Chang MS, IL-20 is regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke. J Immunol,2009.182(8): 5003-12.
    [94]Millhorn DE, Raymond R, Conforti L, et al, Regulation of gene expression for tyrosine hydroxylase in oxygen sensitive cells by hypoxia. Kidney Int,1997. 51(2):527-35.
    [95]Keyser RJ, van der Merwe L, Venter M, et al, Identification of a novel functional deletion variant in the 5'-UTR of the DJ-1 gene. BMC Med Genet, 2009.10:105.
    [96]Zecca L, Youdim MB, Riederer P, et al, Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci,2004.5(11):863-73.
    [97]Lin MT and Beal MF, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature,2006.443(7113):787-95.
    [98]Keating DJ, Mitochondrial dysfunction, oxidative stress, regulation of exo-cytosis and their relevance to neurodegenerative diseases. J Neurochem,2008. 104(2):298-305.
    [99]Trushina E and McMurray CT,Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience,2007.145(4):1233-48.
    [100]Zipp F and Aktas O, The brain as a target of inflammation:common path-ways link inflammatory and neurodegenerative diseases. Trends Neurosci, 2006.29(9):518-27.
    [101]Sun X, He G, Qing H, et al, Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A,2006.103(49):18727-32.
    [102]Wang L, Zis O, Ma G, et al, Upregulation of macrophage migration inhibitory factor gene expression in stroke. Stroke,2009.40(3):973-6.
    [103]Nelson JD, Denisenko O, and Bomsztyk K, Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc,2006. 1(1):179-85.
    [104]Liu S, Zhang S, Bromley-Brits K, et al, Transcriptional Regulation of TMP21 by NFAT. Mol Neurode gener,2011.6:21.
    [105]Choi HK, Won LA, Kontur PJ, et al, Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res,1991. 552(1):67-76.
    [106]Park B, Oh CK, Choi WS, et al, Microarray expression profiling in 6-hydroxydopamine-induced dopaminergic neuronal cell death. J Neural Transm,2011.118(11):1585-98.
    [107]El Ayadi A and Zigmond MJ, Low Concentrations of Methamphetamine Can Protect Dopaminergic Cells against a Larger Oxidative Stress Injury: Mechanistic Study. PLoS One,2011.6(10):24722.
    [108]Lou H, Montoya SE, Alerte TN, et al, Serine 129 phosphorylation reduces the ability of alpha-synuclein to regulate tyrosine hydroxylase and protein phosphatase 2A in vitro and in vivo. J Biol Chem,2010.285(23):17648-61.
    [109]Chung CY, Licznerski P, Alavian KN, et al, The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons. Brain,2010.133(Pt 7):2022-31.
    [110]Gidday JM, Fitzgibbons JC, Shah AR, et al, Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci Lett, 1994.168(1-2):221-4.
    [111]Vannucci RC, Towfighi J, and Vannucci SJ, Hypoxic preconditioning and hypoxic-ischemic brain damage in the immature rat:pathologic and metabolic correlates. J Neurochem,1998.71(3):1215-20.
    [112]Bernaudin M, Nedelec AS, Divoux D, et al, Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab,2002.22(4):393-403.
    [113]Miller BA, Perez RS, Shah AR, et al, Cerebral protection by hypoxic preconditioning in a murine model of focal ischemia-reperfusion. Neuroreport, 2001.12(8):1663-9.
    [114]Freeman RS and Barone MC, Targeting hypoxia-inducible factor (HIF) as a therapeutic strategy for CNS disorders. Curr Drug Targets CNS Neurol Disord, 2005.4(1):85-92.
    [1]de Lau LM and Breteler MM, Epidemiology of Parkinson's disease. Lancet Neurol,2006.5(6):525-35.
    [2]Tanner CM and Goldman SM, Epidemiology of Parkinson's disease. Neurol Clin,1996.14(2):317-35.
    [3]Zhang ZX, Roman GC, Hong Z, et al, Parkinson's disease in China:prevalence in Beijing, Xian, and Shanghai. Lancet,2005.365(9459):595-7.
    [4]Huse DM, Schulman K, Orsini L, et al, Burden of illness in Parkinson's disease. Mov Disord,2005.20(11):1449-54.
    [5]Halliday G, Hely M, Reid W, et al, The progression of pathology in longitudinally followed patients with Parkinson's disease. Acta Neuropathol, 2008.115(4):409-15.
    [6]Dauer W and Przedborski S, Parkinson's disease:mechanisms and models. Neuron,2003.39(6):889-909.
    [7]Samii A, Nutt JG, and Ransom BR, Parkinson's disease. Lancet,2004. 363(9423):1783-93.
    [8]Polymeropoulos MH, Lavedan C, Leroy E, et al, Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 1997.276(5321):2045-7.
    [9]Bekris LM, Mata IF, and Zabetian CP, The genetics of Parkinson disease. J Geriatr Psychiatry Neurol,2010.23(4):228-42.
    [10]Gasser T, Hardy J, and Mizuno Y, Milestones in PD genetics. Mov Disord, 2011.26(6):1042-8.
    [11]Shulman JM, De Jager PL, and Feany MB, Parkinson's disease:genetics and pathogenesis. Annu Rev Pathol,2011.6:193-222.
    [12]Schapira AH, Etiology of Parkinson's disease. Neurology,2006.66(10 Suppl 4):S10-23.
    [13]Schapira AH and Jenner P, Etiology and pathogenesis of Parkinson's disease. Mov Disord,2011.26(6):1049-55.
    [14]Wirdefeldt K, Adami HO, Cole P, et al, Epidemiology and etiology of Parkinson's disease:a review of the evidence. Eur J Epidemiol,2011.26 Suppl 1:S1-58.
    [15]Jomova K, Vondrakova D, Lawson M, et al, Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem,2010.345(1-2):91-104.
    [16]Kitada, Asakawa S, Hattori N, et al, Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature,1998.392(6676):605-8.
    [17]Gasser T, Miiller-Myhsok B, Wszolek ZK, et al, A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nat Genet,1998.18(3):262-5.
    [18]Leroy E, Boyer R, Auburger G, et al, The ubiquitin pathway in Parkinson's disease. Nature,1998.395(6701):451-2.
    [19]Valente EM, Abou-Sleiman PM, Caputo V, et al, Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science,2004.304(5674): 1158-60.
    [20]Bonifati V, Rizzu P, van Baren MJ, et al, Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science,2003.299(5604): 256-9.
    [21]Paisan-Ruiz C, Jain S, Evans EW, et al, Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron,2004.44(4): 595-600.
    [22]Ramirez A, Heimbach A, Grundemann J, et al, Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet,2006.38(10):1184-91.
    [23]Hicks AA, Petursson H, Jonsson T, et al, A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann Neurol,2002.52(5):549-55.
    [24]Lautier C, Goldwurm S, Durr A, et al, Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. Am J Hum Genet, 2008.82(4):822-33.
    [25]Pankratz N, Nichols WC, Uniacke SK, et al, Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum Mol Genet,2003.12(20):2599-608.
    [26]Strauss KM, Martins LM, Plun-Favreau H, et al, Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet,2005. 14(15):2099-111.
    [27]Morgan NV, Westaway SK, Morton JE, et al, PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet,2006.38(7):752-4.
    [28]Di Fonzo, Dekker MC, Montagna P, et al, FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology,2009. 72(3):240-5.
    [29]Satake W, Nakabayashi Y, Mizuta I, et al, Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet,2009.41 (12):1303-7.
    [30]Zimprich A, Benet-Pages A, Struhal W, et al, A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet,2011.89(1):168-75.
    [31]Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C, et al, Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet,2011. 89(3):398-406.
    [32]Hampshire DJ, Roberts E, Crow Y, et al, Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to Ip36. J Med Genet,2001.38(10):680-2.
    [33]Ning Y.P, Kanai K, Tomiyama H, et al, PARK9-linked parkinsonism in eastern Asia:mutation detection in ATP13A2 and clinical phenotype. Neurology,2008. 70(16 Pt 2):1491-3.
    [34]Bruggemann N, Hagenah J, Reetz K, et al, Recessively inherited parkinsonism: effect of ATP13A2 mutations on the clinical and neuroimaging phenotype. Arch Neurol,2010.67(11):1357-63.
    [35]Schneider SA,Paisan-Ruiz C, Quinn NP, et al, ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord,2010. 25(8):979-84.
    [36]Crosiers D, Ceulemans B, Meeus B, et al, Juvenile dystonia-parkinsonism and dementia caused by a novel ATP13A2 frameshift mutation. Parkinsonism Relat Disord,2011.17(2):135-8.
    [37]Eiberg H, Hansen L, Korbo L,et al, Novel mutation in ATP13A2 widens the spectrum of Kufor-Rakeb syndrome (PARK9). Clin Genet,2011.
    [38]Park JS, Mehta P, Cooper AA, et al, Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum Mutat,2011.32(8):956-64.
    [39]Santoro L, Breedveld GJ, Manganelli F, et al, Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics,2011.12(1):33-9.
    [40]Fong CY, Rolfs A, Schwarzbraun T, et al, Juvenile parkinsonism associated with heterozygous frameshift ATP13A2 gene mutation. Eur J Paediatr Neurol, 2011.15(3):271-5.
    [41]Chen CM, Lin CH, Juan HF, et al, ATP13A2 variability in Taiwanese Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet,2011.156B(6): 720-9.
    [42]Djarmati A, Hagenah J, Reetz K, et al, ATP13A2 variants in early-onset Parkinson's disease patients and controls. Mov Disord,2009.24(14):104-11.
    [43]Dos Santos AV, Pestana CP, Diniz KR, et al, Mutational analysis of GIGYF2, ATP13A2 and GBA genes in Brazilian patients with early-onset Parkinson's disease. Neurosci Lett,2010.485(2):121-4.
    [44]Di Fonzo A, Chien HF, Socal M, et al, ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology,2007. 68(19):1557-62.
    [45]Najim al-Din AS, Wriekat A, Mubaidin A, et al, Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia:Kufor-Rakeb syndrome. Acta Neurol Scand,1994.89(5):347-52.
    [46]Williams DR, Hadeed A, al-Din AS, et al, Kufor Rakeb disease:autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord,2005.20(10):1264-71.
    [47]Behrens MI, Bruggemann N, Chana P, et al, Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations. Mov Disord,2010. 25(12):1929-37.
    [48]Gregory A and Hayflick SJ, Genetics of neurodegeneration with brain iron accumulation. Curr Neurol Neurosci Rep,2011.11(3):254-61.
    [49]McNeill A, Response to:ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord,2010.25(13): 2253.
    [50]Chien HF, Bonifati V, and Barbosa ER, ATP 13A2-related neurodegeneration (PARK9) without evidence of brain iron accumulation. Mov Disord,2011. 26(7):1364-5.
    [51]Schultheis PJ, Hagen TT, O'Toole KK, et al, Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem Biophys Res Commun,2004.323(3):731-8.
    [52]Kuhlbrandt W, Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol,2004.5(4):282-95.
    [53]Gitler AD, Chesi A, Geddie ML, et al, Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet,2009.41(3):308-15.
    [54]Tan J, Zhang T, Jiang L, et al, Regulation of intracellular manganese homeostasis by Kufor-Rakeb syndrome-associated ATP13A2 protein. J Biol Chem,2011.286(34):29654-62.
    [55]Chartier-Harlin MC, Kachergus J, Roumier C, et al, Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet,2004. 364(9440):1167-9.
    [56]Ibanez P, Bonnet AM, Debarges B, et al, Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet, 2004.364(9440):1169-71.
    [57]Spillantini MG, Schmidt ML, Lee VM, et al, Alpha-synuclein in Lewy bodies. Nature,1997.388(6645):839-40.
    [58]Masliah E, Rockenstein E, Veinbergs I, et al, Dopaminergic loss and inclusion body formation in alpha-synuclein mice:implications for neurodegenerative disorders. Science,2000.287(5456):1265-9.
    [59]Lee JW, Manganese intoxication. Arch Neurol,2000.57(4):597-9.
    [60]Mena I, Marin O, Fuenzalida S, Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology,1967.17(2):128-36.
    [61]Cook DG, Fahn S, and Brait KA, Chronic manganese intoxication. Arch Neurol,1974.30(1):59-64.
    [62]Yamada M, Ohno S, Okayasu I, et al, Chronic manganese poisoning:a neuropathological study with determination of manganese distribution in the brain. Acta Neuropathol,1986.70(3-4):273-8.
    [63]Huang CC, Parkinsonism induced by chronic manganese intoxication--an experience in Taiwan. Chang Gung Med J,2007.30(5):385-95.
    [64]Kessler KR, Wunderlich G, Hefter H, et al, Secondary progressive chronic manganism associated with markedly decreased striatal D2 receptor density. Mov Disord,2003.18(2):217-8.
    [65]Tamm C, Sabri F, and Ceccatelli S, Mitochondrial-mediated apoptosis in neural stem cells exposed to manganese. Toxicol Sci,2008.101(2):310-20.
    [66]Prabhakaran K, Chapman GD, and Gunasekar PG, BNIP3 up-regulation and mitochondrial dysfunction in manganese-induced neurotoxicity. Neurotoxicology,2009.30(3):414-22.
    [67]Ugolino J, Fang S, Kubisch C, et al, Mutant Atpl3a2 proteins involved in parkinsonism are degraded by ER-associated degradation and sensitize cells to ER-stress induced cell death. Hum Mol Genet,2011.20(18):3565-77.
    [68]Bagola K, Mehnert M, Jarosch E, et al, Protein dislocation from the ER. Biochim Biophys Acta,2011.1808(3):925-36.
    [69]Lindholm D, Wootz H, and Korhonen L, ER stress and neurodegenerative diseases. Cell Death Differ,2006.13(3):385-92.
    [70]Matus S, Glimcher LH, and Hetz C, Protein folding stress in neurodegenerative diseases:a glimpse into the ER. Curr Opin Cell Biol,2011. 23(2):239-52.
    [71]Park JS, Mehta P, Cooper AA, et al, Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset Parkinsonism. Hum Mutat,2011.
    [72]Chien HF, Bonifati V, and Barbosa ER, ATP13A2-related neurodegeneration (PARK9) without evidence of brain iron accumulation. Mov Disord,2011.