聚醚砜及其共混膜的成形结构和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对聚醚砜(PES)制膜体系的相分离行为和对PES/二甲基乙酰胺(DMAc)体系流变性能研究的基础上,本文以PES为主要膜材料制备了平板膜和中空纤维膜,并通过共混,制备了酚酞基聚醚砜(PES—C)/PES平板膜和中空纤维膜,提出了PES/PES-C共混膜表层成孔机理。
     一、研究了聚醚砜/溶剂/非溶剂体系相分离行为
     结合线性浊点关系(LCP关系),根据浊点测定实验,通过三元相图研究了PES制膜体系的相分离行为。研究结果表明:LCP关系可以用于描述PES/DMAc/水和PES/DMAc/1,2丙二醇三元体系在相分离时的浊点组成,并可以依据LCP关系外推计算二个体系的双节线;对于PES/(DMAc+1,2丙二醇)/水四元体系,发现水和1,2丙二醇作为一个组分处理时,体系仍然符合LCP关系;水和1,2丙二醇对PES/DMAc溶液在浊点组成上具有加和性,可以通过PES/DMAc/水及PES/DMAc/1,2丙二醇体系的LCP关系计算PES/(DMAc+1,2丙二醇)/水体系的浊点组成;根据由LCP关系计算得到的PES/DMAc/(水+DMAc)和PES/DMAc/(1,2丙二醇+DMAc)体系的双节线发现,当凝固浴中DMAc加入量在50%以上时,体系的双节线偏离DMAc/PES轴的速度明显加快;随着非溶剂凝固能力的下降,加入DMAc对体系双节线在相图中位置的影响也越来越大。
     二、研究了PES/DMAc溶液的流变性能
     在所研究溶液的浓度范围内(18%~28%),PES溶液属于切力变稀流体,随着PES浓度的增加,非牛顿指数降低,零切粘度上升。给出了零切粘度与浓度的关系式。讨论了温度对流变性的影响,在所研究的温度范围内(20℃~100℃),随着溶液温度的升高,非牛顿指数上升,零切粘度降低。由零切粘度与铸膜液温度之间的关系,根据Arrhenius方程计算出了溶液的粘流活化能。
     三、研究了PES平板膜和中空纤维膜的成形、结构和性能及其相互关系
     以PES为主要材料,以1,2丙二醇为制膜液的低分子添加剂,聚乙二醇为制膜液的大分子添加剂,制备平板膜以研究制膜液浓度、添加剂、预蒸发时间、凝固浴组成等制膜工艺条件对膜的结构与性能的影响。纺制中空纤维膜以研究内凝固浴组成、内凝固浴压力和外凝固浴中溶剂浓度等制膜条件对膜的结构与性能的影响。
     实验结果表明:随着铸膜液浓度的上升,PES平板膜的水通量、孔隙率和平均孔径总体呈下降的趋势;而膜对牛血清白蛋白的截留率则上升。随着低分子添加剂1,2-丙二醇添加量的增加,PES平板膜的水通量和平均孔径呈上升趋势;而孔隙率没有明显的变化;随着1,2-丙二醇添加量的增加,膜对的牛血清白蛋白的截留率先上升,然后再下降。大分子添加剂PEG作为致孔剂可以改变膜孔的大小、数量,进而改变膜的性能。随着PEG添加量的上升,PES平板膜的水通量、孔隙率和平均孔径均呈上升趋势。截留率则随着添加量的增加,先增加,当PEG添加量较多(>3%)时,截留率随PEG添加量增加而下降。随着预蒸发时间的延长,PES平板膜的水通量略有上升,孔隙率变化不明显,平均孔径略有增加。截留率先是略有降低而后呈升高的趋势。随着凝固浴温度的上升,PES平板膜的水通量、平均孔径和孔隙率都呈上升的趋势,截留率下降。随凝固浴中DMAc含量的增加,PES平板膜的水通量、孔隙率和平均孔径下降,截留率上升。随着内凝固浴压力的提高,PES中空纤维膜的内、外径增加,壁厚减小,水通量、膜孔隙率和平均孔径增大,中空纤维膜对牛血清蛋白的截留率则呈逐渐下降的趋势。随着外凝固浴浓度的增大,纤维的内外径和厚度基本不变,而PES中空纤维膜的外径与内径之比也没有规律性的变化;膜的水通量、孔隙率和平均孔径先下降后增大,在外凝固浴浓度为20%出现一个最小值,截留率则先增大后下降,在外凝固浴浓度为20%出现一个最大值。
     四、研究了聚醚砜/酚酞基聚醚砜相容性及共混溶液的流变性能
     采用稀溶液粘度法和相差显微镜等手段探讨了聚醚砜(PES)与酚酞基聚醚砜(PES-C)的相容性,讨论了聚醚砜/酚酞基聚醚砜共混浓溶液的流变性。
     实验结果表明:PES/PES-C是一个在任意配比下都具有动力学稳定性的体系,在其共混比为1左右时,PES/PES-C体系又具有热力学不稳定性。在共混比为1左右时,PES/PES-C体系既可以获得澄清透明的铸膜液又能在成膜过程中产生相分离。
     共混溶液的非牛顿指数均小于1,并随着PES与PES-C比例的变化而变化。随着PES与PES-C比例的接近,两者相容性的变化导致非牛顿指数不断增加,在PES/PES-C=1:1时出现了最大值。共混溶液的零切粘度随PES—C含量的增加,溶液的零切粘度逐渐增大。在共混比例为1:1时,随溶液浓度的增加,非牛顿指数逐渐减小,更加偏离牛顿流体。在共混比例为1:1时,共混溶液的零切粘度与总固浓度之间具有较高的浓度依赖性。共混溶液的非牛顿指数随温度的上升而上升并逐渐趋近于1。根据Arrhenius方程计算出了共混比为1:1时,不同浓度的粘流活化能,由结果可知随溶液浓度的增加,E_η的值增加,且共混比为1:1共混溶液粘流活化能的值介于PES溶液和PES-C溶液的粘流活化能值之间。
     五、研究了PES/PES-C共混膜成形、结构和性能及其影响因素
     将PES与PES-C共混制备平板膜和中空纤维膜,研究了PES与PES-C的共混比及其它因素对共混膜结构和性能的影响,提出了PES/PES-C共混膜表层成孔机理。
     实验结果表明:与单组分聚合物膜的规律相似,随着铸膜液中聚合物总浓度的上升,PES/PES-C共混膜的水通量、孔隙率和平均孔径呈下降的趋势;而膜对牛血清白蛋白的截留率则呈现上升的趋势。无论平板膜还是中空纤维膜,即随着铸膜液中PES与PES-C共混比接近于1,膜水通量、孔隙率和平均孔径呈现上升的趋势而截流率下降。随着铸膜液温度的上升,水通量、孔隙率和平均孔径呈现下降的趋势,而膜对牛血清白蛋白截流率逐渐上升。
     根据实验现象,提出了PES/PES-C共混膜表层成孔机理,可应用此膜表层孔的形成机理,共混时选择不同比例的PES/PES-C及不同的铸膜液温度,以此调节相容性,控制膜的孔径和孔隙率,制备不同性能和用途的膜。
In this work, the phase separation behavior and the rheological properties of thecasting solution of Polyethersulfone (PES) prepared with dimethyI lacetamide(DMAc) were studied, and PES flat-sheet membranes and hollow fiber membraneswere prepared. Moreover PES and Phenolphthalein polyethersulfone(PES-C) wereblended, and PES/ PES-C blend membranes including flat-sheet membranes andhollow fiber membranes were prepared, The mechanism about pores forming on theskin layer of PES/PES-C blend membranes is put forward.
     The research is as follows:
     1. The phase separation behavior of PES/DMAc/nonsolvent systems wasinvestigated.
     The phase separation behavior of PES dope was studied according to the linerizedcloud point (LCP) correlation. It was found that the phase separation behavior of thetwo systems, i.e., PES/DMAc/H_2O and PES/DMAc/C_3H_6(OH)_2, both agree with theLCP correlation. The binodal lines of the two systems were calculated according tothe LCP correlation. The binodal lines of the PES/DMAc/(H_2O+DMAc) andPES/DMAc/(C_3H_6(OH)_2+DMAc) systems were also calculated according to the LCPcorrelation. It was found that the bimodal lines of the systems shifted away the PES/DMAc axis with increasing the content of DMAc into the nonsolvent/DMAc mixture.Moreover the shift of the binodal line is more remarkable when the coagulationability of the nonsolvent is weaker. Furthermore, the phase separation behavior ofPES/DMAc/(H_2O+C_3H_6(OH)_2) system also agrees with the LCP correlation, and theeffects of H_2O and C_3H_6(OH)_2 on the composing of cloud point are additive.
     2. The rheological properties of PES/DMAc solutions were investigated.
     The solution behaves shear-shinning characteristics within the concentration studiedfrom 18% to 28%. Non-Newtonian index decreases and the zero shear viscosityincreases with increasing the concentration of PES. Dependence of zero shear viscosity on concentration of PES is formulated. Non-Newtonian index increases andthe zero shear viscosity decreases with solution temperature rising from 20℃to 100℃. The viscous flow activation energy is calculated after Arrhenius equation.
     3. The structure and properties of PES flat-sheet membranes and hollow fibermembranes were investigated.
     The PES membranes prepared from the casting solution containing low molecularweight additive such as propylene glycol and high molecular weight additive such aspolyethylene glycol (PEG). The effects of the concentration of casting solution,additives, pre-vaporizing time, the composing of coagulation bath on the structureand properties of PES flat-sheet membranes and hollow- fiber membranes werestudied. Moreover the effects of the composing and pressure of coagulation bathinside hollow fiber membranes and the concentration of coagulation bath outerhollow fiber membranes on the structure and properties of PES hollow fibermembrane were also studied.
     For PES flat-sheet membranes, the pure water flux, porosity and average pore sizesdecrease, and retention to bovine serum albumin (BSA) increases with increasing theconcentration of PES. The pure water flux and average pore sizes increases, porositychanges little, and the retention to BSA reaches the maximum with increasing theconcentration of low molecular weight additive, propylene glycol. The sizes andamount of pores on the membranes are changed when high molecular weight additivesuch as PEG is added in the casting solution so that the properties of membrane arealso changed. The pure water flux, porosity and average pore sizes increase and theretention to BSA reaches the maximum when the concentration of PEG is 3% withincreasing the concentration of PEG. The pure water flux and average pore sizesincrease slightly and porosity changes little, and the retention to BSA reaches themaximum with extending pre-vaporizing time. The pure water flux, porosity andaverage pore sizes increase and the retention to BSA decreases with increasing theconcentration of DMAc in the casing solution.
     For PES hollow fiber membranes, the inner diameter and outer diameter of hollowfiber membranes increase, the thickness of wall decreases, the pure water flux,porosity and average pore sizes increase and the retention to BSA decreases withincreasing the pressure of coagulation bath inside hollow fiber membranes. The innerdiameter, outer diameter and thickness of wall of hollow fiber membranes changelittle, the pure water flux, porosity and average pore sizes reaches the minimum andthe retention to BSA reaches the maximum when the concentration of coagulationbath outer hollow fiber membranes is 20% with increasing the concentration ofcoagulation bath outer hollow fiber membranes.
     4. The compatibility and rheological properties of PES/PES-C blend solutions wereinvestigated.
     The compatibility of PES/PES-C blend solutions was investigated by dilute solutionviscometry and phase difference microscope method. The results show that PES/PES-C blend system is miscible at any blend ratios. But the system is instable whenblend ratio of PES and PES-C is 1.
     The rheological properties of PES /PES-C blend solutions were investigated. Theblend solution behaves shear-shinning characteristics. Non-Newtonian increases andreaches the maximum when the blend ratio of PES and PES-C is 1. The zero shearviscosity of blend solutions increases with increasing the concentration of PES-C.Non-Newtonian index decreases and the zero shear viscosity increases when blendratio is 1 with increasing the concentration of blend solutions, and the dependence ofzero shear viscosity on concentration is formulate& The viscous flow activationenergies at different concentrations of blend solutions are calculated after Arrheniusequation.
     5. The structure and properties of PES/PES-C blend membranes were investigated.PES and PES-C were blended to prepare PES/ PES-C blend membranes includingflat-sheet membranes and hollow fiber membranes. The effects of the blend ration ofPES and PES-C and other factors on the structure and properties of PES/PES-C blend membranes are studied. The mechanism about pores forming on the skin layer ofPES/PES-C blend membranes is put forward.
     For PES/PES-C blend membranes including tim-sheet membranes and hollow fibermembranes, the pure water flux, porosity and average pore sizes decrease and theretention to BSA increases with increasing the concentration of blend solution. Thepure water flux, porosity and average pore sizes increases and the retention to BSAdecreases with increasing the blend ratio of PES and PES-C until it is close to 1. Thepure water flux, porosity and average pore sizes decreases and the retention to BSAincreases with the temperature of blend solution rising.
     The mechanism about pores forming on the skin layer of PES/PES-C blendmembranes is put forward after the experimental data. The blend ratio of PES andPES-C and temperature of the casting solution after the mechanism could be changedto adjust compatibility of blend solution, the pore sizes and porosity of membranes sothat the membranes with different properties and applications are prepared.
     Zhu Sijun (Material Science and Technology)
     Supervised by Prof. Wang Qingrui
引文
1.刘茉娥等.膜分离技术[M].北京:中国轻工业出版社,1998:8.
    2.王曙中,王庆瑞,刘兆峰.高科技纤维概论[M].上海:中国纺织大学出版社,1999:77~85
    3.时均,袁权,高从阶.膜技术手册[M].北京:化学工业出版社,2001:2.
    4.安树林.膜科学技术实用教程[M].北京:化学工业出版社,2005:7.
    5. W. Jude, W. Mcrae[P]. U. S: 2636851, 1953
    6. S. Loeb, S. Sourirajan[P]. U. S: 3133132, 1964
    7. Beerlage M. A. M. , Polyimide ultrafiltration membranes for nonaqueous systems, [D]. University of Twente, NL(1994).
    8.高以烜,叶凌碧.膜分离技术基础[M].北京:科学出版社,1989,143~144.
    9.R.E.凯斯廷.合成聚合物膜[M].北京:化学工业出版社,1985,277~292.
    10. R. M. Boom, et al. Microstructure in phase inversion membranes, Part 2: The role of a polymeric additive[J]. Journal of Membrane Science, 1992(73): 277-292
    11. C. Stropnik, et al. Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion[J]. Journal of Applied Polymer Science, 1996, 61(10): 1821~1830
    12.王曙中,王庆瑞,刘兆峰.高科技纤维概论[M].上海:中国纺织大学出版社,1999:140~141
    13. B. F. Barton, et al. Observations on the dynamics of nonsolvent-induced phase inversion[J]. Journal of Polymer Science Part B: Polymer Physics, 1997, 35(4): 569~585
    14.金关泰.高分子化学理论及应用进展[M].北京:中国石化出版社,1995:344~345
    15. H. Matsuyama, et al. Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. I. Phase diagram and mass transfer process. & Ⅱ. Membrane morphology[J]. Journal of Applicd Polymer Sciencc, 1999 (74): 159~178
    16. Tai-Horng Young et al. Roles of bimolccular interaction and relative diffusion rate in membrane structure control[J]. Journal of Membrane Science, 1993 (83): 153~166
    17.何春菊.纤维素及其与聚丙烯腈共混溶液和膜性能的研究[D].上海:东华大学,1999.
    18.周晓沧,肖建宇.新合成纤维材料及其制造[M].北京:中国纺织出版社,1998:4.
    19.丁孟贤.高性能聚合物的进展[J].化学进展,1991,5
    20.黄如注.日本聚醚砜树脂的生产与应用[J].化工新型材料,1994,8
    21.赵玉琴,高以恒.聚醚砜超滤膜及其热稳定性[J].水处理技术,1990,16(3)
    22.黄锐,张忠义,王文.聚醚砜的溶解特性[J].工程塑料应用,1990,3
    23.鲁学仁,高从揩.聚芳醚酮聚芳醚砜和聚醚砜的研究[J].水处理技术,1991,17(2)
    24.吴开芬,李书申,韩式荆.聚醚砜超滤膜的研制[J].环境化学,1993,12(6)
    25. C. Hall. Polymer materials: An Introduction for Technologists and Scientists. 2nd ed. [M]. MacMillan Education. Basingstokc, 1989: 42.
    26. D. R. Dreger. The polysulfones[J]. Machine Design, 1978 (50): 114.
    27.田嘉军,郑华,王定国.聚醚砜中空纤维透析膜血浆分离器的血液相容性评价[J].北京生物医学工程,2001,9(20).
    28.奚延斐等.用于评价医用高分子材料血液相容的的体外动态血栓形成试验方法研究[J].中国生物医学工程学报,1987,6(4)
    29. H. Wood, J. Wang and S, Sourirajan. The effect of poly ether sulfonc concentration on flat and hollow fiber membrane performance[J]. Separation Science Technology, 1993, 28(15. 16): 2297
    30. Rong Rim Hwang, Seong-Hoe Koo, Jeong-Hoon Kim, Akon Higuchi and Tae-Moon Tak. Effect of casting solution composition on performance of poly(cther stlfone)membrane[J]. Journal of Applied Polymer Science. 1996 (60): 9
    31. Jeong-Hoon Kim, Kew-Ho Lee. Effect of PEG additive on membrane formation by phase inversion[J]. Journal of Membrane Science, 1998(138): 153~163
    32.陈忠祥,周美娟,肖通虎 影响聚醚砜微孔滤膜孔径的因素[J].宁波大学学报2000,13(2):35~38
    33. Ki-Jun Baik. Je Young Kim, Hwan Kwang Lee, Sung Chul Kim. Liquid-liquid phase separation in polysulfone/polvethersulfone/N-mcthy1-2-pvrrolidone/raterquaternary systcm[J]. Journal of Applied Polymer Ncience, 1999, 74(9): 2113~2
    34. C. Barth. M. C. Goncalyes. A. T. N. Pires. Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance[J]. Journal of Membrane Science, 169(2000), 287~299
    35. J. Won. H. J. Lee and Y. Sookang. The effect of dope solution characteristics on the membrane morphology and gas transport properties: 2. P ES/γ-βL system[J]. Journal of Membrane Science, 2000, 176(1): 11~19
    36. Y. Lin, GH. Koops, H. Strathmann. Characterization of morphology controlled polyethersulfone hollow fiber membrane by the addition of polyethylene glycol to the dope and bore liquid solution [J]. Journal of Membrane Science, 2003, 223(2): 187~199
    37. H. Zhane, Wavne W. Y. Lau, Production of polyethersulfone hollow fiber ultrafiltration membranes Ⅱ Effects of fiber extrusion pressure and PVP conccntration [J]. Separation Science Technology, 1996, 31(3): 327~348
    38. Kim J H, Lee K H. Effect of PEG additive on membrane formation by. phase inversion, [J]. Journal of Membrane Science, 1998, 138(2): 153~163
    39.王湛.膜分离技术基础[M].北京:化学工业出版社.2000.
    40. Xiangqun Miao, S. Sourirajan. H. Zhang. Wayne W. Y. Lau, Production of polyethersulfone hollow fiber ultrafihration membranes. I. Effects of water(internal coagulant) flow rate(WFR) and length of air gap(LAG) [J]. Separation science and technology. 1996, 31(2), 141~172
    41. JEONG-HOON KIM, YOU-IN PARK, JONGGEON JEGAL. The effect of spinning conditions on the structure formation and dimension of the hollow-fiber membranes and their relationship with the permeability in dry-wet spinning technology[J]. Journal of Applied Polymer Science, 1995, 57: 1637~1644
    42. I. M. Wienk, F. H. A. Oldc Scholtenhuis, Th. Van den Boomcaard, and C. A Smolders. Spinning of hollow fiber ultrafiltration membranes from a polymer blend[J]. Journal of Membrane Scicncc, 1995. 106: 233~243
    43. TAI-SHUNG CHUNG, XUDONG HU, Effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollow fibers[J]. Journal of Applied Polymer Science, 1997, 66. 1067~1077
    44. Dongliang Wang. K. Li, W. K. Teo, Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molicular additives[J]. Journal of Membrane Science, 2000, 178: 13~23.
    45.郑炳云,杜邵龙,董声雄,小截留分子量PVDF超滤膜的制备研究[J].副州大学学报,2000,28(5):94~97。
    46.刘武义,胡振锟,聚偏氟乙烯增强微孔膜的研制[J].水处理技术,1999,25(4):194~198。
    47. Ming-Chien Yang, Ming-Tze Chou. Effect of post-drawing on the mechanical and mass transfer properties of polyacrylonitrile hollow fiber membranes[J]. Journal of Membrane Science, 1996, 116: 279~291
    48. M. Gholami, Simin Nasseri, C. Y. Feng et al. The effect of heat-treatment on the ultrafiltration perrormance of PES hollow fiber membranes[J[. Desalination, 2003, 155: 293~301
    49.高以煊.第二届膜和膜过程学术报告会论文集[A].杭州,1996.
    50. Xavier M. Ger. [P] DE. 2 651 818, 1977.
    51. Asahi Chem. lndustry Co. Ltd. Jpn. Kokai Tokkyo Koho. [P]. JP, 5686 914, 1981.
    52. Boom R M. Makromol. Chem. Maeromol. SyruP. , 1993: 69
    53.陆晓峰.庆祝中国海水淡化与水再利用学会成立十周年论文报告会预印集[A].1992:197.
    54.梁雪梅,陆晓峰,王彬芳等.高分子纳滤膜的研究及进展[J].功能高分子学报.1999.1:102~108
    55.罗川南.杨勇.聚砜/聚醚砜相容性对合金膜机构和性能的影响[J].化学研究,2002(12):30~33
    56. Shanchuan Y. Water Treatment, 1994, 9(2): 87
    57.吴开芬,李书申.聚醚砜-磺化聚砜共混膜的研究[J].环境化学,1993,12(6):458
    58. Miyano T. Jpn. Kokai Tokkyo Koho. [P]JP, 02115028, 1990
    59.王保国,王淑霞,PAN/PS共混中空纤维超滤膜研究[J].水处理技术,1996,22(2):85
    60.于仲元主编,血液净化(第五章血浆置换疗法)[M].北京:现代出版社,2000:500~519
    61.赵长生,刘霆,卢中平等,一种新聚醚砜中空纤维血浆成分分离膜的筛分特性及影响因数[J].生物医学工程杂志,2001:18(1):5~8
    62.魏清荣,赵长生,陈永东等;聚醚砜中空纤维膜血浆自动采集滤器分离血浆效能的研究[J].中国输血杂志,2002,15(2):82~84
    1. Kesting R. E. and Fritzsche A. K, Polymeric Gas Separation Membranes[M]. New York, Wiley-Interscience, 1993.
    2.高以恒,叶凌碧,膜分离技术基础[M].北京:科学出版社,1989
    3.吕少丽.聚醚砜PES中空纤维膜的制备及共混改性研究[D].杭州:浙江大学,2005。
    4.沈立强.聚醚酰亚胺中空纤维超滤膜的研究[D].杭州:浙江大学,2002。
    5.俞三传,高从阶,浸入沉淀相转化法制膜[J].膜科学与技术,2000,20(5):38~43。
    6. Ki-Jun Baik, Je Young Kim, Hwan Kwang Lee, Sung Chul Kim, Liquid-liquid phase separation in polysulfone/polyethersulfone/N-methy1-2- pyrrolidone/water quaternary system[J]. Journal of Applied Polymer Science, 1999, 74 (9): 2113~2123
    7. Frank W. Altena, C. A. Smolders. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent[J]. Macromolecules, 1982, 15(6): 1491~1497。
    8. Hans Craubner. Thermodynalnic Perturbation Theory of Phase Separation in Macromolecular Multicomponent Systems. 2. Concentration Dependence[J]. Macromolecules, 1978, 11(6): 1161~1167
    9. Boom, R. M. , van den Boomgaard Th. , van den Berg, J. W. A. and Smolders, C. A. , Linearized cloudpoint curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent [J]. Polymer, 1993, 34: 2348~2356
    10. W. F. C. Kools, Th. van den Boomgaard and H. Strathmann. Considerations and restrictions on the theoretical validity of the linearized cloudpoint correlation [J]. Polymer, 1998, 39: 4835~4840
    11. Li Shuguang, Jiang Chengzhang and Zhang Yuanqi. The investigation of solution thermodynamics for the polysufone—DMAC—water system [J]. Desalination, 1987, 62: 79~88
    12.陈希,化学纤维实验教程[M].北京:纺织工业出版社,1988。
    13.Mulder M.著,李琳译,膜技术基本原理,第二版[M].北京:清华大学出版社,1999。
    14. Frank N. Kelley, F. Bueche. Viscosity and glass temperature relations for polymer-diluent systems[J].Journal of Polymer Science,1961,50(154) :549~556 15. Kools W.,Membrane Formation by Phase Inversion in Multicomponent Polymer Systems[D].University of Twente, 1998.
    16. Kim J.Y.,Kim YD.,KanamoriT.,Lee H.K.,Baik K.J.,Kim S.C.Vitrification phenomena in polysulfone/NMP/water system[J].Journal of Applied Polymer Science,1999,71(3) :431~438
    17. Dongliang Wang,K.Li and W.K.Teo,Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation[J].Journal of Membrane Science,1998,138:193~201.
    18. Zhen-Liang Xu,Tai-Shung Chung,Kai-Chee Loh and Bee Chun Lim.,Polymeric asymmetric membranes made from polyetherimide/polybenzimidazole/poly(ethylene glycol)(PEI/PBI/PEG)for oil-surfactant-water separation[J].Journal of Membrane Science,1999,158:41~53
    19. Jianjun Qin and Tai-Shung Chung,Effect of dope flow rate on the morphology,separation performance,thermal and mechanical properties of ultrafiltration hollow fibre membranes[J].Journal of Membrane Science,1999,157:35~51
    1.陈忠祥,周美娟,肖通虎,影响聚醚砜微孔滤膜孔径的因素[J].宁波大学学报:2000,13(2):35~38
    2.狄英伟,李滨耀,聚醚砜流变性能的研究[J].高分子学报,1994,2:182~187。
    3. B. Torrestiana-Sanchez, R. I. Oritiz-Basurto, E. Brito-Dela Fuente, Effent of nonsolvents on properties of spinning solutions and polyether sulfone hollow fiber ultrafiltration membranes[J]. Journal of Membrane Science 1999, 152: 19~28.
    4. H. Wood, J. Wang and S. Sourirajan, The effect of poly ether sulfone concentration on flat and hollow fiber membrane performance [J]. Sep. Sci. Technol. , 1993, 28(15, 16): 2297
    5. Tai Shung Chung, Soo Khean Teoh, Xudong Hu. Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes[J]. Journal of Membrane Science, 1997, 133: 161~175
    6. Tai Shung Chung, Xudong Hu, Effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollow fibers [J]. Journal of Applied Polymer Science, 1997 (66): 1067~1077
    7. Tai Shung Chung, J. J. Qin, J. Gu, Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes [J]. Chemical Engineering Science, 2000 (55): 1077~1091
    8. C. Barth, M. C. Goncalves, A. T. N. Pires. Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance[J]. Journal of Membrane Science, 2000, 169(2): 287~299
    9. J. A. Van't Hof, Reuvers A J, Boom R M. Preparation of asymmetric gas sepration membranes with high selectivity by a dual-bath coagulation method[J]. Journal of Membranes Science, 1992 (70): 17~30
    10.江体乾,工业流变学[M].北京:化学工业出版社,1995.4:106~108。
    11. H. Leaderman, R. G. Smith, and R. W. Jones, Rheology of polyisobutylene. Ⅱ. Low molecular weight polymers[J]. Journal of Polymer Science, 1954 (14): 47~80
    12. Kunihiro Osaki, Bong-Shik Kim and Michio Kurata, Rheology of Copolymer Solutions. Ⅲ. The Linear Viscoelasticity of SBS Block Copolymer Solutions[J]. Polymer Journal. 1978 (10): 353~363
    13.何曼君,陈维孝,董西侠编,高分子物理[M].上海:复旦大学出版社,2000.9:265~280
    1. Kiyotaka Sakai, artificial kidney engineering-dialysis membrane and dialyzer blood purification[J]. Journal of chemical engineering of Japan 1997, 30(4): 587~598.
    2.赵玉琴,高以恒,聚醚砜超滤膜及其热稳定性[J].水处理技术,1990.16(3):230~235。
    3. Kesting R. E. , Synthetic Polymeric Membranes: A Structure Perspective, 2nd Ed. [M]. New: York, Wiley-Interscience, 1985.
    4. Beerlage M. A. M. , Polyimide ultrafiltration membranes for nonaqueous systems, [D]. University of Twente, NL, 1994.
    5. Dongliang Wang, K. Li and W. K. Teo, Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation[J]. Journal of Membrane Science, 1998, 138: 193~201.
    6.俞三传,高从阶,浸入沉淀相转化法制膜[J1.膜科学与技术,2000.20(5):38~43。
    7. R. M. Boom, Th. van den Boomgaard and C. A. Smolders, Mass transfer and thermodynamics during immersion precipitation for a two-polymer system: Evaluation with the system PES—PVP—NMP—water[J]. Journal of Membrane Science, 1994, 90: 231~249.
    8. Boom R. M. , Wienk I. M. , van den Boomgaard and Smolders C. A. , Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive[J]. Journal of Membrane Science, 1992, 73: 277~292o
    9. Israel Cabasso, Elias Klein, James K. Smith. Polysulfone hollow fibers. I. Spinning and Properties[J]. Journal of Applied Polymer Science, 1976, 20: 2377~2394
    10. Israel Cabasso, Elias Klein, James K. Smith. Polysulfonc hollow fibers. Ⅱ. Korphology[J]. Joumal of Applied Polymer Science, 1977, 21: 165~180
    11. Ming-Chien Yang, Ming-Tze Chou. Effect of post-drawing on the mechanical and mass transfer properties of polyacrylonitrile hollow fiber membranes[J]. Journal of Membrane Science. 1996, 116: 279~291
    12. S. C. Pesek, W. J. Koros. Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation[J]. Journal of Membrane Science, 1993, 81: 71~88
    13. A. J. Reuvers and C. A. Smolders, Formation of membranes by means of immersion precipitation. Part Ⅱ. The mechanism of formation of membranes prepared from the system CA/acetone/water[J]. Journal of Membrane Science, 1987, 34: 67.
    14. Lucie Y L, Frank D F. Effect of polyinylpyrrolide additive on the performance of polyethersulfone ultrafiltration membranes[J]. 2nd Eng Chem Res. 1987. 26: 2385~2389.
    15. J. A. van't Hof, A. J. Reuvers, R. M. Boom, H. H. M. Rolevink and C. A. Smolders, Preparation of asymmetric gas separation membranes with high selectivity by a dual-bath coagulation method[J]. Journal of Membrane Science, 1992, 70: 17~30
    16.叶凌碧,刘大真,宇恒,孔径为1. 2um以下的微孔膜孔径测定方法[J].膜分离科学与技术,1983,3(1):54~62。
    17.高以恒,叶凌碧,膜分离技术基础[M].北京:科学出版社,1989
    18.陈坚锐,王加乐,董生雄,龚琦,PES超滤膜的制备工艺条件及化学稳定性研究[J].沈阳化工学院学报,2002,12(4):294~298。
    19.王宝国等,添加剂对中空纤维超滤膜规律研究[J].膜科学与技术,1997,17:46。
    20.时钧,袁权,高从增,膜技术手册[M].北京:化学工业出版社,200l:64。
    21. D. R. Paul, Diffusion during the coagulation step of wet-spinning[J]. Journal of Applied Polymer Science, 1968, 12: 383~402
    22.董纪震,罗鸿烈,王庆瑞等,合成纤维工艺学[M].北京:中国纺织出版社.1991:370~373。
    23.高以恒,叶凌碧,膜分离技术基础[M].北京:科学出版社,1989:124。
    24. H. Strathmann K. Kock, R Amar, The formation mechanism of asymmetric membranes[J]. Desalination, 1975, 16: 179~203
    25. A. Bottino, G. C. Roda, G. Capannelli et al. The formation of microporous polyvinylidene fluoride membranes by phase separation[J]. Journal of Membrane Science. 1991, 57: 1~20
    26.胡家俊,郑领英,湿法相分离不对称超滤膜形成机理[J].水处理技术,1994,20(4):185~191。
    27. Cabasso, E. Klcin, J. K. Smith. Polysulfone hollow fibers. Ⅱ. Morphology[J]. Journal of Applied Polymer Science, 1977, 21: 165~180
    28. A. Bottina, G. Capannelli, S. Munari, Effect of Coagulation medium on properties of sulfonated polyvinylidene fluoride membranes[J]. Journal of Applied Polymer Science, 1985, 30: 3009~3022
    29. L. P. Cheng, T. H. Young, W. M. You, Formation of crystalline EVAL membranes by controlled mass transfer process in water-DMSO-EVAL copolymer systems[J]. Journal of Membrane Science, 1998, 145: 77~90
    30.何涛,江成璋,聚醚砜微孔膜制备中凝固剂添加剂作用的研究[J].膜科学与技术,1998,18(3):43~48
    31. Zandrie Boreman, Vural Gokmen, Herry H. Nihuis, Selective removal of polyphenols and brown colour in apple juices using PES/PVP membranes in asingle-ultrafiltration process[J]. Journal of Membrane Science, 1997, 134: 191~197
    32. A. J. Reuvers, J. W. A. v. d. Berg and C. A. Smolders, Formation of membranes by means of immersion precipition. Part Ⅰ. A model to describe mass transfer during immersion precipitation[J]. Journal of Membrane Science, 1987, 34: 45.
    33. A. J. Reuvers and C. A. Smolders, Formation of membranes by means of immersion precipitation. Part Ⅱ. The mechanism of formation of membranes prepared from the system CA/acetone/water[J]. Journal of Membrane Science, 1987, 34: 67.
    34. A. J. Reuvers, Membrane formation-Diffusion induced demixing processes in ternary polymeric systems[D] . University of Twente, Enschede, The Netherlands, 1987, Chap. 7.
    35. J. A. van't Hof. A. J. Reuvers, R. M. Boom et al. Preparation of asymmetric gas separation membranes with high selectivity by a dual-bath coagulation method[J]. Journal of Membrane Science, 1991, 70: 17.
    36. Kneifel K. , Peinemann K-V. , Preparation of hollow fiber membranes from polyetherimide for gas separation[J]. Journal of Membrane Science, 1992, 65: 295
    37.沈新元等,高分子材料加工原理[M].上海:中国纺织出版社,2000:214~215
    38.陈立新,沈新元,相转化法的湿法成膜机理[J].膜科学与技术,1997,17(3):1~6,17
    39. H. Strathmann, P. Scheible and R. W. Baker, A rationale for the preparation of Loeb-Sourirajan-type cellulose acetate membranes[J]. Journal of Applied Polymer Science, 1971, 15: 811~828.
    1.吴培熙,张留城.聚合物共混改性[M].北京:中国轻工业出版社,1996.
    2.奥拉比瑟(Olabisi,O.)等.聚合物-聚合物溶混性[M].北京:化学工业出版社,1987.
    3. Schneier B. Polymer compatibility [J]. Journal of Applied Polymer Science, 1973, 17: 3175~3185.
    4. Iwao Teraoka Polymer solutions [M]. New York: John Wiley & Sons, Inc. 2002
    5. Mathew M, Ninan K N, Thomas S. Compatibility studies of Polymer-polymer systems by viscometric techniques: Nitrile-rubber based polymer blends[J]. Polymer, 1998, 39(24): 6235~6239.
    6.俞三传,高从楷.聚砜—聚醚砜共混膜相容性及凝胶特性研究[J].膜科学与技术,1999,19:23~26.
    7. Richard W Baker. Membrane technology and applications[M]. Chichester: John Wiley & Sons Ltd, 2004. 89~155.
    8. Marze X, Minfray M. Mixture of two polyethers to make an ultrafiltration membrane[P]. US Pat, 4319008. 1982-03-09.
    9. Suzana P, Peinemann N K V. Ultrafiltration membranes from PVDF/PMMA blends[J]. Journal of Membrane Science, 1992, 73: 25.
    10. Blicke C, Peinemann N K V. Ultrafiltration membranes from poly(ethersulfonamide)/poly(etherimide) blends[J]. Journal of Membrane Science, 1993, 79: 83.
    11. Wayne W Y L, Jiang Y. Performance of. polysulfone/carboxylated polysulfone membranes[J]. Polymer internation, 1994, 33: 413.
    12.尹秀丽,宋艳秋,PVDF/PAN共混超滤膜[J].应用化学,1997,14(5):112~114
    13.程洪斌,尹秀丽,聚偏氟乙烯/聚丙烯腈共混膜的研究,天津纺织工学院学报[J].1998,17(1):54~60
    14. M. C. Yang, T. Y. Liu, The permeation performance of polyacrylonitrile/polyvinylidene fluoride blend membranes[J]. Journal of Membrane Science, 2003, 226: 119~130
    15.贪延滨,李继定,马润宇.PVDF/PS共混微孔膜的制备[J].膜科学与技术,2003,23(2):57~61
    16.朱平平,杨海洋,王世强等.稀溶液粘度法研究聚合物之间混溶性[J].功能高分子学报,1997,3:436~442.
    17. A. Bottino, G. C. Roda, G. Capannelli et al. The formation of microporous polyvinylidene difluoride membranes by phase separation[J]. Journal Of Membrane Science, 1991, 57: 1~20
    18. C M Hansen. The three dimensional solubility parameter-key to paint component affinities: I [J]. J Paint Technol, 1967, 39: 104~117.
    19. C M Hansen. The three dimensional solubility parameter-key to paint component affinities: Ⅱ[J]. J Paint Technol, 1967, 39: 511~518.
    20. D W Van Krevelen. Propertiesof polymers: Their estimation and correlation with chemical structureM. 4th Edition, New York: Elsevier. 1991.
    21.何曼君,陈维孝,董西侠,高分子物理[M].上海:复旦大学出版社,2000
    22.武利顺.PVDF与PES共混溶液和膜性能的研究[D].上海:东华大学,2005
    23.赵安赤,刘跃新,PVDF、LCP及其共混物的流变行为,高分子材料科学与工程[J].1999,15(4):123~126
    24.李海东,程凤梅,赫奕梅,ABS/LLDPE共混物熔体流变特性,吉林工学院学报[J].2001,22(2):16~19
    25.廖功雄,骞锡高,郭晓园,PPEKK/PPS共混物流变性能的研究,中国塑料[J].2001,15(7):18~21
    26.房桂明,张东,张秀斌,POM/COPA共混物流变性能研究,沈阳化工学院学报[J].2002,16(2):115~117
    27.冼远芳,程凤梅,王宇明,HDPE/NBR共混物熔体流体流变特性,吉林工学院学报[J].2002,23(2):20~22
    28.史铁钧,郝文涛,丁运升等,ABS/CPE二元共混体系流变性能研究,高分子材料科学与工程[J].1998,14(3):103~105
    29.陈旭东,沈家瑞,夏成林,PVC/MBS共混物熔体毛细管流变性能研究,中山大学学报[J].2001,40(6):46~50
    30.何慧等,PET/HDPE共混体系的加工流变性,塑料工业[J].26(3)1998,117~120。
    31.郭静,徐德增,蔡月芬,COP/PP共混物的流变性能,合成纤维工业[J].2001,24(6):22~25。
    32.陈蕾,喻爱芳,胡祖明等,PMMA-PET共混体系流变性能,高分子材料科学与工程[J].2003,19(3):152~155。
    33. M. Sakai, T. Fujimoto, M. Nagasawa, Steady flow properties of monodisperse polymer solutions. Molecular weight and polymer concentration dependences of steady shear compliance at zero and finite shear rates, Macromolecules[J]. 1972, 5: 786~792
    34. L. S. Wu, Q. R. Wang, Rheology of Concentrated solutions of Poly(vinylidene Fluoride), Journal of Polymer Materials[J]. 2003, 20: 435~443
    35. T. Kotaka, K. Osaki, Normal stresses. non-Newtonian flow, and dynamic mechanical behavior of polymer solutions[J]. Journal of Polymer Science: Part C, 1966, 15: 453~479
    1. Suzana P, Peinemann N K V. Ultrafiltration membranes from PVDF/PMMA blends[J]. Journal of Membrane Science, 1992, 73; 25
    2. Blicke C, Peinemann N K V. Ultrafiltration membranes, from Poly(ether sulfonamide)/Poly(ether imide) blends[J]. Journal of Membrane Science, 1993, 79: 83
    3. Wayne W YL, Jiang Y. Performance of polysulfone/carboxylated polysulfone membranes[J]. Polymer International, 1994, 33: 413
    4.李磊,许莉,王宇新.磺化酚酞型聚醚砜膜的制备及其阻醇和质子导电性能[J].高分子学报,2003,4:465
    5.贪延滨,李继定,马润宇.PVDF/PS共混微孔膜的制备[J].膜科学与技术,2003,23(2):57~61
    6. Richard W Baker. Membrane technology and applications[M]. Chichester: John Wiley & Sons Ltd, 2004, 165.
    7.丁马太,余乃梅,何旭敏等.PVC/PAN共混超滤膜的研究[J].水处理技术,1991,17(4):211
    8.杨勇,孙斌,邹健等.聚砜类合金分离膜研究进展[J].高分子材料科学与工程2000,(16):24~28
    9.尹秀丽,邓桦,杨溥臣.PVDF/PS共混超滤膜的研究[J].水处理技术,1997(23):131~133.
    10. M. C. Yang, T. Y. Liu, The permeation performance of polyacrylonitrile/ polyvinylidene fluoride blend membranes[J]. Journal of Membrane Science, 2003(226): 119~130
    11. R. M. Boom, H. W. Reinders, H. H. W. Rolevink, Equilibrium thermodynamics of a quaternary membrane-forming system with two polymers. 2. Experinents[J]. Macromolecules, 1994(27): 2041~2044
    12. C. Stropnik, L. Germic, B. Zerjal, Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion[J]. Journal of Applied Polymer Science, 1996(61): 1821~1830
    13. T. H. Young, L. W. Chen, Pore formation mechanism of membranes from phase inversion process[J]. Desalination, 1995(103): 233~247
    14. C. A. Smolders, A. J. Reuvers, R. M. Boom et al. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoeds[J]. Journal of Membrane Science, 1992, (73): 259~275